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Abstract. We have investigated the analytical and numerical dynamics of

entanglement for two qubits that interact with each other via Heisenberg XXX-type

interaction and subject to local time-specific external kick and Gaussian pulse-type

magnetic fields in x-y plane. The qubits have been assumed to be initially prepared in

different pure separable and maximally entangled states and the effect of the strength

and the direction of external fast pulses on concurrence has been investigated. The

carefully designed kick or pulse sequences are found to enable one to obtain constant

long-lasting entanglement with desired magnitude. Moreover, the time ordering effects

are found to be important in the creation and manipulation of entanglement by external

fields.
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1. Introduction

Entanglement exhibited by composite correlated quantum systems has become one of

the most widely investigated physics subject of recent years [1]. It provides promising

resource for some quantum information tasks, such as quantum teleportation [2],

cryptography [3] and computing [4]. For those applications, the generation,

manipulation, detection and control of entanglement between the quantum systems

should be precise and effectively done during carrying out of the required operations. A

spin 1/2 particle in a magnetic field is found to be a suitable candidate as a qubit of a

quantum computer [5], so the Heisenberg chains have been used to construct a quantum

computer based on quantum dots [5], nuclear spins [6], electronic spins [7] and optical

lattices [8]. Moreover, Wu et al. showed that one qubit gates in spin-based quantum

computers can be constructed with a global magnetic field and controllable Heisenberg

exchange interactions [9]. Imamoglu et. al. demonstrated that 1-D Heisenberg chain

of spin 1/2 particles (qubits) can be used as a prototypical system to study the role of

entanglement in quantum computational tasks [10].

Numerous studies have been devoted to the control, production and manipulation

of entanglement in Heisenberg spin chains with the help of external magnetic fields [11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Among them, Sadiek et al. investigated the

time evolution of entanglement between two Heisenberg XYZ coupled qubits under an

external sinusoidal time-dependent nonuniform magnetic field and they demonstrated

that the entanglement of the system can be controlled and tuned by varying the

time-dependent magnetic field and the Heisenberg exchange coupling parameters [12].

Abliz et al. studied the entanglement dynamics of two-qubit Heisenberg XYZ model

affected by population relaxation and subject to various types of external magnetic

fields, such as an inhomogeneous static field, homogeneous exponentially varying and

periodically varying magnetic fields, and they demonstrated that high entanglement

can be produced, controlled and modulated with the help of external time-varying

fields despite the existence of dissipation [14]. Huang and Kais demonstrated that

the entanglement in one-dimensional spin system, modeled by the XY Hamiltonian

can be localized between nearest-neighbor qubits for certain values of the step function

external magnetic fields [17]. In Ref. [11], the possibility of creating and controlling

entangled states by changing the relative phase of control pulses was investigated.

Huang et al. demonstrated that the dynamics of the nearest-neighbor entanglement

for one-dimensional spin system under sinusoidal magnetic fields displays a periodic

structure with a period related to that of the magnetic field [18]. Blaauboer and Di

Vincenzo presented a scheme for detecting entanglement between electron spins in a

double-quantum-dot nanostructure and they demonstrated separation and coherently

rotating of entangled spins in quantum dots by using a time-dependent gate voltage

and magnetic field [19].

The form of the external magnetic field used in control of entanglement is an

important parameter in manipulation of the entanglement between the qubits. As



Entanglement Dynamics of Kicked Qubits 3

summarized above, the most of the external fields studied for the control are in static,

exponential, step or sinusoidal form. An external field of the kick or Gaussian pulse

sequence form might provide a better control schema for entanglement. Along these

lines Kaplan et al. and Shakov et al. have investigated the population and coherence

dynamics of a single qubit under the influence of kick or Gaussian pulse sequence

magnetic fields [22, 23]. It was shown that the instantaneous pulses (kicks) provide

a full population transfer in a qubit from one state to the other which has a great deal

of interest in quantum computing and control theory [24]. In our recent paper [20],

we have extended the schema introduced in Refs. [22, 23] to two coupled qubits and

have investigated the dynamics of entanglement between two Heisenberg qubits under

the influence of strong delta function (kick) and Gaussian pulse type magnetic fields

directed along the z-axes. The qubits have been assumed to be initially prepared in

the separable |01〉 and the maximally entangled 1√
2
(|10〉+ |01〉) states. We have shown

that the fast pulses provide an efficient way of controlling entanglement between the

coupled qubits and also by this control it is possible to manipulate the transition from

disentangled to the entangled states of the system. Longitudinal control fields were

found to be ineffective in creating entanglement for the |11〉 and |00〉 type initial states

or manipulating the entanglement of 1√
2
(|11〉 ± |00〉) type maximally entangled initial

states.

In the present study, we extend the work in Ref. [20] to consider the effect of the

transverse field and analyze the dynamics of entanglement between two qubits that

interact with each other via Heisenberg XXX type interaction that are subject to site-

specific time-dependent magnetic control fields. Our aim is to widen the possibility of

creating and manipulating entanglement with the tailored external kick and Gaussian

pulse sequence type fields for arbitrary pure initial states. One important finding of the

present work is the transverse external fields can control the dynamics of entanglement

for two qubits for initial states that could not be manipulated with the longitudinal

fields. We have also showed that the opposite scenario can take place for transverse

external fast pulses.

The paper is organized as follows. In Sec. 2, the model and basic formulation for

the solution of time evolution are briefly discussed. In Sec. 3, Wootters concurrence as

a measure of entanglement is introduced. Entanglement dynamics of two qubits under

multiple kicks analytically and multiple Gaussian pulses numerically are investigated in

Secs. 4 and 5, respectively. In Sec. 6, we conclude with a summary of important results.

2. The model and basic formulation

In the present study, we consider two Heisenberg XXX-coupled qubits under time-

dependent external magnetic fields in x-y plane. The time-dependent Hamiltonian for

this model can be represented as [14, 25] (h̄ = 1):

Ĥ(t) = Ĥ0 + Ĥint(t), (1)
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where

Ĥ0 = J
∑

i=x,y,z

σ̂i1σ̂
i
2,

Ĥint(t) =
1

2

2∑
i=1

Bi(t)(cos(θ)σ̂xi + sin(θ)σ̂yi ), (2)

where σ̂i1,2 (i = x, y, z) are the usual Pauli spin operators, B1(t) and B2(t) are the

external time-dependent magnetic fields acting on the qubits 1 and 2, respectively, J is

the qubit-qubit interaction strength and θ is the angle between the magnetic fields and

the x-axes. For simplicity, we will assume 0 ≤ θ ≤ π
2
. Here, we take J to be constant

in time and assume all the time dependence in the systems’ Hamiltonian Ĥ(t) comes

only from Ĥint(t). It is also possible to control qubit-qubit entanglement evolution by

time dependent coupling strength instead of magnetic fields [26]. It was shown that such

controls can be implemented physically, for example by using interacting flux qubits [26].

The most general form of an initial pure state of the two-qubit system may be

given by the state vector |Ψ(0)〉 = a1(0) |11〉 + a2(0) |10〉 + a3(0) |01〉 + a4(0) |00〉,

where ai(0) (i = 1, 2, 3, 4) are complex numbers with
4∑
i=1

|ai(0)|2 = 1. Then, under

Hamiltonian (1) the probability amplitudes evolve in time according to Schrödinger

equation as:

i
d

dt


a1(t)

a2(t)

a3(t)

a4(t)

 =


J B̃2(t) B̃1(t) 0

B̃2(t)
∗ −J 2J B̃1(t)

B̃1(t)
∗ 2J −J B̃2(t)

0 B̃1(t)
∗ B̃2(t)

∗ J



a1(t)

a2(t)

a3(t)

a4(t)

 , (3)

where B̃k(t) = 1
2
e−iθBk(t) (k = 1, 2) and B̃k(t)

∗ is its complex conjugate.

Mathematically and conceptually, it is convenient to write the formal solution of Eq. (3)

in terms of the time evolution matrix Û(t) as:
a1(t)

a2(t)

a3(t)

a4(t)

 = Û(t)


a1(0)

a2(0)

a3(0)

a4(0)

 . (4)

Here all the time-dependence of the system is contained in the time evolution operator

Û(t), while the initial conditions are specified in |Ψ(0)〉. The time evolution operator

Û(t) may be expressed as:

Û(t) =
←
T e−i

∫ t
0
Ĥ(t′)dt′ =

←
T e−i

∫ t
0
(Ĥ0+Ĥint(t

′))dt′

=
←
T
∞∑
n=0

(−i)n

n!

∫ t

0
Ĥ(tn)dtn...

∫ t

0
Ĥ(t2)dt2

∫ t

0
Ĥ(t1)dt1. (5)

Here
←
T is the so-called the Dyson time ordering operator which arranges the operators

in order of increasing of time [27], for example,
←
T Ĥ(ti)Ĥ(tj) = Ĥ(tj)Ĥ(ti) if tj > ti

and Ĥ(ti)Ĥ(tj) otherwise. It gives rise to observable, nonlocal, time ordering effects if
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and only if
[
Ĥ(tj), Ĥ(ti)

]
6= 0 [22, 23]. Note that the non-trivial time dependence in

Û(t) arises from time dependent Ĥ(t) and time ordering
←
T .

3. Measure of entanglement

For two-qubit systems, as an entanglement measure, Wootters concurrence is a well-

defined quantity [28]. Its value ranges from 0 for a separable state to 1 for a maximally

entangled (Bell) state. The concurrence function is defined as:

C(ρ̂) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (6)

where λi (i = 1, 2, 3, 4) are the eigenvalues of the matrix ρ̂(t)(σ̂y1 ⊗ σ̂y2)ρ̂(t)∗(σ̂y1 ⊗ σ̂y2)

in descending order. Here ρ̂(t) is the density matrix of the qubits and ρ̂(t)∗ is its

complex conjugate. According to Schrödinger equation (3), it should be noted that the

probability amplitudes ai(t) (i = 1, 2, 3, 4) evolve in time interdependently. From this

point, it is convenient to consider a general time-dependent two-qubit pure state in the

form: |Ψ(t)〉 = a1(t) |11〉+ a2(t) |10〉+ a3(t) |01〉+ a4(t) |00〉. Then, it is straightforward

to show that the concurrence function (6) for the general pure state with density matrix

ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| is given by the simple equation as:

C(ρ̂) = 2 |a1(t)a4(t)− a2(t)a3(t)| , (7)

where the time-dependent coefficients may be given by Eq. (4) as:

ai(t) =
4∑
j=1

Uij(t)aj(0), (8)

where Uij(t) (i, j = 1, 2, 3, 4) are the matrix elements of Û(t). According to Eqs. (7)

and (8), to study entanglement dynamics of two qubits, one has to present the initial

preparation of the qubits, i.e., ai(0), and the matrix elements of the time evolution

matrix Û(t). In this work, we will consider pure states as initial states. An initially

pure state remains pure at all times under the dynamics given by Eq. (3). It is well

known that for pure states entanglement can quantify all quantum correlations between

two two-level systems, while such an identification is complicated for mixed states and

entanglement signifies only a particular type of quantum correlation [29].

4. Entanglement dynamics of two coupled qubits under the influence of

three positive kicks

Depending on the complexity of the time evolution in Ĥint(t), the dynamics may

or may not be solved analytically. Most of the studies employ numerical solutions

of the time evolution in order to control entanglement between two level quantum

systems [11, 12, 13, 14, 15, 17, 18, 20]. However, analytic solutions are more convenient

and easy to analyze, if they are available. For one qubit case, Shakov et al. listed some

progressive approximations in which the time evolution may be solved analytically [23].

These approximations are the qubit having degenerate basis states, the external field
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being constant or changed slowly, the field being oscillating with a frequency close

to the resonance frequency of the energy splitting of a qubit so that RWA solutions

exist, the field being perturbative and a sudden or series of fast pulses (kicks). The

fast pulses are the most important limiting cases compared to the others because it

was shown that they provide a full population transfer from one state to the other in a

qubit [22, 23]. Moreover, the fast pulse and pulses have many potential implementations

for some quantum tasks, such as NMR, quantum gates, excitation of electronic states

in molecules, chemical reactions and quantum computing [30, 31, 32, 33, 34, 35].

We have obtained analytical expressions for the time evolution operator for one,

two and three kick sequences and display the elements of Û(t) in Appendices A, B

and C, respectively. They will be used in Eqs. (7) and (8) to calculate the dynamics of

concurrence for various initial states. In Ref. [20], it was found that the entanglement

of the qubits initially in |01〉 (or |10〉) and 1√
2
(|10〉 ± |01〉) can be manipulated easily

with an external field in z-direction, while for the initial states of the type |11〉, |00〉 or

linear combination of them were immune to such a manipulation. So, we consider those

states that cannot be affected by longitudinal external fields and analyze their dynamics

under a transverse field.

In the following, we will discuss the effect of transverse field on the dynamics of the

system which is initially in a separable, i.e., |Ψ(0)〉 = |11〉 or in a maximally entangled

state i.e., |Ψ(0)〉 = 1√
2
(|11〉 + |00〉). To see the effect of kicks on the entanglement

dynamics for these initial states, one should note that before the kick the qubits evolve

in accordance with the time independent Hamiltonian Ĥ0 and the propagator is given

by

Û(t) = e−iĤ0t

=


e−iJt 0 0 0

0 eiJt cos(2Jt) −ieiJt sin(2Jt) 0

0 −ieiJt sin(2Jt) eiJt cos(2Jt) 0

0 0 0 e−iJt

 . (9)

Based on Eqs. (7), (8) and (9), the initially separable state remains separable, while the

concurrence for the initial Bell state is equal to 1 at any time before the kick. That is,

qubit-qubit interaction has no effect in the absence of external fields.

Here we consider two qubits whose states are strongly perturbed by three positive

kicks applied at times t = T1, t = T2 and t = T3. The magnetic fields on qubits can be

given as B1(t) = α
3∑
i=1

δ(t − Ti) and B2(t) = β
3∑
i=1

δ(t − Ti), where α and β are called

integrated magnetic strengths [20], and δ(t) is the dirac delta function. For such a kick

sequence, the integration over the time is trivial and the time evolution matrix (5) in

the presence of time ordering can be obtained easily [20, 22, 23]. In the Appendix part,

the evolution matrices after each kick are presented and by using these propagators

in Figs. 1(a) and 1(b), the effects of the sequence of three kicks on C(ρ̂) for |11〉 and
1√
2
(|11〉 + |00〉) initial states are displayed, respectively, with θ = π/2 and α/β = 2
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Figure 1. C(ρ̂) versus Jt for a sequence of three positive kicks applied at times

T1 = 5, T2 = 10 and T3 = 15 for the initially pure states |11〉 (a) and 1√
2
(|11〉+|00〉) (b)

with θ = π
2 . Here the dashed lines correspond to α/β = 2 and the solid lines to α/β = 3,

and we set β = 1 and J = 1.

or α/β = 3. The concurrence for the considered initial states in the time domains

5 < t < 10, 10 < t < 15 and t > 15 may be found by using Eqs. (A.2), (B.2) and (C.2),

respectively, in Eqs. (7) and (8). Both figures show the pronounced effect of the kick on

entanglement dynamics; the concurrence of these initial states starts oscillating just after

a single kick with an increase in their oscillation amplitudes with the increase in the ratio

α/β (see the time domain 5 < t < 10). In fact, a sudden kick applied at t = 5 induces

entanglement from the initially unentangled qubits (Fig. 1(a)) and yields oscillations

in the concurrence function for the Bell state (Fig. 1(b)). It is worth mentioning here

that for the magnetic fields acting in the z-axes, it was found that the qubits remain

unentangled or maximally entangled state at all times for |11〉 or 1√
2
(|11〉+ |00〉) initial

states despite the existence of strong external kicks [20]. Comparing one, two and three

kick regions, the sole effect of the number of kicks is found to change the amplitude (or

minimum) of C(ρ̂) for initial Bell state. As can be seen from Fig. 1(b), after second

kick, the amplitude of concurrence oscillations increases compared to that of first kick,

while it decreases after third kick. On the other hand, for |11〉 state case, the effect

of the number of kicks is complicated compared to the Bell state case, because each

kick can change the amplitude, maximum and minimum of C(ρ̂). It is obvious that

after each kick the minimum of C(ρ̂) increases for initially separable state. The most

important observation from these figures is the possibility of obtaining almost steady

high concurrence around 1 after third kick for α/β = 3 and both initial states. This

shows that for certain system parameters (here we set α = 3, β = 1, J = 1 and

T = 5), it is possible to create highly entangled qubits from an initially separable state

by perturbing the qubits via instantaneous pulses. Also note that after second kick,

the minimum of C(ρ̂) for Bell state can go to 0 for α/β = 2. As mentioned above,

the qubit-qubit interaction has no effect on the entanglement of the considered states

before the kick, while their oscillation frequencies depend on the qubit-qubit interaction

strength, J , after the kick as can be seen from Figs. 1(a) and 1(b) as well as from the

matrix elements in the Appendix part.
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Figure 2. (Colour online) (a) shows the contour plot of C(ρ̂) versus Jt and α/β with

θ = π
2 . (b) shows the contour plot of C(ρ̂) versus Jt and θ/π with α/β = 3. Here

the contour plots are for |11〉 initial state and include three positive kicks applied at

times T1 = 5, T2 = 10 and T3 = 15, and we set β = 1 and J = 1. In these contour

plots we have assumed twenty equidistant contours of concurrence between 0 (black)

and 1 (white).

To further elucidate the effect of the strength and the direction of the magnetic

fields on C(ρ̂), we have displayed the contour plot of C(ρ̂) versus Jt and α/β for

the separable initial state in Fig. 2(a) and Bell state in Fig. 3(a) with θ = π/2,

while in Figs. 2(b) and 3(b), C(ρ̂) versus Jt and θ/π have been plotted for |11〉 and
1√
2
(|11〉+ |00〉) with α/β = 3, respectively. In these figures, twenty equidistant contours

of concurrence between 0 (black) and 1 (white) are shown. From Fig. 2(b), it can be

deduced that the entanglement dynamics for the initially separable state is independent

of the direction of external fields as long as the field is transverse, which also can be seen

from the relevant time evolution matrix elements in Appendices where the concurrence

is θ-independent. Fig. 2(a) shows two pronounced results for α/β-dependence of the

concurrence for |11〉 state: i) The separable state is found to remain almost separable

despite the strong external kicks for α/β = 1 and α/β ∼= 7.25, 13.25, 19.5. ii) The long

lived high entanglement regions which are indicated in white straight stripes sections

have long lifetimes only after the second and the third kicks. From the comparison of

the one, two and three positive kick sections, it seems that each kick widens the long

lived high entanglement α/β-area. This shows the necessity of using multiple kicks to

create almost steady high entanglement. Also note that each kick creates a different

α/β oscillatory structure for C(ρ̂).

Contrary to the initially separable state case, the concurrence for the initial Bell

state strongly depends on the direction of the external magnetic fields if θ/π > 0.04

as can be seen from Fig. 3(b); for θ/π < 0.04, the entanglement between two qubits
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Figure 3. (Colour online) (a) shows the contour plot of C(ρ̂) versus Jt and α/β with

θ = π
2 . (b) shows the contour plot of C(ρ̂) versus Jt and θ/π with α/β = 3. Here

the contour plots are for 1√
2
(|11〉 + |00〉) initial state and include three positive kicks

applied at times T1 = 5, T2 = 10 and T3 = 15, and we set β = 1 and J = 1. In these

contour plots we have assumed twenty equidistant contours of concurrence between

0 (black) and 1 (white).

is almost unperturbed by the external positive kicks. Similar to |11〉 state case, the

concurrence for 1√
2
(|11〉 + |00〉) is found to be unaffected from three kicks for α/β = 1

and α/β ∼= 4.25, 7.25, 10.5, 13.5, 16.75, 19.75 that can be deduced from Fig. 3(a). This

figure also shows that every kick region has a different α/β periodic structure and

long-lived high entanglement can be effectively obtained and controlled only after third

positive kick for the initial Bell state after perturbing the entanglement dynamics

of qubits with external kicks, for example in the time domain 15 < t < 20 for

α/β ∼= 2.75, 5.25, 9.25, 11.75, 15.5, 18.0. From Fig. 3(b), one can see that it is possible

to get a constant long-lived entanglement with desired magnitude after third kick by

adjusting θ. For example, C(ρ̂) ≈ 0.93, C(ρ̂) ≈ 0.44, C(ρ̂) ≈ 0.08 and C(ρ̂) ≈ 0.63 for

θ/π = 0.06, θ/π = 0.18, θ/π = 0.25 and θ/π = 0.36, respectively.

5. Entanglement dynamics of two qubits under the influence of Gaussian

pulses

The kicked approximation is based on the energy level of the qubit, ∆E, and the width

of the pulse, τ , and is valid if ∆Eτ << 1. Depending on the physical implementation of

the qubit, it might be difficult to obtain an external field as a delta function kick. Instead

of kicks, Gaussian pulses can be used. As is well known, the kicked approximation is

the limiting case of Gaussian pulses

(
i.e., limτ→0

αK√
πτ
e−

(t−TK )2

τ2 = αKδ(t− TK)

)
, thus

Gaussian pulses enable us to consider the effects of using finite-width pulses on
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entanglement dynamics. From this point, in this section, we present the results of

numerical calculations of concurrence for two qubits whose states are strongly perturbed

by series of three positive narrow Gaussian pulses for the initially separable |11〉 and

maximally entangled 1√
2
(|11〉 + |00〉) states. The concurrence for the considered initial

states may be calculated by solving numerically the set of first order coupled ordinary

differential equations in Eq. (3):

iȧ1(t) = Ja1(t) +
1

2
e−iθB2(t)a2(t) +

1

2
e−iθB1(t)a3(t),

iȧ2(t) =
1

2
eiθB2(t)a1(t)− Ja2(t) + 2Ja3(t) +

1

2
e−iθB1(t)a4(t),

iȧ3(t) =
1

2
eiθB1(t)a1(t) + 2Ja2(t)− Ja3(t) +

1

2
e−iθB2(t)a4(t),

iȧ4(t) =
1

2
eiθB1(t)a2(t) +

1

2
eiθB2(t)a3(t) + Ja4(t), (10)

with replacing B1(t) → α√
πτ

3∑
i=1

e−
(t−Ti)

2

τ2 and B2(t) → β√
πτ

3∑
i=1

e−
(t−Ti)

2

τ2 . Here the

Gaussian pulses are assumed to have the same width τ and centered at times t = T1, T2
and T3. We will determine how the concurrences of the initially separable and Bell

states depend on the pulse width. It should be noted here that if τ were chosen small

enough, the results obtained in the previous section could be reached.

In Figs. 4(a)-4(f), we have shown C(ρ̂) versus Jt for a system strongly perturbed

by three narrow Gaussian pulses for |11〉 and 1√
2
(|11〉 + |00〉) initial states with θ = π

2

and α/β = 2 or α/β = 3. Comparing Figs. 1(a) and 1(b) with the subfigures in Fig. 4,

the width of the pulse changes the minimum, maximum and the amplitude of C(ρ̂) for

|11〉 state, while for Bell state, this effect is in its minimum (or amplitude). The most

pronounced observation from these figures is the existence of constant high concurrence

nearly 1 at times t > 15 for α/β = 3 and Jτ = 0.3 for both initial states as can be seen

from the solid lines in Figs. 4(e) and 4(f). From Fig. 4(e), it is safe to deduce that with

a sufficiently high pulse width and α/β ratio, it is possible to obtain a state very close

to Bell state from an initially separable state by using a Gaussian pulse sequence.

To further elucidate the interplay between a pulse sequence, relative magnetic

strength on qubits, pulse width and entanglement, we display the contour plot of C(ρ̂)

as function of Jt and α/β at three different pulse widths Jτ = 0.1, 0.2, 0.3 in Figs. 5(a)-

5(c). Comparing the subfigures in Fig. 5 with the ideal kick case (Fig. 2(a)), the most

important effect of the increasing pulse width is found to be enlargement of the area

of the long lived high entanglement regions which are the white straight areas toward

the top of Figs. 5(a)-5(c). For the kick case, it was concluded that the long lived

high entanglement regions only appear after second and third positive kicks, while for

wider Gaussian pulses, these regions also appear after the first pulse (for example,

see the region 5 < t < 10 in Fig.5(c)). Contrary to Fig. 2(a), α/β periodicity does

not exist in Figs. 5(a)-5(c); increasing the pulse width coalesces the α/β-dependent

oscillatory structure and produce non-periodic structures. Furthermore, |11〉 state

remains separable if and only if α/β = 1 under the strong influence of Gaussian pulses.
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Figure 4. C(ρ̂) versus Jt for a sequence of three positive Gaussian pulses centered

at T1 = 5, T2 = 10 and T3 = 15 for the initially pure states |11〉 ((a), (c) and (e)) and
1√
2
(|11〉 + |00〉) ((b), (d) and (f)) with θ = π

2 . Here the dashed lines correspond to

α/β = 2 and the solid lines to α/β = 3, and we consider three dimensionless pulse

widths as Jτ = 0.1 ((a) and (b)), Jτ = 0.2 ((c) and (d)) and Jτ = 0.3 ((e) and (f)),

and we set J = 1 and β = 1.

On the other hand, when τ → 0 (see Fig. 2(a)), this holds for α/β = 1 as well as for

α/β ∼= 7.25, 13.25, 19.5, as was the case for the kick sequence. Peculiarly, Fig. 5(c) shows

that there is a sudden transition between long lasting maximally entangled and almost

separable states of the system just after a pulse for α = 13β and α = 19.8β. Moreover,

the subfigures in Fig. 5 demonstrates the possibility of obtaining desired values of steady

entanglement by carefully designed pulse or pulse sequence and system parameters.

In Fig. 6, the contour plot of C(ρ̂) versus Jt and α/β are displayed for 1√
2
(|11〉+|00〉)

initial state for the system under three Gaussian pulses having dimensionless pulse

widths as Jτ = 0.1, 0.2 and 0.3. Similar to |11〉 state case, C(ρ̂) of Bell state is

undisturbed by the highly wider Gaussian pulses if and only if α/β = 1. In Fig. 3(a),

we have noted that the long lived high entanglement regions can only be obtained after

third kick after disturbing the entanglement dynamics for the Bell state, while these

regions also appears after applying first and second Gaussian pulses as can be seen from

Figs. 6(b) and 6(c).

Note that we have not displayed the contour plots of C(ρ̂) versus θ/π and Jt for the

Gaussian pulse magnetic fields, because they provide no extra information compared to
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Figure 5. (Colour online) The contour plot of C(ρ̂) versus Jt and α/β with θ = π
2 and

Jτ = 0.1 (a), Jτ = 0.2 (b) and Jτ = 0.3 (c). Here the contour plots are for |11〉 initial

state and include three positive Gaussian pulses centered at times T1 = 5, T2 = 10 and

T3 = 15, and we set J = 1 and β = 1. In these contour plots we have assumed twenty

equidistant contours of concurrence between 0 (black) and 1 (white).

the ideal kick case; for the separable |11〉 initial state, C(ρ̂) is independent of θ regardless

of the value of the pulse width τ . For the initial Bell state, the overall θ-dependence is

very similar to that of the kick sequence control.

We have also considered |00〉 separable, |Φ−〉 = 1√
2
(|11〉−|00〉) and |Ψ±〉 = 1√

2
(|10〉±

|01〉) Bell states as initial states and obtained some interesting dynamics. The dynamics

of |00〉 initial state under control sequences considered in the present study are found

to be exactly same as that of |11〉 initial state discussed above. From the propagators

of Appendices and Eqs. (7) and (8), one can easily show that |Ψ+〉 = 1√
2
(|10〉 + |01〉)

initial state is immune to the applied transverse field; its concurrence remains 1 for
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Figure 6. (Colour online) The contour plot of C(ρ̂) versus Jt and α/β with θ = π
2

and Jτ = 0.1 (a), Jτ = 0.2 (b) and Jτ = 0.3 (c). Here the contour plots are for
1√
2
(|11〉 + |00〉) initial state and include three positive Gaussian pulses centered at

times T1 = 5, T2 = 10 and T3 = 15, and we set J = 1 and β = 1. In these contour

plots we have assumed twenty equidistant contours of concurrence between 0 (black)

and 1 (white).

every possible value of θ and α/β. Note that entanglement of this initial state can

be manipulated by using a longitudinal control field as shown in Ref. [20]. Note that

the interaction Hamiltonian, Ĥint ≈ cos θ(σ̂x1 + σ̂x2 ) + sin θ(σ̂y1 + σ̂y2) locally transforms

Bell states among themselves for θ = 0 and θ = π/2. For example σ̂x2 . |Φ+〉 = |Ψ+〉
and σ̂x2 . |Φ−〉 = |Ψ−〉 as well as −iσ̂y2 . |Φ−〉 = |Ψ+〉 and −iσ̂y2 . |Φ+〉 = |Ψ−〉. It is well

known that entanglement is unaffected by local transformations, so one can easily show

that the dynamics of |Φ+〉 at θ = 0 is the same as that of |Φ−〉 at θ = π/2 and

concurrence remains 1 because the transverse fields transform the two initial states to
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|Ψ+〉 = 1√
2
(|10〉 + |01〉) which is found to be unaffected by the control sequence as

discussed above. Also |Φ+〉 at θ = π/2 and |Φ−〉 at θ = 0 are transformed to |Ψ−〉
and have similar entanglement dynamics; the concurrence for the initial state |Ψ−〉 is

independent of θ. At the intermediate values of θ, the local transformations mix different

Bell states and it is not straightforward to unentangle them. All of them can be easily

checked by using the propagators in the Appendices and the Eqs. (7) and (8). The effect

of transverse fast pulses on the entanglement dynamics of |10〉 or |01〉 separable states

is qualitatively similar to the results for longitudinal fast pulse case [20], thus we have

not covered them.

It was pointed out that the observable non-local time-ordering effects in time are

expected to be present if and only if the commutator of the total Hamiltonian (1) at

different times is nonzero, i.e, [Ĥ(t′′), Ĥ(t′)] 6= 0 [22, 23]. By using Eq. (1), it is easy to

show that the commutator [Ĥ(t′′), Ĥ(t′)] is equal to

[Ĥ(t′′), Ĥ(t′)] = JD


0 a −a 0

−a∗ 0 0 a

a∗ 0 0 −a
0 −a∗ a∗ 0

 , (11)

where D = ((B2(t
′)−B1(t

′))− (B2(t
′′)−B1(t

′′))) and a = e−iθ. Eq. (11) shows

that the commutator vanishes for the cases when J = 0 and/or B1(t) = B2(t). By

using the numerical solutions of Eq. (10) for the considered initial states and the

propagators (A.2), (B.2) and (C.2) in Eqs. (7) and (8), in the case of no qubit-qubit

interaction (J = 0) as well as equal magnitude external fields (α = β), it is easy to show

that the concurrence for Bell state is equal to 1, while |11〉 state remains separable at all

times and C(ρ̂) of both initial states is unaffected from the external kicks and Gaussian

pulses. This situation can be also observed from the contour plots for α = β = 1 case.

This finding indicates that ability to manipulate the entanglement in the system by

using external fields is closely related to the nonlocal time-ordering effects.

6. Conclusion

We have investigated the possibility of creation and control of entanglement between

two coupled qubits by using time-dependent external magnetic fields in x-y plane in

the form of delta function kicks and Gaussian pulses for initially pure separable and

maximally entangled states. Analytical (for kick sequence) and numerical (for Gaussian

pulses) results presented and discussed in the paper indicate a number of interesting

phenomena.

Transverse fast pulses can be employed to create long lasting steady entanglement

between two coupled qubits initially in a separable state |11〉 (or |00〉). Furthermore,

entanglement of such a state can be finely-tuned by changing the integrated magnetic

strength of the external field at qubit positions, while the direction of transverse pulses

are found not to effect the entanglement of this particular initial state. Similarly,
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entanglement of a system initially in a Bell type state is found to be tuned with the same

external control parameters; one can even destroy the initial entanglement and recreate

this entanglement for this initial state with carefully designed pulse sequence and system

parameters. We have also demonstrated the possibility of obtaining constant long-lived

entanglement with desired magnitude by perturbing the qubits with fast pulse or pulses

and by adjusting the system parameters to certain values for both initial states.

The time-ordering effect defined by the commutator [Ĥ(t1), Ĥ(t2)] is found to be

important in the manipulation and control of entanglement by fast pulses. It is found

that in the case of no time ordering (i.e., [Ĥ(t1), Ĥ(t2)] = 0 which holds for the cases

J = 0 and/or α = β), the transverse fast pulses are found to be ineffective in creation

and manipulation of entanglement between qubits initially in any type of pure states.

We have also compared the effect of the external field being longitudinal or

transverse and found that with a transverse control one can both create and manipulate

entanglement, while the longitudinal fast pulses can only manipulate the entanglement

of a state which is already nonzero [20]. Moreover, the transverse fast pulses enable one

to manipulate, create and control entanglement for a number of initial states, while the

manipulation of entanglement with the longitudinal fast pulses was found to be done

only with a limited class of initial states [20].

Longitudinal and transverse control fields in the form of kick and Gaussian pulse

sequences can be used in a proper sequence to create, control and destroy entanglement

from arbitrary initial pure states of two coupled qubits. The same formalism can be

applied to initially mixed states by using the time evolution matrix elements provided

in Appendices to evolve the density matrix of the system as ρ̂(t) = Û(t)ρ̂(0)Û †(t) which

might be interesting in analyzing the time evolution of more-general-than entanglement

type quantum correlations in mixed states, such as quantum discord [36].

Appendix A. Single positive kick

Here, we consider two qubits whose states are strongly perturbed by external fields

which may be expressed as a sudden kick at t = T . The time dependent magnetic

fields on qubits 1 and 2 may be expressed as B1(t) = αδ(t− T ) and B2(t) = βδ(t− T ),

respectively, where α and β are called integrated magnetic strengths. For such a kick

the integration over the time is trivial and the time evolution matrix in Eq. (5) becomes

as [20, 23]:

ÛK(t) = e−iĤ0(t−T )e
−i
∫ T+ε

T−ε Ĥint(t
′)dt′

e−iĤ0T , (A.1)

with matrix elements

U11 = e−iJt cos
(
α

2

)
cos

(
β

2

)
= U44,

U22 =
1

2
e−iJt

(
e4iJt cos

(
∆

2

)
+ cos

(
Ω

2

))
= U33,

U23 = − 1

2
e−iJt

(
e4iJt cos

(
∆

2

)
− cos

(
Ω

2

))
= U32,
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U12 =
1

2
ie−iJte−iθ

(
e4iJT sin

(
∆

2

)
− sin

(
Ω

2

))
= e−2iθU43,

U13 = − 1

2
ie−iJte−iθ

(
e4iJT sin

(
∆

2

)
+ sin

(
Ω

2

))
= e−2iθU42,

U14 = − e−iJte−2iθ sin
(
α

2

)
sin

(
β

2

)
= e−4iθU41,

U21 = − eiJ(t−2T )eiθ
(

cos

(
β

2

)
sin

(
α

2

)
sin(ξ) + i cos

(
α

2

)
sin

(
β

2

)
cos(ξ)

)
= e2iθU34,

U24 = − 1

2
ie−iJte−iθ

(
e2iξ sin

(
∆

2

)
+ sin

(
Ω

2

))
= e−2iθU31, (A.2)

where ∆ = (α − β),Ω = (α + β) and ξ = 2J(t − T ). It should be noted that the

propagator given by Eq. (A.1) is valid only at times t > T .

Appendix B. Two positive kicks

The next example is the positive-positive kick sequence applied at times t = T1 and

t = T2, namely, B1(t) = α(δ(t − T1) + δ(t − T2)) and B2(t) = β(δ(t − T1) + δ(t − T2)).
Following the procedure given in Eq. (A.1), one obtains the time evolution matrix at

times t > T2 as [20, 23]:

ÛK(t) = e−iĤ0(t−T2)e
−i
∫ T2+ε
T2−ε

Ĥint(t
′)dt′

e−iĤ0(T2−T1)e
−i
∫ T1+ε
T1−ε

Ĥint(t
′)dt′

e−iĤ0T1 ,

(B.1)

with matrix elements

U11 =
1

4
e−iJt

(
1 + e4iJT (cos(∆)− 1) + cos(∆) + 2 cos(Ω)

)
= U44,

U22 =
1

4
e−iJt

(
e4iJt + e4iJ(t−T ) (cos(∆)− 1) + e4iJt cos(∆) + 2 cos(Ω)

)
= U33,

U23 = − 1

4
e−iJt

(
e4iJt + e4iJ(t−T ) (cos(∆)− 1) + e4iJt cos(∆)− 2 cos(Ω)

)
= U32,

U12 =
1

2
ie−iJte−iθ

(
e6iJT cos(2JT ) sin(∆)− sin(Ω)

)
= e−2iθU43,

U13 = − 1

2
ie−iJte−iθ

(
e6iJT cos(2JT ) sin(∆) + sin(Ω)

)
= e−2iθU42,

U14 =
1

4
e−iJte−2iθ

(
e4iJT − 1− (1 + e4iJT ) cos(∆) + 2 cos(Ω)

)
= e−4iθU41,

U21 =
1

4
ie−iJteiθ

(
e4iJ(t−2T )(1 + e4iJT ) sin(∆)− 2 sin(Ω)

)
= e2iθU34,

U24 = − 1

4
ie−iJte−iθ

(
e4iJ(t−2T )(1 + e4iJT ) sin(∆) + 2 sin(Ω)

)
= e−2iθU31, (B.2)

where ∆ = (α − β) and Ω = (α + β). Here, we have assumed equally distanced kicks

applied at times T1 = T and T2 = 2T .
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Appendix C. Three positive kicks

The final example is the sequence of three positive kicks applied at times t = T1, t = T2,

and t = T3 namely, B1(t) =
3∑
i=1

αδ(t − Ti) and B2(t) =
3∑
i=1

βδ(t − Ti). Following the

procedure given in Eq. (A.1), one can obtain the time evolution matrix at times t > T3
as [20]:

ÛK(t) = e−iĤ0(t−T3)e
−i
∫ T3+ε
T3−ε

Ĥint(t
′)dt′

e−iĤ0(T3−T2)e
−i
∫ T2+ε
T2−ε

Ĥint(t
′)dt′

× e−iĤ0(T2−T1)e
−i
∫ T1+ε
T1−ε

Ĥint(t
′)dt′

e−iĤ0T1 , (C.1)

with matrix elements for T1 = T, T2 = 2T and T3 = 3T ,

U11 =
1

8
e−iJt

(
(3− 2e4iJT − e8iJT ) cos

(
∆

2

)
+ (1 + e4iJT )2 cos

(
3∆

2

)
+ 4 cos

(
3Ω

2

))
= U44,

U22 =
1

2
e−iJt

(
cos

(
3Ω

2

)
+ e4iJ(t−T ) cos

(
∆

2

)
((1 + cos(4JT )) cos(∆) + i sin(4JT )− 1)

)
= U33,

U23 =
1

2
e−iJt

(
cos

(
3Ω

2

)
− e4iJ(t−T ) cos

(
∆

2

)
((1 + cos(4JT )) cos(∆) + i sin(4JT )− 1)

)
= U32,

U12 =
1

2
ie−iJte−iθ

(
e8iJT (cos(4JT ) + 2 cos(2JT )2 cos(∆)) sin

(
∆

2

)
− sin

(
3Ω

2

))
= e−2iθU43,

U13 = − 1

2
ie−iJte−iθ

(
e8iJT (cos(4JT ) + 2 cos(2JT )2 cos(∆)) sin

(
∆

2

)
+ sin

(
3Ω

2

))
= e−2iθU42,

U14 =
1

8
e−iJte−2iθ

(
(2e4iJT + e8iJT − 3) cos

(
∆

2

)
− (1 + e4iJT )2 cos

(
3∆

2

)
+ 4 cos

(
3Ω

2

))
= e−4iθU41,

U21 =
1

2
ie−iJteiθ

(
e4iJ(t−2T )(cos(4JT ) + 2 cos(2JT )2 cos(∆)) sin

(
∆

2

)
− sin

(
3Ω

2

))
= e2iθU34,

U24 = − 1

2
ie−iJte−iθ

(
e4iJ(t−2T )(cos(4JT ) + 2 cos(2JT )2 cos(∆)) sin

(
∆

2

)
+ sin

(
3Ω

2

))
= e−2iθU31, (C.2)

where ∆ = (α− β) and Ω = (α + β).
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