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Abstract

Using the new form of necessary and sufficient conditions introduced in Ref. [16],
minimum error discrimination among two sets of similarity transformed equiprobable
quantum qudit states is investigated. In the case that the unitary operators are gener-
ating sets of two irreducible representations, the optimal set of measurements and the
corresponding maximum success probability of discrimination are determined in closed
form. In the case of reducible representations, there exists no closed-form formula in
general, but the procedure can be applied in each case accordingly. Finally, we give the
maximum success probability of optimal discrimination for some important examples
of mixed quantum states, such as qubit states together with three special cases and
generalized Bloch sphere m-qubit states.
Keywords: Minimum error discrimination, Similarity transformed quantum

states, Probability operator measure

PACs Index: 01.55.+b, 02.10.Yn

1 Introduction

The discrimination of nonorthogonal quantum states is an important and challenging prob-
lem in the realm of quantum information theory. It is known that one cannot discriminate
perfectly among nonorthogonal quantum states and ought to invoke to an optimal way of
state discrimination. There exist two approaches to the problem of discrimination: optimal
minimum-error discrimination in which the state identification is probabilistic [1]-[8] and
optimal unambiguous discrimination in which the states are discriminated without error [9]-
[14]. Here, we consider discrimination strategies, known as the minimum-error discrimination
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(MED), which are based upon the minimization of the rate error. For treating minimum
error discrimination, there exist two known strategies : the necessary and sufficient con-
ditions for optimal discrimination [1]-[5] and Helstrom family of ensembles [15]. However,
solving problems by means of them, except for some particular cases, is a difficult task.
In Ref. [16], a new technique has been presented in which the two previous strategies are
comprised to obtain optimality conditions of the equality form and it has been shown that
the new technique is powerful in solving problems of optimal discrimination between mixed
quantum states which are in general not symmetric. Here, we use the latter technique in the
problem of minimum error discrimination among two different sets of equiprobable similarity
transformed quantum states.

In this paper, we first use the technique of Ref. [16] to investigate MED between two
sets of equiprobable quantum mixed states generated from two original density operators
by unitary similarity transformations. The novelty of this work is that quantum states to
be discriminated are partitioned into two sets with non-equal probabilities. In the case
that the unitary operators are irreducible representations of generators of a subgroup of
unitary group U(d), the maximum success probability and optimal measurement operators
are precisely derived. In the case that the unitary operators are reducible representations of
the corresponding subgroup, although there exists in general no closed-form formula but the
procedure can be applied in each case accordingly. Finally, we study MED between some
important classes of mixed quantum states such as generalized Bloch sphere m-qubit states,
in details.

2 Minimum error discrimination among states of two

sets of similarity transformed equiprobable states

In general, the measurement strategy is described in terms of a set of positive semidefinite
operators Πi known as the probability operator measure (POM). The measurement outcome
labeled by i is associated with the operator Πi and the sum of the POM elements must be
the identity operator, i.e.,

∑

i Πi = I which is known as a resolution of the identity. Knowing
that the transmitted state is ρj , the probability of observing the outcome i by the receiver is
p(i|j) = Tr(Πiρj). Let us consider the different states ρ1, ρ2, . . . , ρN with prior probabilities
p1, p2, . . . , pN , respectively (pi ≥ 0,

∑

i pi = 1). Then the success probability p for correctly
identifying the states ρi is given by

p =

N
∑

i=1

piTr(ρiΠi). (1)

The necessary and sufficient conditions leading to the minimum-error discrimination can
be written as [16]

M = pjρj + (popt − pj)τj , j = 1, . . . , N. (2)

in which M denotes
∑N

i=1 piΠiρi, popt stands for maximal success probability, popt ≥ pj and
τj ’s are positive operators of trace one called conjugate states [15]. If Πk = I for some
k ∈ {1, . . . N}, then taking trace of both sides of Eq. (2) gives popt = pk. Note that for two
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different equiprobable states ρk and ρl it is impossible that popt = pk = pl, since in this case
Eq. (2) implies ρk = ρl which is a contradiction. It is shown in Ref. [16] that the conditions
(2) lead to

(popt − pj)Tr(τjΠj) = 0, j = 1, . . . , N ; (3)

In this paper, we consider two sets of N different states: the first set containing equiprob-
able unprimed states with prior probabilities η and the second set containing equiprobable
primed states with prior probabilities η′ as follows

ρj = Ujρ1U
−1
j , τj = Ujτ1U

−1
j , j = 1, . . . , n, (4)

ρ′j = U ′

jρ
′

1U
′−1
j , τ ′j = U ′

jτ
′

1U
′−1
j , j = 1, . . . , n′, (5)

where n + n′ = N and {U1 = Id, U2, . . . , Un} and {U ′
1 = Id, U

′
2, . . . , U

′
n′} are generating sets

of representations of two subgroups of U(d), the group of all d×d unitary matrices. Clearly,
we have

nη + n′η′ = 1. (6)

Such states is referred to as similarity transformed states. Denoting POM elements corre-
sponding to ρj and ρ′j by Πj and Π′

j respectively, we must have a resolution of the identity

n
∑

j=1

Πj +
n′

∑

j=1

Π′

j = I. (7)

Assume that Πj = λjπj and Π′
j = λ′

jπ
′
j for some nonnegative numbers λj and λ′

j and positive

semidefinite operators πj and π′
j such that

∑n

j=1 λj +
∑n′

j=1 λ
′
j = 1. As POM operators

constitute a resolution of the identity, it is possible that for the optimal POM some of the
operators Πi and Π′

i vanish. Note here that πj ’s and π′
j ’s must be satisfy the conditions (3)

(popt − η)λjTr(τjπj) = (popt − η′)λ′

jTr(τ
′

jπ
′

j) = 0 (8)

so the optimal operators πj and π′
j can also be assumed to obtain from positive operators π1

and π′
1 respectively via the same similarity transform which defines the states ρi and ρ′i and

the corresponding conjugate states τi and τ ′i , i.e.

πi = Uiπ1U
−1
i , (9)

π′

i = Uiπ
′

1U
−1
i . (10)

Therefore, Eq. (8) is reduced to

(popt − η)λjTr(τ1π1) = (popt − η′)λ′

jTr(τ
′

1π
′

1) = 0. (11)

Here, optimality conditions (2) can clearly be written as

M = ηρi + (popt − η)τi
= η′ρ′j + (popt − η′)τ ′j .

(12)
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where M denotes η
∑n

i=1Πiρi + η′
∑n′

i=1Π
′
iρ

′
i. From (4), (5) and (12), it is easy to see that

M = UiMU−1
i = U ′

jMU ′

j
−1
. (13)

We know that the representations Ui’s and U ′
j ’s are either irreducible or reducible. We dis-

cuss the two cases separately.

2.1 The irreducible case

Let Ui’s and U ′
j ’s be generating sets of irreducible representations of two subgroups of U(d).

Then, by the Schur’s first lemma on representation theory [17, 18], Eq. (13) implies that M
is a multiple of identity operator; i.e., M = αI for some complex number α.
By taking trace of Eq. (12), we get

α =
p
opt

d
. (14)

In order to obtain an optimal measurement for discrimination among states ρi, let us write
ρ1 in the spectral decomposition form as ρ1 =

∑d
i=1 ai|i〉〈i|. Then, Eq. (12) implies that τ1

is also diagonal in the basis |i〉, say, τ1 =
∑d

i=1 bi|i〉〈i|. By the replacement of ρ1 and τ1 in
Eq. (12), we have

popt

d

d
∑

i=1

|i〉〈i| = η

d
∑

i=1

ai|i〉〈i|+ (popt − η)

d
∑

i=1

bi|i〉〈i|, (15)

and hence
popt = d[ηai + (p

opt
− η)bi]. (16)

Similarly, for the second set, we have

popt = d[η′a′i + (p
opt

− η′)b′i]. (17)

Since, for the irreducible case we have n ≥ 2 and n′ ≥ 2, then as mentioned above popt 6= η, η′

and hence Eq. (8) implies that

λjTr(τ1π1) = λ′

jTr(τ
′

1π
′

1) = 0. (18)

Hence, either λj = 0 (λ′
j = 0) or π1 (π

′
1) is perpendicular to τ1 (τ

′
1); namely, τ1 (τ

′
1) is not full

rank. In the latter case, Eq. (16) indicates that when eigenvalues ai of ρ1 are all distinct,
only one of the coefficients bi, say bl, is zero and al is the greatest eigenvalue of ρ1, denoted
as amax. Thus,

popt = ηamaxd (19)

and π1 = βl|l〉〈l| with βl an unknown positive constant and

Πi = λiβlUi|l〉〈l|U−1
i . (20)
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Now, let there exist m eigenvectors i1, . . . , im of ρ1 with the same eigenvalue amax. Then,
popt is again given by (19) and by Eq. (16), these eigenvectors must correspond to the
eigenvalue zero of τ1. So, the operator π1 can be written as

π1 = α1|i1〉〈i1|+ . . .+ αm|im〉〈im|, (21)

where αi’s are non-negative numbers. By the same argument, we can get for the second set
relations similar to Eqs. (19), (20) and (21). If this equality do not hold, all elements of one
of sets {bi}ni=1 and {b′i}n

′

i=1 are nonzero.
If τ1 (τ ′1) be full rank, then it cannot be perpendicular to π1 (π′

1) and by Eq. (18), λj’s
(λ′

j’s) are all necessarily zero. When this is the case, operators of optimal POM correspond-
ing to the first (second) set are all zero and the unprimed (primed) states do not enter in
the discrimination.

2.2 The reducible case

Let Ui’s and U ′
j ’s be generating sets of reducible representations. Then, it is shown that

the invariance of M under the operators Ui’s and U ′
j ’s (see Eq. (13)) requires that M is

diagonal; i.e., M = diag(M1, . . . ,Md) (for a proof, see Appendix B of [16]).
Here, the same technique as the irreducible case is applicable. However, we cannot give a
general solution because the explicit form of M differs per case. In what follows, we illustrate
the problem by considering some examples of qubit and m-qubit mixed states.

3 Examples

I. MED between two sets of similarity transformed equiprobable qubit states

Let us consider two different qubit states as

ρ1 =
1

2
(I + bn̂(1).~σ), (22)

ρ′1 =
1

2
(I + b′n̂′(1).~σ), (23)

where σi’s are the Pauli matrices and n̂(1) and n̂′(1) are unit vectors. Furthermore, let Uj and
U

′

j be arbitrary rotations about the z-axis that rotate ρ1 and ρ′1 into ρj and ρ′j, respectively,
such that

ρj =
1

2
(I + bn̂(j).~σ), (24)

ρ′j =
1

2
(I + b′n̂′(j).~σ). (25)

The conjugate states corresponding to ρj and ρ
′

j have the form

τj =
1

2
(I + cm̂(j).~σ), (26)
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τ ′j =
1

2
(I + c′m̂′(j).~σ). (27)

where m̂(j) and m̂′(j) are unit vectors. Now, from the invariance of M under rotations about
the z-axis, it follows that n > 1 or n′ > 1 and

M = αId + βσz. (28)

First, we assume that n ≥ 2 and n′ ≥ 2. Hence, we have popt > η, η′ and by Eq. (8),
λjTr(τjπj) = λ′

jTr(τ
′
jπ

′
j) = 0. This consideration together with resolution of the identity

imply that at least one of τ1 and τ
′

1 is not full rank. Without loss of generality, let us assume
that τ1 is not full rank such that its minimum eigenvalue 1−c

2
is zero which yields c = 1. To

satisfy Eq. (8), the optimal POM elements must have the following expression

Πj = λjUjπ1U
−1
j = λj(I −m(j)

x σx −m(j)
y σy −mzσz), λj ≥ 0, (29)

Π′

j = λ′

jUjπ
′

1U
−1
j = λ′

j(I −m′(j)
x σx −m′(j)

y σy −m′

zσz), λ′

j ≥ 0. (30)

By substituting the expressions of Πj and Π′
j from Eqs. (29) and (30) into Eq. (7), it is easy

to see that the following restrictions are imposed on λj and λ
′

j

n
∑

j=1

λj +

n′

∑

j=1

λ′

j = 1, (31)

mz

n
∑

j=1

λj +m′

z

n′

∑

j=1

λ′

j = 0, (32)

n
∑

j=1

λj(m
(j)
x i+m(j)

y j) +
n′

∑

j=1

λ′

j(m
′(j)
x i +m′(j)

y j) = 0. (33)

It is clear from Eqs. (31) and (32) that the signs of mz and m′
z are opposite unless mz =

m′
z = 0. Furthermore, Eqs. (32) and (33) imply that the points representing the optimal

measurement operators do not share the same hemisphere of the Bloch sphere.
In what follows, it is convenient to obtain relations between components of Bloch vectors

of the states and whose conjugate states. To this end, for the case n > 1 and n′ > 1, we
combine Eqs. (12) and (24)-(28) and get

m(j)
x = − ηb

popt − η
n(j)
x , m(j)

y = − ηb

popt − η
n(j)
y , mz =

2β − ηbnz

popt − η
, (34)

c′m′(j)
x = − η′b′

popt − η′
n′(j)
x , c′m′(j)

y = − η′b′

popt − η′
n′(j)
y , c′m′

z =
2β − η′b′n′

z

popt − η′
. (35)

We discuss various situations based on whether mz = 0 (m′
z = 0) or mz 6= 0 (m′

z 6= 0). As
we will see, the optimal measurement operators of one of the sets may become zero.

1. mz 6= 0 and m′
z 6= 0
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Let mz 6= 0 and m′
z 6= 0. Then, as mentioned above, the signs of mz and m′

z must be
opposite. Let us, without loss of generality, assume that mz > 0 and m′

z < 0 which, by Eqs.
(34) and (35), is equivalent to the condition

ηbnz

2
< β <

η′b′n′
z

2
. (36)

In this case, the points of the Bloch sphere representing the optimal measurement operators
of the first and second sets are in upper and lower hemispheres, respectively. From this
consideration and the fact that POM elements must hold a resolution of the identity, it
follows that neither the optimal POM elements associated to the first nor to the second
set are zero at a whole. Therefore, due to the orthogonality of any optimal measurement
operator and its corresponding conjugate state, conjugate states of any set cannot be full
rank and hence must be pure i.e. c = c′ = 1.

To obtain popt, first we find β by using Eqs. (34) and (35) in

(m
(1)
x )2 + (m

(1)
y )2 + (mz)

2 = 1,

(m
′(1)
x )2 + (m

′(1)
y )2 + (m′

z)
2 = 1

(37)

and subtracting the resulted equations. The result is

β =
η2(b2 − 1)− η′

2(b′2 − 1) + 2(η − η′)popt
4(ηbnz − η′b′n′

z)
, (38)

Then placing β in the equation resulted from the first equation of (37), gives the desired
result as

popt =
−B ±

√
B2 − AC

2A
, (39)

where
A = (η − η′)2 − (ηbnz − η′b′n′

z)
2,

B = [η2(b2 − 1)− η′
2(b′2 − 1)](η − η′)

−2ηbnz(η − η′)(ηbnz − η′b′n′
z) + 2η(ηbnz − η′b′n′

z)
2,

C = [η2(b2 − 1)− η′
2(b′2 − 1)]2 + 4η2(b2 − 1)(ηbnz − η′b′n′

z)
2

−4ηbnz[η
2(b2 − 1)− η′2(b′2 − 1)](ηbnz − η′b′n′

z).

(40)

Of course, from two roots of Eq. (39), we must take the biggest one as popt.

2. mz = 0 and m′
z = 0

When mz = m′
z = 0, from Eqs. (34) and (35) we have

ηbnz

2
= β =

η′b′n′
z

2
. (41)

Here, the points representing optimal measurement operators are all on equator of the Bloch
Sphere. In this case, the success probability is given by

popt = η(1 + b
√

1− n2
z) (42)
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and Eqs. (34) and (35) give c′ as

c′ =
η′b′

popt − η′

√

1− n2
z. (43)

In the case of c′ < 1, all of λ′
j’s and hence primed measurement operators have to be zero

while in the case of c′ = 1 it is not necessarily the case.

3. mz = 0 and m′
z 6= 0

In this case, Eqs. (34) and (35) lead to

ηbnz

2
= β 6= η′b′n′

z

2
, (44)

For n > 1, when this occurs, the success probability becomes as

popt = η(1 + b
√

1− n2
z) (45)

and

c′ =

√

η2b2n2
z + η′2b′2 − 2ηη′bb′nzn′

z

popt − η′
. (46)

Whether primed conjugate states are mixed, c′ < 1, or pure, c′ = 1, the coefficients λ′
j’s

and hence Π′
j’s should all be zero, since otherwise the measurement operators cannot satisfy

a resolution of the identity. Here, the optimal measurement is the one which optimally
distinguishes the states ρ1, . . . , ρn only. Furthermore, Eq. (33) by using Eq. (34) imposes
the constraint

n
∑

j=1

λj(n
(j)
x i+ n(j)

y j) = 0, (47)

which means that sates of the first set do not all place on the same half of the equator of
the Bloch sphere.

In the case n = 1, n
′

> 1, in order to satisfy the conditions (7) and (8), we have λ′
j = 0

for all j, and
popt = η, Π1 = I. (48)

4. mz 6= 0 and m′
z = 0

In this case, we have c = c′ = 1 and

ηbnz

2
6= β =

η′b′n′
z

2
, (49)

Also, for n′ > 1, we obtain
popt = η′(1 + b′

√

1− n′2
z ). (50)

n′

∑

j=1

λ′

j(n
′(j)
x i+ n′(j)

y j) = 0, (51)
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and for n > 1 and n
′

= 1, we have

popt = η′, Π′

1 = I. (52)

For the case c ≤ 1 and c′ = 1, the roles of parameters for the first and second set of states
are reversed and the results are the same as the case c = 1 and c′ ≤ 1 only with unprimed
and primed parameters exchanged.

II. Some special cases

In this section, we derive analytical expressions for the maximal success probability and op-
timal detection operators in some instances which extend and confirm the results obtained
in Refs. [19]-[21]. Hereafter, we use the notations

~Λ(n) =
n

∑

j=1

λj(n
(j)
x i+ n(j)

y j), ~Λ′(n′) =
n′

∑

j=1

λ′

j(n
′(j)
x i+ n′(j)

y j). (53)

Case 1.

Consider n+ 1 different pure states with the Bloch vectors

n̂j = (n(j)
x , n(j)

y , nz), n̂′

1 = (0, 0, 1), j = 1, . . . , n. (54)

From Eqs. (33) and (35) we see that m
′(1)
x = m

′(1)
y = 0 and ~Λ(n) = 0. Some simple algebra,

gives

popt =















2η′(ηnz−η′)
η(1+nz)−2η′

if ηnz <
2η′(η−η′)

η(1+nz)−2η′
< η′ or ηnz >

2η′(η−η′)
η(1+nz)−2η′

> η′,

and η

popt−η
~Λ(n) + η′

popt−η′
λ′
1j = 0;

η(1 +
√

1− n2
z) if ηnz = η′ or η ≤ nz−1−

√
1−n2

z

n2
z+ηnz−1−n−(1+n)

√
1−n2

z

, ~Λ(n) = 0.

(55)
These results are reached by the following sets of detection operators, respectively

Πj = λj [I +
η

popt−η
(n

(j)
x σx + n

(j)
y σy)− (η−η′)popt−ηnz(ηnz−η′)

(ηnz−η′)(popt−η)
σz],

Π′
1 = λ′

1[I − (η−η′)popt−η′(ηnz−η′)

(ηnz−η′)(popt−η′)
σz],

(56)

and

Πj = λj(I +
n
(j)
x√
1−n2

z

σx +
n
(j)
y√
1−n2

z

σy),

Π′
1 = 0.

(57)

Case 2.

Consider n+ 1 different pure states with the Bloch vectors

n̂j = (n(j)
x , n(j)

y , nz), n̂
′

1 = (0, 1, 0), j = 1, . . . , n. (58)
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Here, we obtain

popt =























2η2η
′

n2
z

η2n2
z−(η−η

′ )2
if 0 <

(η−η′)η′

(ηnz)2−(η−η
′ )2

< 1
2
, η

popt−η
~Λ(n) + η′

popt−η′
λ′
1j = 0;

2η if nz = 0, η ≥ 1
1+n

, ~Λ(n) + λ′
1j = 0;

η(1 +
√

1− n2
z) if nz 6= 0, η ≥ 1

n+
√

1−n2
z

, ~Λ(n) = 0;

η if nz 6= 0, η = 1
1+n

;

(59)

where are reached by the following set of detection operators, respectively

Πj = λj [I +
η

popt−η
(n

(j)
x σx + n

(j)
y σy)− (η−η′)popt−η2n2

z

ηnz(popt−η)
σz],

Π′
1 = λ′

1[I +
η′

popt−η′
σy − (η−η′)popt

ηnz(popt−η′)
σz ];

(60)

Πj = λj(I + n
(j)
x σx + n

(j)
y σy),

Π′
1 = λ′

1(I + σy);
(61)

Πj = λj[I +
1√
1−n2

z

(n
(j)
x σx + n

(j)
y σy)],

Π′
1 = 0;

(62)

and
Πj = 0,
Π′

1 = I.
(63)

Case 3.

As a final case, let us consider two set such that each one containing two pure states with
Bloch vectors as follows

n̂j = (n(j)
x , n(j)

y , nz), n̂
′

j = (n
′ (j)

x , n
′ (j)

y , 0), j = 1, 2. (64)

By referring to the general case discussed above, the optimal success probability and mea-
surement have given by

popt =































2η2η
′

n2
z

η2n2
z−(η−η

′ )2
if 0 <

(η−η′)η′

(ηnz)2−(η−η
′ )2

< 1
2
, η

popt−η
~Λ(2) + η′

popt−η′
~Λ′(2) = 0;

2η if nz = 0, η ≥ 1
4
, ~Λ(2) + ~Λ′(2) = 0;

η(1 +
√

1− n2
z) if nz 6= 0, η ≥ 1

2+
√

1−n2
z

, ~Λ(2) = 0;

2η′ if nz = 0, η ≤ 1
4
, ~Λ(2) + ~Λ′(2) = 0;

2η′ if nz 6= 0, η ≤ 1
4
, ~Λ′(2) = 0;

(65)

and the associated measurement operators are respectively given by

Πj = λj [I +
η

popt−η
(n

(j)
x σx + n

(j)
y σy)− (η−η′)popt−η2n2

z

ηnz(popt−η)
σz],

Π′
j = λ′

j [I +
η′

popt−η′
(n

′(j)
x σx + n

′(j)
y σy)− (η−η′)popt

ηnz(popt−η′)
σz];

(66)

Πj = λj [I +
1
2
(n

(j)
x σx + n

(j)
y σy)],

Π′
j = λ′

j(I + n
′(j)
x σx + n

′(j)
y σy);

(67)
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Πj = λj[I +
1√
1−n2

z

(n
(j)
x σx + n

(j)
y σy)],

Π′
j = 0;

(68)

Πj = λj(I + n
(j)
x σx + n

(j)
y σy),

Π′
j = λ′

j(I + n
′(j)
x σx + n

′(j)
y σy);

(69)

and
Πj = 0,

Π′
j = λ′

j(I + n
′(j)
x σx + n

′(j)
y σy).

(70)

III. MED between two sets of similarity transformed m-qubit states in general-

ized Bloch sphere

We consider particular m-qubit states in d = 2m dimensional Hilbert space which possess
properties similar to qubit density matrices represented in Bloch sphere, and so we call them
generalized Bloch sphere states. Then the decomposition of these density matrices into a
Bloch vector has, in general, the following form:

ρ =
1

2m
(I + a

2m+1
∑

i=1

niγi) =
1

2m
(I + an̂.~γ), (71)

where γi for i = 1, 2, . . . , 2m+1, known as Dirac matrices, are generators of special orthogonal
group SO(2m + 1), and represented as traceless Hermitian matrices in a 2m-dimensional
Hilbert space. That is, γi are maximally anticommuting set which satisfy

{γi, γj} = 2δijId. (72)

For a brief review about Dirac matrices and an explicit construction of γis, we refer the
reader to [22] or the Appendix A of [23]. From the properties (72), it is easy to see that
(n̂.~γ)2 = I and so the eigenvalues of ρ are 1±a

2m
. Therefore, the spectral decomposed form of

the density matrix ρ is

ρ =
1 + a

2m
(
I + n̂.~γ

2
) +

1− a

2m
(
I − n̂.~γ

2
) (73)

where I+n̂.~γ

2
and I−n̂.~γ

2
are projection operators (idempotents) to the degenerate eigenspaces

corresponding to the eigenvalues 1+a
2m

and 1−a
2m

, respectively. Here, Ui = e
i
∑

i<j
θijγiγj are

spinor representations of the group SO(2m+ 1). It should be noticed that Ui’s can also be
chosen as spinor representation of any subgroup of SO(2m+1) of the same rank m (maximal
subgroup) such as SO(i1)⊗SO(i2)⊗. . .⊗SO(il), where (i1, i2, . . . , il) is an arbitrary partition
of 2m+ 1 to l parties, i.e., 2m+ 1 = i1 + i2 + . . .+ il. We write ρj as

ρj =
1

2m
(I + b

∑

i∈SV

n
(j)
i γi + b

∑

i∈SI

niγi), (74)

where SV and SI stand for index sets of Bloch vector components which are respectively
variant and invariant under unitary similarity transformations by Uj ’s. All of the discus-
sions about qubit states can be extended to this case.
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A. irreducible case

When Ui’s and U ′
i ’s are irreducible representations, as in qubit case of subsection 2, M

is proportional to identity. Also, by Schur’s lemma, invariant part of the density operators
and their associated conjugate states are just equal to 1

2m
I. As in the qubit case, at least one

of c and c′ is equal to one and here we take c = 1. Since the discussion of c′ < 1 is similar
to the qubit one, we proceed with c′ = 1 only. Therefore, we have

ρj =
1

2m
(I + b

∑

i∈SV

n
(j)
i γi), (75)

ρ′j =
1

2m
(I + b′

∑

i∈S′

V

n
′(j)
i γi), (76)

τj =
1

2m
(I +

∑

i∈SV

m
(j)
i γi), (77)

τ ′j =
1

2m
(I +

∑

i∈S′

V

m
′(j)
i γi). (78)

To satisfy Eq. (8), we must choose the optimal POM elements as

Πj = λjUjπ1U
−1
j = λj(I −

∑

i∈SV

m
(j)
i γi), (79)

Π′

j = λ′

jUjπ
′

1U
−1
j = λ′

j(I −
∑

i∈S′

V

m
′(j)
i γi). (80)

By using Eqs. (12) and (75)-(78), the components of Bloch vectors associated with optimal
measurement are found as

m
(j)
i = − ηb

p− η
n
(j)
i , m

′(j)
i = − η′b′

p− η′
n
′(j)
i , i ∈ SV . (81)

Finally, from the fact that the vectors m̂(j), m̂′(j), n̂(j) and n̂′(j) have unit lengths, the
minimum error probability is found

popt = η(1 + b) = η′(1 + b′). (82)

which is in agreement with the general result of irreducible case, i.e. Eq. (19), for d = 2m,
amax = 1+b

2m
and a′max = 1+b′

2m
.

B. reducible case

Let Uj ’s and U ′
j ’s are reducible representations. Since the operators Uj’s and U ′

j ’s commute

12



with M, the index set associated to the maximal number of γi’s which remain invariant
under similarity transformations produced by them is SI ∩ S ′

I . Thus we have

M = αId +
∑

i∈SI∩S
′

I

βiγi. (83)

As any optimal POM element is perpendicular to the corresponding conjugate state, hence,
for any j, we have

Πj = λjUjπ1U
−1
j = λj(I −

∑

i∈SV

m
(j)
i γi −

∑

i∈SI

miγi), (84)

Π′

j = λ′

jUjπ
′

1U
−1
j = λ′

j(I −
∑

i∈S′

V

m
′(j)
i γi −

∑

i∈S′

I

m′

iγi). (85)

Placing these relations into the completeness relation (7), we obtain

n
∑

j=1

λj +

n′

∑

j=1

λ′

j = 1 (86)

n
∑

j=1

λjm
(j)
i +

n′

∑

j=1

λ′

jm
′(j)
i = 0, i ∈ SV ∩ S ′

V (87)

mi

n
∑

j=1

λj +m′

i

n′

∑

j=1

λ′

j = 0, i ∈ SI ∩ S ′

I (88)

n
∑

j=1

λjm
(j)
i +m′

i

n′

∑

j=1

λ′

j = 0, i ∈ SV − (SV ∩ S ′

V ) (89)

mi

n
∑

j=1

λj +

n′

∑

j=1

λ′

jm
′(j)
i = 0, i ∈ S ′

V − (SV ∩ S ′

V ) (90)

By substituting M from Eq. (83) into Eq. (12), we conclude that

m
(j)
i = − ηb

popt−η
n
(j)
i , i ∈ SV ;

mi = − ηb

popt−η
ni, i ∈ SV − (SV ∩ S ′

V );

mi =
2mβi−ηbni

popt−η
, i ∈ SI ∩ S ′

I ,

(91)

and
m

′(j)
i = − η′b′

popt−η′
n
′(j)
i , i ∈ S ′

V ;

m′
i = − η′b′

popt−η′
n′
i, i ∈ S ′

V − (SV ∩ S ′
V );

m′
i =

2mβi−η′b′n′

i

popt−η′
, i ∈ SI ∩ S ′

I .

(92)
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To derive popt by solving Eqs. (88), (91) and (92), first we denote restrictions of n̂ and n̂′

to the subspace corresponding to the index set SI ∩ S ′
I by ~n0 and ~n′

0 respectively. Next, to
simplify the algebra, we choose a coordinate system in the subspace corresponding to the
index set SI ∩S ′

I such that the vector ~n0 is directed along an axis. In this coordinate system,
let us denote by n′

0 the component of ~n′
0 along ~n0 and by n′

1 its component along an axis
in the plane of ~n0 and ~n′

0 which is perpendicular to ~n0. By some tricky algebra which is
discussed in detail in Appendix C, we find

popt =
−B ±

√
B2 − AC

2A
, (93)

where

A = (η − η′)2 − (ηbn0 − η′b′n′
0)

2 − η′2b′2n′2
1

B = [η2(1− b2)− η′2(1− b′2)− 2ηη′2bb′2n0n
′2
1

ηbn0−η′b′n′

0
](η − η′)

−2ηbn0(η − η′)(ηbn0 − η′b′n′
0 +

η′2b′2n′2
1

ηbn0−η′b′n′

0
) + 2η[(ηbn0 − η′b′n′

0)
2 + η′2b′2n′2

1 ]

C = [η2(1− b2)− η′2(1− b′2)− ηη′2bb′2n0n
′2
1

ηbn0−η′b′n′

0
]2

+4η2[b2(1 +
η′2b′2n2

0n
′2
1

(ηbn0−η′b′n′

0)
2 )− 1][(ηbn0 − η′b′n′

0)
2 + η′2b′2n′2

1 ]

−4ηbn0[η
2(1− b2)− η′2(1− b′2)− 2ηη′2bb′2n0n

′2
1

ηbn0−η′b′n′

0
](ηbn0 − η′b′n′

0 +
η′2b′2n′2

1

ηbn0−η′b′n′

0
).

(94)

It is easy to see that the statement of popt is reduced to the statement of qubit case if we let
SI = S ′

I be one-dimensional and so n′
1 = 0, n0 = nz and n′

0 = n′
z.

4 Conclusion

Using the necessary and sufficient conditions for minimum-error discrimination in the equal-
ity form which is equivalent to Helstrom family of ensembles, we investigated minimum-error
discrimination among two sets of different equiprobable quantum states where each set gen-
erated from a density operator by unitary similarity transformations. In the case that the
unitary operators involved in the similarity transformations are generating of irreducible rep-
resentations of two subgroups of U(d), we precisely derived the maximum success probability
and the optimal measurement. However, for the case that the representations are reducible,
we did not solve optimality conditions in general and instead we illustrated the method by
applying it to solve optimality conditions for two set of equiprobable qubit states together
with some particular cases and two set of equiprobable m-qubit states. The presented par-
ticular cases were extended forms of some examples given in the literature and our results
confirm theirs.
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Appendix A

Here, we want to calculate maximal success probability given in Eq. (93). To this aim,
first we express Eq. (12) in terms of the Bloch vectors components as

ηbni − η′b′n′

i = (popt − η′)m′

i − (popt − η)mi (A-i)

2mβi = ηbni + (popt − η)mi (A-ii)

for any i ∈ SI ∩ S ′
I . From Eqs. (A-i) and (88), it is seen that for any i ∈ SI ∩ S ′

I , the
signs of ηbni − η′b′n′

i and mi are opposite. In other words, if restrictions of n̂, n̂′, m̂ and m̂′

to the subspace corresponding to the index set SI ∩ S ′
I are denoted by ~n0, ~n

′
0, ~m0 and ~m′

0

respectively, then the vectors ηb~n0 − η′b′~n′
0 and ~m0 point in the opposite directions and we

can write

~m0 = −
√

∑

i∈SI∩S
′

I

(mi)2
ηb~n0 − η′b′~n′

0

|ηb~n0 − η′b′~n′
0|
. (A-iii)

Therefore, Eq. (A-ii) takes the vectorial form

2m~β = ηb~n0 − (popt − η)

√

∑

i∈SI∩S
′

I

(mi)2
ηb~n0 − η′b′~n′

0

|ηb~n0 − η′b′~n′
0|

(A-iv)

Eqs. (88), (A-iii) and (A-iv) show that the vectors ~n0, ~n
′
0,

~β, ~m0 and ~m′
0 are coplanar.

Next, to simplify the algebra, we choose an orthogonal coordinate system in the subspace
corresponding to the index set SI ∩ S ′

I such the plane of ~n0 and ~n′
0 coincide with the plane

defined by an arbitrary pair of coordinate axes and ~n0 points to the positive direction of one
axis of the pair. Let us denote by n′

0 and β0 the components of ~n′
0 and ~β along an axis of

the pair lying in the direction of ~n0 and by n′
1 and β1 their components along another axis,

respectively. In the considered frame, Eq. (88) and the third relations of Eqs. (91) and (92)
are written as

µm0 + (1− µ)m′
0 = 0

µm1 + (1− µ)m′
1 = 0

(A-v)

m0 =
2mβ0−ηbn0

popt−η
,

m1 =
2mβ1

popt−η
,

m′
0 =

2mβ0−η′b′n′

0

popt−η′
,

m′
1 =

2mβ1−η′b′n′

1

popt−η′
,

(A-vi)

where we have introduced µ =
∑n

j=1 λj and m0 (m′
0) and m1 (m′

1) are components of ~m0

(~m′
0). When we square both sides of the first two relations of Eqs. (91) and (92), then sum

up over i and use the unity of n̂, n̂′, m̂ and m̂′, we obtain

1−m2
0 −m2

1 =
η2b2

(popt−η)2
(1− n2

0)

1−m′2
0 −m′2

1 = η′2b′2

(popt−η′)2
(1− n′2

0 − n′2
1 )

(A-vii)

Finally, by composing Eqs. (A-v)-(A-vii) we attain to Eq. (93) for popt.
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