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Abstract. In this paper, we construct mosaic representations of knots on the torus,
rather than in the plane. This consists of a particular choice of the ambient group A,
as well as different definitions of contiguous and suitably connected. We present condi-
tions under which mosaic numbers might decrease by this projection, and present a tool
(called waste) to measure this reduction. We show that the order of edge identification in
construction of the torus sometimes yields different resultant knots from a given mosaic
when reversed. Additionally, in the Appendix we give the catalog of all torus 2-mosaics.

1. Introduction

This paper was inspired from open question (8) of [1]; unless otherwise noted, definitions
come from [1]. For simplicity of exposition, we will frequently use the term “knot” to mean
either a knot or a link, and we adopt the conventions put forth in [1], making the following
adjustments to definitions, and using hats ̂ to distinguish toroidal objects from planar
objects:

Definition 1. A toroidal n-mosaic is an n-mosaic projected onto the torus in R3 by
identifying opposite edges of the n-mosaic. (We examine these mosaics via their matrix
representation as given in [1].)

Definition 2. Two tiles in a toroidal n-mosaic are said to be contiguous if they lie
immediately next to each other in either the same row or the same column, or are on
opposite ends of a row or column (i.e. the tiles in rows 0 and n − 1 in column j are
contiguous, as are the tiles in columns 0 and n − 1 of row j). An unoriented tile within
a mosaic is said to be toriodally suitably connected if each of its connection points
touches a connection point of a contiguous tile.

Definition 3. A toroidal knot n-mosaic is a toroidal n-mosaic in which every tile is

toroidally suitably connected. The set of toroidal knot n-mosaics is denoted K̂(n).

Definition 4. The toroidal knot mosaic ambient group Â(n) is the group of all per-

mutations of K̂(n) generated by mosaic planar isotopy moves, mosaic Reidemeister moves,
and cyclic permutation of rows and columns.
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“Cyclic permutations of rows and columns” refers to matrix multiplication of the n-
mosaic M ∈M(n) by the n×n (unitary) permutation matrix Bn (on the left for row shifts,
on the right for column shifts):

Bn =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .
The addition of cyclic permutations of planar knot n-mosaics implies that toroidal knot

n-mosaic set K̂(n) contains elements of M(n) that have planarly non-contiguous tiles; i.e.

K(n) ⊂ K̂(n) ⊂M(n). See Figure 1 for an example: K24 ∈ K(2), but K24B2 ∈ K̂(2) \K(2).

←→

Figure 1. K24 ←→ K24B2

We now state a variation of the notion of mosaic number given in [1], open question (8),
under this toroidal paradigm:

Definition 5. The toroidal mosaic number of a knot k is the smallest integer n such
that k is representable as a toroidal knot n-mosaic.

Note that toroidal knot n-mosaics are two-dimensional projections of three-dimensional
knots. If we instead make this projection onto mosaic tiles on a torus (which itself is
a three-dimensional object representable in two dimensions), we can lower this mosaic
number.

2. Waste, Density, Embedding

The difference in planar and toroidal mosaic number can be captured succinctly in the
concept of waste.

Definition 6. The (normalized) waste of a mosaic tile is 1/4 the number of tile edges
without connection points. The total waste of a knot n-mosaic is the sum of its tiles’
waste.

The blank tile T0 has waste 1, the line and 1-corner tiles T1 through T6 have waste 1/2;
crossings and 2-corner tiles (T7 through T10) have waste 0.

Definition 7. A knot n-mosaic is called dense if it has total waste 0.
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Having waste 0 is not sufficient for a tiling to be a representative example demonstrating
the mosaic number of a given link; see Figure 2 for an example. Note that planar mosaic
knots will never be dense, as each of the tiles on the boundary will have at least waste
1/2. This implies that in larger presentations of planar knots waste will increase at least
linearly. It is suggestive that more waste in the plane means more room for reducing waste
by moving to the torus.

Figure 2 is an example of the 31 knot on the torus with 4 crossings in the diagram. The
lower left crossing is superfluous.

Figure 2. A dense presentation of 31 on the torus with 4 crossings.

Figure 3. A Dense Presentation of the Borromean Rings on the Torus

Figure 4. Possible 2-crossing Hopf link on the torus.
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Definition 8. The toroidal mosaic injection for a toroidal knot n-mosaic is defined by

ι̂ : M(n) −→M(n+1)

M (n) 7−→M (n+1)

as

M
(n+1)
ij =



M
(n)
ij if 0 ≤ i, j < n

= T5 if j = n,M
(n)
i(n−1) has a connection to the right

= T6 if i = n,M
(n)
(n−1)j has a connection on the bottom

= T0 otherwise.

We now give bounds on the amount of waste induced by embedding a toroidal knot
n-mosaic.

Proposition 1. Let M ∈ K̂(n). Then, if w(M) is the amount of waste of M ,

w(M) + n+ 1 ≤ w(ι̂(M)) ≤ w(M) + 2n+ 1,

where the upper bound is achieved if M ∈ K(n).

Proof A toroidal embedding always uses the blank tile T0 (with waste 1) in cell (n, n).
Considering M as an unoriented planar mosaic, the waste upper bound is achieved when

every edge on M ’s boundary is wasted. Since M ∈ K̂(n), this means M ∈ K(n), and so
the toroidal embedding matches the planar embedding, using a blank tile for every new
position (a total of 2n+ 1 blank tiles).

Again considering M as an unoriented planar mosaic, if M has no waste on its boundary
(which does not necessarily mean it is dense; it may have waste in its interior), then its
embedding uses T5 (with waste 1

2 per tile) for the first n entries in column n and T6 (with

waste 1
2 per tile) for the first n entries in row n, and T0 in cell (n, n). �

This injection extends graded system (K,A) given in [1] to the torus. The symbol K̂
denotes the directed system of sets {K̂(n) −→ K̂(n+1) : n = 1, 2, 3 · · · } and Â denotes the

directed system of groups {Â(n) −→ ̂A(n+ 1) : n = 1, 2, 3 · · · }, thus(
K̂, Â

)
=
(
K̂(1), Â(1)

)
−→

(
K̂(2), Â(2)

)
−→ · · · −→

(
K̂(n), Â(n)

)
−→ · · ·
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3. A Strange Paradox

Projecting onto the torus introduces “hidden” crossings that may destroy the well-
definedness of a knot mosaic. Consider the 1× 1 mosaic of one crossing. On the torus, is
it the Hopf link?

Figure 5. Is this also the Hopf Link on the torus?

The answer is that it depends on which pair of edges you connect first when constructing
the torus. Figure 5 will either be the Hopf link, or two disjoint unknots, depending on the
choice. Connecting top and bottom first will yield the Hopf link; connecting left and right
first will yield two disjoint unknots. This forces us to reconsider our previous constructions,
and see if we haven’t unknowingly introduced crossings “off the mosaic”.

It becomes more complicated to see the implications of embedding the knot on the torus
in R3 than to merely identify opposite edges.

Because we introduce crossings by the topology of the torus, it is possible to construct
links which do not show any crossings in the diagram. The Hopf link is diagrammed on
Figure 6 with no explicit crossings.

We note that in this case order of edges does not matter, because of the symmetry of
this presentation. Figure 7 is the Hopf link when top and bottom edges are identified first,
and disjoint unknots when left and right are identified first.

In order to remove this ambiguity one of two possible conventions must be adopted: Con-
vention 1. Left–to–right is designated as the meridianal direction. (Call these meridianal
toroidal mosaic knots.) Convention 2. Top–to–bottom is designated as the longitudinal
direction. (Call these longitudinal toroidal mosaic knots.)

Henceforth, we shall implicitly adopt the latter convention.
Note that the catalog of n-mosaics changes markedly on the torus because cyclic trans-

lation is an equivalence relation. For instance, in the catalog put forth in [1], the diagrams
labeled as K1,K2,K4 and K11 would all be toroidally equivalent. However, the toroidal
representation of the Borromean rings in Figure 3 would not be an allowable figure in the
planar 3-mosaic catalog. Hence, the toroidal n-mosaic catalog, surprisingly, is much larger
than the planar n-mosaic catalog.

Figure 6. Hopf Link on the 3D torus with no explicit crossings.
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Figure 7. The actual 2-crossing Hopf link on the torus (differs from Figure 4)

Rotations of n-mosaics, however, as we have seen, yield very different results, so each
mosaic must be rotated by π

2 and reexamined to see if it has differing structure.
The mosaics which are the smallest representations of knots and links on the torus thus

far all happen to be dense mosaics. However, density as a mosaic property does not seem
to imply any other properties at this point.

Proposition 2. The dense toroidal 1-mosaic K5 is the smallest possible toroidal mosaic
presentation of the Hopf link.

Proposition 3. The dense toroidal 2-mosaics K49 and K53 are the smallest possible
toroidal mosaic presentations of 31.

Proposition 4. The dense toroidal 2-mosaics K73,K75,K83,K85 and K88 are the smallest
possible toroidal mosaic presentations of the 421 link.

Proposition 5. The dense toroidal 2-mosaics K93 and K94 are the smallest possible
toroidal mosaic presentations of the 631 link.

Proposition 6. The dense toroidal 2-mosaic K98 is the smallest possible toroidal mosaic
presentation of the 834 link.

To see that these propositions are true, one can examine the catalog.

Each possible toroidal 2-mosaic was constructed, examined to determine which knot it
represented, and equivalent diagrams were removed. Thus far we have not uncovered any
simple methodology to determine what link a diagram represents, or if two diagrams are
equivalent.

Ironically, the so-called “Torus Knots” which come from wrapping a closed path around
the torus moving at particular rates meridianally and longitudinally, all require very large
mosaics to construct as toroidal mosaics.

4. Quantum Toroidal Mosiac Knots

The addition of projecting knot mosaics onto the torus does not interfere with the
construction of a quantum knot system in an analogous way to what was done in section

3.1 of [1]. Using the same definition of the Hilbert space M̂(n) =M(n) of n-mosaics, and
the same 11 dimensional Hilbert space, we end up with the same induced basis.
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We define the Hilbert space of toroidal knot n-mosaics K̂(n) as the sub-Hilbert

space K̂(n) of M(n) spanned by all orthonormal basis elements labeled by toroidal knot
n-mosaics.

Toroidal quantum knot systems differ only slightly from their planar counterparts. As
noted previously, there are the additional unitary operators which allow for cyclic permu-
tation of rows and columns. Hence, the planar ambient group is entirely contained in the

toroidal ambient group, i.e. A(n) ⊂ Â(n).

We define a quantum toroidal knot system, much as in the planar case:

Definition 9. Let n be a positive integer. A quantum toroidal knot system Q̂
(
K̂(n), Â(n)

)
of order n is a quantum system with the Hilbert space K̂(n) of toroidal knot n-mosaics as

its state space, and having the ambient group Â(n) as an accessible unitary control group.

The states of the quantum system Q̂
(
K̂(n), Â(n)

)
are called quantum toroidal knots of

order n, and the elements of the ambient group Â(n) are called unitary toroidal knot

moves. Moreover, the quantum knot system Q̂
(
K̂(n), Â(n)

)
of order n is a subsystem of

the quantum toroidal knot system Q̂
(
K̂(n+1), ̂A(n+ 1)

)
of order n+1. Thus, the quantum

toroidal knot systems Q̂
(
K̂(n), Â(n)

)
collectively become a nested sequence of quantum

toroidal knot systems which we will denote simply by Q̂
(
K̂, Â

)
. In other words,

Q̂
(
K̂, Â

)
= Q̂

(
K̂(1), Â(1)

)
−→ Q̂

(
K̂(2), Â(2)

)
−→ · · · −→ Q̂

(
K̂(n), Â(n)

)
−→ · · ·

The nested sequence of toroidal knot systems remains consistent, using the convention
of toroidal knot injection from Definition 8.

Hamiltonians can be constructed identically to the way they are constructed in [1], and
quantum toroidal knot invariants can be also be found from observables in the same way
as was outlined in [1].

The set of quantum knot invariants, as defined in [1] naturally becomes smaller in the

toroidal case, because the toroidal ambient group Â(n) is larger. There will be fewer
observables which are invariant under conjugation by all the elements of the ambient group.
Please note that we use the definition for quantum knot invariant used in [1] rather than
the one typically used in quantum topology.

Having added cyclic translations to the ambient knot group does not interfere with being
able to construct the quantum knot system. However, this equivalence makes the process
of determining if two toroidal mosaics are of the same knot type more difficult.

K̂(1) is 7 dimensional, as can be seen in Appendix A, and K̂(2) is 97 dimensional. This
is quite an increase from the planar cases, which are only 1 and 2 dimensional respectively
[1]. Even K(3) in the planar case is only 22 dimensional [1].

Problem 9 from [1], repackaged for torus knots, can be stated:
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Exercise 1. Let D̂n denote the dimension of the Hilbert space K̂(n) of toroidal quantum

knot n-mosaics. We have shown that D̂1 = 7 and D̂2 = 97. It would be interesting to find

D̂n for other values of n. A very loose upper bound for D̂n is obviously 11n
2
.

5. Conclusions and Further Work

Moving the model of mosaic knots onto the torus changes the size of the space in which we
are working, and allows the theory to remain functional. The fact that edge identification
order matters results in having to include rotations in the catalog of all mosaics, even
though cyclic translations have been removed.

The introduction of topological artifacts by edge identification begs the question as to
what might occur when projecting onto the sphere, the Klein bottle, or the projective
plane. These possibilites are under investigation.

It is also intriguing to note that grid diagrams for Floer homology calculations are also
discrete grids that produce knot diagrams under an ordered grid connection paradigm
(vertical over horizontal), and are invariant under cyclic row and column shifts (i.e. are
knot diagrams on the torus). Connections between these two topics are worthy of further
research.
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Appendix A: The catalog of all knot 1- and 2-mosaics on the torus.

Recall that the convention we have adopted identifies top and bottom edges first (i.e.
longitudinally). 221 or (L2a1) denotes the Hopf link, + denotes disjoint union, and #
denotes knot sum. Only one representation for each mosaic under row or column shift
equivalences is displayed.

K0=φ K1=01 K2=01 K3=01 K4=01 K5=221 (L2a1) K6=01 + 01

K7=φ K8=01 K9=01 K10=01 + 01 K11=01 + 01

K12=01 K13=01 K14=01 K15=01 K16=01

K17=01 K18=01 K19=01 K20=01 K21=01

K22=01 K23=01 K24=01 K25=01 + 01 K26=221 (L2a1)

http://arxiv.org/abs/0707.2831
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K27=221 (L2a1) K28=01 + 01 K29=01 + 01 K30=01 + 01 K31=01 + 01

K32=01 K33=221 (L2a1) K34=01 + 01 K35=01 K36=01

K37=01 K38=01 + 01 K39=221 (L2a1) K40=01 + 01 K41=221 (L2a1)

K42=01 + 01 K43=221 (L2a1) K44=01 + 01 K45=221 (L2a1) K46=01 + 01

K47=01 K48=01 K49=31 K50=01 K51=01

K52=01 K53=31 K54=01 K55=01 K56=01
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K57=01 K58=01 K59=01 + 01 + 01 K60=221 + 01 K61=221#221

K62=01 + 01 + 01 K63=221 + 01 K64=221#221 K65=01 + 01 K66=221 (L2a1)

K67=01 + 01 K68=01 + 01 K69=221 (L2a1) K70=01 + 01 K71=221 (L2a1)

K72=01 + 01 K73=421 (L4a1) K74=01 + 01 K75=421 (L4a1) K76=221 (L2a1)

K77=221 (L2a1) K78=01 + 01 K79=01 + 01 K80=221 (L2a1) K81=01 + 01
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K82=01 + 01 K83=421 (L4a1) K84=01 + 01 K85=421 (L4a1) K86=221 (L2a1)

K87=221 (L2a1) K88=421 (L4a1) K89=221 + 01 K90=221 + 01 K91=221#221

K92=221#221 K93=631 (L6a5) K94=631 (L6a5) K95=01 + 01 + 01 K96=01 + 01 + 01

K97=01 + 01 + 01 + 01 K98=843 (L8n8) K99=221#221 + 01 K100=221 + 01 + 01 K101=221#221 + 01

K102=221#221#221 K103= 221 + 221 K104=221#221 + 01
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