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Abstract Two qubit operation sharing schemes [J. Phys. B 44 (2011) 165508] are generalized

to qutrit ones. Operations to be shared are classified into three different classes in terms of

different probabilities (i.e, 1/3, 2/3 and 1). For the latter two classes, ten and three restricted

sets of operations are found out, respectively. Moreover, the two generalized schemes are amply

compared from four aspects, namely, quantum and classical resource consumption, necessary-

operation complexity, success probability and efficiency. It is found that the second scheme is

overall more optimal than the first one as far as three restricted sets of operations are concerned.
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1 Introduction

Entanglement is admitted as a kind of important quantum resource nowadays. In the last two decades

it has been extensively exploited and utilized in the many fields of quantum information science to fulfill

various quantum tasks involving classical information processing in a quantum manner and quantum

information (i.e., quantum state) processing[1-25], such as quantum key distribution, quantum state tele-

portation, remote state preparation, operation teleportation, state sharing, direct secure communication,

quantum computing, and so on. Enlightened by the generalization of quantum state teleportation to

quantum state sharing, in 2011 Zhang and Cheung[26] definitely presented quantum operation sharing

with shared entanglements. They introduced the sharing idea into quantum operation teleportation and

proposed two specific schemes with different groups of shared entanglements. The first one is a universal

but nontrivial scheme for sharing any single-qubit operation with one group of shared entanglements,

while the latter treats the sharing of two restricted sets of operations with less resource consumptions.

Incidentally, these schemes are uniformly referred to as the ZC schemes later. As same as quantum

operation teleportation, QOS can be viewed as a remote control (encryption, decryption or destruction)

on quantum information in the future quantum network. If the target state as an important quantum

information is initially encrypted with a given unitary operation, then the inverse operation on it is

obviously the decryption on it. Moreover, it is natural to regard a random operation as the destruction

on it. As a consequence, quantum operation sharing can be taken as a key to activate some important

actions in the future lives by some sharer entities, such as missile emissions, quantum collective seal

or unseam, remote joint destruction of quantum money, and so on. Therefore, recently this topic has

already attracted some attentions[27-29]. In spite of this, it is worthy emphasizing that all these works

treat only the sharing of single-qubit operations with shared qubit entanglements.

In the intending quantum networks, various quantum states involving high-dimensional qudit state

might be employed and distributed among different nodes due to some special demands, such as pe-

culiar quantum tasks in some concrete quantum scenarios, some definite security requirements, and so

on. Because of this, some researchers have been attracted by the issues related to high-dimensional

qudit cases and started to explore them[30-39]. Surely, their works includes the employment of qutrit

entanglements in addressing various relative quantum problems[38]. In this condition, it is intriguing

to ask what will happen in the field of QOS if the accessible quantum channels are composed of shared

qutrit entanglements? Specifically, what kind of qutrit states can be used to fulfill QOS? If quantum

channels are determined, what is the maximal success probability for sharing a given operation? Can

the operation be shared more economically with less operation complexity? Can operations be classified

with different classes corresponding to different success sharing probabilities? How to characterize those
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classes and find out them? and so on and so forth. To our best knowledge these mentioned issues have

not been touched by far. Hence, it is of interest to consider the generalization of the ZC schemes[26]

from the aspect of particle degree. Since there exist many open questions, in this paper we will consider

a comparatively simple generalization, i.e., generalize the simplest QOS schemes (i.e., the ZC schemes)

to the qutrit ones by employing the qutrit Bell and GHZ states as quantum channels. Such extensions is

actually a little intricate but will lead to quite abundant results. More importantly, they indicate that

QOS as remote control can be achieved with shared qutrit entanglement, too. We will show them later.

Additionally, at present it is broadly recognized that resource consumption and operation complexity as

hot topics in many fields are always concentrated. How to consume less amount of resources and how to

degrade the difficulty and intensity of necessary operations are continuously attracting much attention

and pursued by many researchers. Because of this, in this paper we will focus our attention on this issue

during the generalizations, too.

The rest of this paper is organized as follows. In section 2, two three-party schemes for sharing

single-qutrit operations on a remote qutrit in any state are preciously proposed with different quantum

channels. In section 3, two schemes are amply compared and discussed from the four aspects of

quantum and classical resource consumption, necessary-operation complexity, success probability and

efficiency. Finally, a concise summary is made in section 4.

2 Remote sharing of single-qutrit operation

Now let us start to present our schemes. In either scheme there are three legitimate users, say, Alice,

Bob and Charlie. Alice is the initial performer of a single-qutrit operation U . Incidentally, whether

she knows it or not is uncertain and will be discussed and treated separably later. Bob and Charlie

are Alice’s two remote agents. Alice needs to perform the operation U on a qutrit in state |χ〉 at one

remote agent’s site. She wants to fulfill the task with her agents’ assistance and by making full use of the

quantum and classical channels linking the three legitimate users. However, she trusts neither agent but

their entity. Specifically, she should assure that the operation can not be successfully executed on the

qutirt by either agent solely but conclusively achieved via the mutual collaboration of her two agents.

Moreover, the state |χ〉 in the qutrit can be arbitrary. Suppose the state |χ〉 is initially in Bob’s qutrit

b′′ and can be written as

|χ〉b′′ = α|0〉b′′ + β|1〉b′′ + γ|2〉b′′ , (1)

where α, β and γ are complex and satisfy |α|2 + |β|2 + |γ|2 = 1.

2.1 General scheme for arbitrary single-qutrit operation

Now let us put forward our general three-party QOS scheme, which is universally applicable for

sharing an arbitrary single-qutrit operation. The schematic demonstration is illustrated in figure 1. The

scheme can be concisely depicted as follows.

(i) Initial stage. In this scheme, the quantum channels linking the three legitimate users are a shared

generalized Bell state |B00〉 and a shared generalized GHZ state |G〉, i.e.,

|B00〉a′b′ =
1√
3
(|00〉+ |11〉+ |22〉)a′b′ , (2)

|G〉abc =
1√
3
(|000〉+ |111〉+ |222〉)abc, (3)

where the qutrit trio (b, b′, b′′) belongs to Bob, the qutrit pair (a, a′) to Alice and the qutrit c to Charlie.

(ii) QT process. In this stage, the state |χ〉 in Bob’s qutrit b′′ is teleported to Alice’s qutirt a′ via the

standard QT process with the generalized Bell state |B00〉 as the quantum channel between Alice and

Bob. Alternatively, after the process the state of qutrit b′′ has been swapped to the qutrit a′ and hence

the state of qutrit a′ is transformed to |χ〉.
(iii) Operation performance. Alice carries out the operation U on her qutrit a′ in state |χ〉, i.e.,

U → |χ〉a′ =⇒ (U|χ〉)a′ . (4)
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FIG. 1: Illustration of our general three-party QOS scheme with generalized GHZ

and generalized Bell states. Dotted rectangles are participants’ locations. Solid

lines among rectangles stand for classical communication channels. Solid dots

denote qutrits. Dotted lines linking qutrits means entanglements. The solid circle

labels the unitary operation U to be shared. Solid ellipses represent generalized

Bell-state measurements. The solid and dotted squares illustrate the single-qutrit

measurement and unitary operation, respectively. See text for more details.

(iv) QSTS process. In this stage, the state U|χ〉 in Alice’s qutrit a′ is shared by Bob and Charlie

via a standard QSTS process with the generalized GHZ state |G〉abc as the quantum channel. In other

words, if Bob and Charlie collaborate with each other, they can finally reconstruct the state U|χ〉 on

either the qutrit b or the qutrit c. This result is actually equivalent to Alice’s aim, that is, conclusively

performing her single-qutrit operation U on a remote qutrit in state χ at an agent’s position.

2.2 Specific scheme for restricted sets of operations

Now let us present another tripartite QOS scheme with quantum channels different from those in the

first scheme. The illustration of this scheme is shown in figure 2. The details of the scheme are described

as follows.

(I) Initial stage. The present quantum channels linking the three legitimate users are

|B00〉a′b′ =
1√
3
(|00〉+ |11〉+ |22〉)a′b′ , (5)

|B00〉ac =
1√
3
(|00〉+ |11〉+ |22〉)ac, (6)

where the qutrit pair (a, a′) is at Alice’s hand, and the qutrits b′ and c are in Bob’s and Charlie’s sites,

respectively. Note that, different from the quantum channels employed in the general scheme, here a

generalized Bell state |B00〉ac is used instead of the generalized GHZ state |G〉abc there.

(II) Bob’s performances. First, Bob performs a unitary operation V on his qutrit pair (b′, b′′), where

V = |00〉〈00|+ |01〉〈01|+ |02〉〈02|+ |10〉〈11|+ |11〉〈12|
+ |12〉〈10|+ |20〉〈22|+ |21〉〈20|+ |22〉〈21|. (7)

After the operation, the state of the qutrit trio (a′, b′, b′′) is converted into

Vb′b′′ |Ψ00〉a′b′ |χ〉b′′ = {[α|00〉+ β|11〉+ γ|22〉]a′b′ |0〉b′′ + [α|22〉+ β|00〉+ γ|11〉]a′b′ |1〉b′′
+ [α|11〉+ β|22〉+ γ|00〉]a′b′ |2〉b′′}/

√
3. (8)

Then Bob measures his qutrit b′′ in the bases {|0〉, |1〉, |2〉}. If Bob measures |0〉b′′ , then he does the

identity operation (i.e., nothing) on his qutrit b′. Otherwise, if he gets |1〉b′′ (|2〉b′′ ), he executes the
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FIG. 2: Illustration of our specific three-party QOS scheme with two gen-

eralized Bell states. The same as fig.1 with the dotted ellipse representing

the unitary operation V. See text for more details.

unitary operation S = |0〉〈2|+ |2〉〈1|+ |1〉〈0| (T = |0〉〈1|+ |2〉〈0| + |1〉〈2|) on his qutrit b′. In terms of

their prior agreement that the single-qutrit state |i〉 corresponds to the classical single trit i and vice

versa (same hereafter), Bob notifies Charlie of the measurement result via the classical channel linking

them.

(III) Alice’s performances. Upon receiving Bob’s message, Alice first does the same single-qutrit

operation as Bob’s on her qutrit a′. Bob’s and Alice’s performances lead to one of the following trans-

formations:

[α|00〉+ β|11〉+ γ|22〉]a′b′ |0〉b′′
Ia′Ib′−−−−→ [α|00〉+ β|11〉+ γ|22〉]a′b′ |0〉b′′ , (9)

[α|22〉+ β|00〉+ γ|11〉]a′b′ |1〉b′′
Sa′Sb′−−−−→ [α|00〉+ β|11〉+ γ|22〉]a′b′ |1〉b′′ , (10)

[α|11〉+ β|22〉+ γ|00〉]a′b′ |2〉b′′
Ta′Tb′−−−−→ [α|00〉+ β|11〉+ γ|22〉]a′b′ |2〉b′′ . (11)

Note that in the formulae above the operations on qutrits a′ and b′ are same. Obviously, one can

see that the state of the qutrit pair (a′, b′) is always [α|00〉 + β|11〉 + γ|22〉]a′b′ after their operations.

Afterwards, she performs the unitary operation U on her qutrit a′. In this case the state of Alice’s qutrit

pair becomes

|J〉a′b′ = Ua′ [α|00〉+ β|11〉+ γ|22〉]a′b′ . (12)

At this moment the state of the qutrit quadruple (a′, a, b′, c) is

|Q〉a′ab′c = |J〉a′b′ ⊗ |B00〉ac. (13)

Subsequently, Alice measures her qutrit pair with the generalized Bell states as the measuring bases

{|Ψn,m〉 =
2

∑

j=0

e
2njπ

3
i|j〉 ⊗ |(j +m) mod 3〉/

√
3; n ∈ (0, 1, 2), m ∈ (0, 1, 2)}. (14)

After Alice’s measurements, the state of the qutrit quadruple has collapsed to one of the following nine

states:

|Ψn,m〉a′a〈Ψn,m|Q〉 =
1

3
|Ψn,m〉a′aσ

(n,m)
c Uc(α|00〉+ β|11〉+ γ|22〉)cb′, n,m = 0, 1, 2, (15)

where

σ(n,m) = |m〉〈0|+ e
4nπ
3

i|(m+ 1) mod 3〉〈1|+ e
2nπ
3

i|(m+ 2) mod 3〉〈2|. (16)
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Then at last, she publishes via the classical channels the outcome according to the prior agreement,

i.e., the generalized Bell state |Ψn,m〉 corresponds to the classical trit pair (n,m) and vice versa (same

hereafter).

(IV) Reconstruction via agents’ collaboration.

If Bob and Charlie collaborate with each other, they can deterministically or probabilistically recon-

struct the operation U on the state |χ〉 in either qutrit c or qutrit b′. Without loss of generality, suppose

they decide to restore it in qutrit c. In this condition, Charlie starts to perform a unitary operation

σ(n,m)† on his qutrit c after Alice publishes the outcome. His operation makes the qutrit pair (b′, c) in

the state

|J〉cb′ = Uc[α|00〉+ β|11〉+ γ|22〉]cb′. (17)

Subsequently, Bob measures his qutrit b′ with the orthonormal measuring bases defined as

|ξ0〉 = |~V (1/
√
3, 1/

√
3, 1/

√
3)〉, |ξ1〉 = eiτ1 |~V1(x1, y1, z1)〉, |ξ2〉 = eiτ2 |~V2(x2, y2, x2)〉, (18)

where x’s, y’s and z’s are complex, τ ’s are arbitrarily real, and |~Vi(x, y, z)〉 ≡ x|0〉 + y|1〉 + z|2〉. The

orthogonality and normality of the measuring bases require that

z1 = −x1 − y1, |x1|2 + |y1|2 + |x1 + y1|2 = 1,

x2 = x′
2/N = (−1 + 2x1x

∗
1 + x1y

∗
1)/N,

y2 = y′2/N = (2y1x
∗
1 + y1y

∗
1)/N,

z2 = z′2/N = (1− 2x1x
∗
1 − 2y1x

∗
1 − x1y

∗
1 − y1y

∗
1)/N,

N =
√

|x′
2|2 + |y′2|2 + |z′2|2.

It is obvious that the first basis is unchanged as a fixed vector in the three-dimensional Hilbert space,

while the latter two are variant as the function of three dependent parameters. Nonetheless, here it is

necessary to stress that parameters x1 and y1 are not completely independent but correlated to each

other by a constraint. By virtue of the measuring bases, the state of the qutrit pair (c, b′) can be

rewritten as

|J〉cb′ =
1√
3
{[U|χ〉]c|ξ0〉b′ + [UW1(x1, y1, z1)|χ〉]c|ξ1〉b′

+ [UW2(x2, y2, x2)|χ〉]c|ξ2〉b′}, (19)

where

Wk(x, y, z) = e−iτk(x∗|0〉〈0|+ y∗|1〉〈1|+ z∗|2〉〈2|), k = 1, 2. (20)

Incidentally, it is obvious that Wk(x, y, z) is unitary. Consequently, if Bob measures |ξ0〉b′ , Alice’s

operation U has been conclusively performed on Charlie’s qutrit c. However, |ξ0〉b′ occurs only with

probability 1/3. It is quite possible that Bob measures |ξ1〉b′ or |ξ2〉b′ . In these two cases, intuitively, one

is readily to see that the operation U has not been successfully executed on the qutrit c. Whether Alice’s

goal can be achieved in the end is still uncertain and completely determined by the relations among

U and W1(x1, y1, z1) as well as W2(x2, y2, x2). With probability 1/3 Bob may measure |ξ1〉b′ . In this

case, if UW1(x1, y1, z1) = ±UW1(x1, y1, z1) holds, then based on Bob’s message about the measurement

result, Charlie can achieve Alice’s goal by executing the unitary operation W †
1 (x1, y1, z1) on his qutrit c.

Otherwise, Alice’s goal can not be achieved. Similarly, Bob may measure |ξ2〉b′ with probability 1/3, too.

In this case, if UW2(x2, y2, x2) = ±UW2(x2, y2, x2) holds, then Charlie can fulfill Alice’s operation on his

qutrit c by performing the reversal unitary operation of W2(x2, y2, x2) in terms of Bob’s message on the

measurement result. Otherwise, Alice’s operation on a remote qutrit in agents’ site fails. Surely, if both

UW1(x1, y1, z1) = ±UW1(x1, y1, z1) and UW2(x2, y2, x2) = ±UW2(x2, y2, x2) hold simultaneously, then

Alice’s goal can be deterministically reached via Bob and Charlie’s collaboration. Hence, as mentioned

before, the success probability is fully determined by the properties of U and W1(x1, y1, z1) as well as
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W2(x2, y2, x2), particularly their mutual relations. After our intensive investigations, we have found

that in the following four cases the success probability can be doubled or increased to unit, provided

that some information on the operation U is partially known in priori.

(1) x1 = 0 and y1 = − 1√
2
eiφ1 (φ1 is arbitrarily real).

In this case, one can easily get the two variant measuring bases and the two W operations, i.e.,

|ξ11〉 = ei(τ1+φ1)|~V (0,−1/
√
2, 1/

√
2)〉, (21)

|ξ12〉 = eiτ2 |~V (−2/
√
6, 1/

√
6, 1/

√
6)〉, (22)

W11 = e−i(τ1+φ1)(−|1〉〈1|+ |2〉〈2|)/
√
2, (23)

W12 = e−iτ2(−2|0〉〈0|+ |1〉〈1|+ |2〉〈2|)/
√
6. (24)

If UW11 = W11U or UW11 = −W11U , then U should take one of the following two forms

U (1) =







eiµ11 0 0

0 eiµ12 0

0 0 eiµ13






, U (2) =







eiµ21 0 0

0 0 eiµ22

0 eiµ23 0






, (25)

where µ’s are arbitrarily real (same hereafter). This means that if Bob measures |ξ11〉b′ and U belongs

to either of the two restricted sets above, Charlie can finally achieve Alice’s goal.

Similarly, if UW12 = W12U , then U should be any matrix of the following couple of sets

U (3) =







eiµ31 0 0

0 cosµ35e
i(µ32+µ34) sinµ35e

i(µ33+µ34)

0 − sinµ35e
−i(µ33−µ34) cosµ35e

−i(µ32−µ34)






, (26)

U (4) =







eiµ41 0 0

0 cosµ45e
i(µ42+µ44) sinµ45e

i(µ43+µ44)

0 sinµ45e
−i(µ43−µ44) − cosµ45e

−i(µ42−µ44)






. (27)

This implies that if Bob gets |ξ12〉b′ via measurement and U belongs to either U (3) or U (4), Charlie can

fulfill Alice’s operation U on his qutrit c in the end. Incidentally, there does not exist any U which

satisfies UW12 = −W12U .
Let U (12) = U (1) ∪ U (2) and U (34) = U (3) ∪ U (4). Surely, if U ∈ [U (12) ∩ U (34)], then the success

probability of the scheme is unit when taking account of the success probability 1/3 with the measured

|ξ0〉b′ . In this case, one is readily to see that U (12) ∩ U (34) = U (12). In contrast, in the case that

U ∈ [U (34\12) = U (34) \ U (12)], then the total success probability is 2/3.

(2) x1 = − 1√
2
eiφ2 and y1 = 0.

Two variant measuring bases and two W operations corresponding to this case are

|ξ21〉 = ei(τ1+φ2)|~V (−1/
√
2, 0, 1/

√
2)〉, (28)

|ξ22〉 = eiτ2 |~V (1/
√
6,−2/

√
6, 1/

√
6)〉, (29)

W21 = e−i(τ1+φ2)(−|0〉〈0|+ |2〉〈2|)/
√
2, (30)

W22 = e−iτ2(|0〉〈0| − 2|1〉〈1|+ 1|2〉〈2|)/
√
6. (31)

If U ∈ U (15), where U (15) = U (1) ∪ U (5) and

U (5) =







0 0 eiµ51

0 eiµ52 0

eiµ53 0 0






, (32)

then UW21 = W21U or UW21 = −W21U . It means that if Bob’s measurement result is |ξ21〉b′ and U
belongs the restricted set U (15), Charlie can finally reconstruct the state U|P 〉 on his qutrit c, as implies

that with the two agents’ help with the shared entanglement and LOCC Alice’s operation U has been
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successfully executed on the remote qutrit c in Charlie’s site. Of course, such circumstance only appears

with probability 1/3.

Similarly, if U ∈ U (67), where U (67) = U (6) ∪ U (7) and

U (6) =







cosµ65e
i(µ62+µ64) 0 sinµ65e

i(µ63+µ64)

0 eiµ61 0

− sinµ65e
−i(µ63−µ64) 0 cosµ65e

−i(µ62−µ64)






, (33)

U (7) =







cosµ75e
i(µ72+µ74) 0 sinµ75e

i(µ73+µ74)

0 eiµ71 0

sinµ75e
−i(µ73−µ74) 0 − cosµ75e

−i(µ72−µ74)






, (34)

then UW22 = ±W22U . Hence in the case, U can be finally performed on the qutrit c in a deterministic

manner provided that Bob measures |ξ22〉b′ and notifies him of the result. Surely, if U ∈ [U (15)∩U (67) =

U (15)], then the success probability of the scheme is unit. Apparently, in the case that U ∈ [U (67\15) =

U (67) \ U (15)], then the total success probability is still 2/3. At last, it is worthy mentioning that (1) is

completely same as (2) if |0〉 exchanges with |1〉.

(3) x1 = −y1 =
1√
2
eiφ3 .

The two variant measuring bases and two W operations corresponding to the conditions above are

|ξ31〉 = ei(τ1+φ3)|~V (1/
√
2,−1/

√
2, 0)〉, (35)

|ξ32〉 = eiτ2 |~V (1/
√
6, 1/

√
6,−2/

√
6)〉, (36)

W31 = e−i(τ1+φ3)(−|0〉〈0|+ |1〉〈1|)/
√
2, (37)

W32 = e−iτ2(|0〉〈0|+ |1〉〈1| − 2|2〉〈2|)/
√
6. (38)

If UW31 = ±W31U , then U ∈ U (18), where U (18) = U (1) ∪ U (8) and

U (8) =







0 eiµ81 0

eiµ82 0 0

0 0 eiµ83






. (39)

If UW32 = W32U , then U ∈ U (910), where U (910) = U (9) ∪ U (10) and

U (9) =







cosµ95e
i(µ92+µ94) sinµ95e

i(µ93+µ94) 0

− sinµ95e
−i(µ93−µ94) cosµ95e

−i(µ92−µ94) 0

0 0 eiµ91






, (40)

U (10) =







cosµ105e
i(µ102+µ104) sinµ105e

i(µ103+µ104) 0

sinµ105e
−i(µ103−µ104) − cosµ105e

−i(µ102−µ104) 0

0 0 eiµ101






. (41)

In addition, after extensive investigations it is found that UW32 = −W32U does not hold for any U .
Consequently, when U ∈ [U (18) ∩ U (910) = U (18)], the scheme success probability can reach 1. On the

contrary, if U ∈ [U (910\18) = U (910) \ U (18)], the success probability of the scheme is 2/3. Obviously, one

can see that the item (3) is as same as the item (2) [or the item (1)] provided that |2〉 is exchanged

with |1〉 [or |0〉].

(4) x1 6= 0, y1 6= 0 and x1 6= −y1.

With these conditions, one gets the two variant measuring bases and the two W operations

|ξ41〉 = eiτ1 |~V (x1, y1,−x1 − y1)〉, (42)

|ξ42〉 = eiτ2 |~V (x2, y2, z2)〉, (43)

W41 = e−iτ1(x∗
1|0〉〈0|+ y∗1 |1〉〈1|+ (−x∗

1 − y∗1)|2〉〈2|), (44)

W42 = e−iτ2(x∗
2|0〉〈0|+ y∗2 |1〉〈1|+ z∗2 |2〉〈2|). (45)
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After extensive studies, we have found that no U exists to satisfy UW41 = −W41U or UW42 = −W42U .
Instead, if UW41 = W41U or UW42 = W42U should hold, then one can find that U must be in U (1).

Alternatively, if U ∈ U (1), both W41 and W42 commute with it. Nevertheless, as stressed before, x1 and

y1 are not independent but constrained by a relation. Because of this, not all measuring bases can be

used to finally fulfill Alice’s task. In other words, only some specific bases are applicable, including those

occurring in items (1-3). In reality, one can conveniently take different measuring bases in terms of the

feasible state discrimination ability. Here we pick out another two discrete examples to demonstrate

that other measuring bases are also applicable:

|ξ′
41〉 = eiτ1 |~V (1/

√
3, e

2π
3
i/
√
3, e

4π
3
i/
√
3)〉, (46)

|ξ′
42〉 = eiτ2 |~V (1/

√
3, e

4π
3
i/
√
3, e

2π
3
i/
√
3)〉, (47)

W ′
41 = e−iτ1(|0〉〈0|+ e

4π
3
i|1〉〈1|+ e

2π
3
i|2〉〈2|)/

√
3, (48)

W ′
42 = e−iτ2(|0〉〈0|+ e

2π
3
i|1〉〈1|+ e

4π
3
i|2〉〈2|)/

√
3. (49)

|ξ′′
41〉 = eiτ1 |~V [(i/2, 1/2,−(1 + i)/2)]〉, (50)

|ξ′′
42〉 = eiτ2 |~V [(−2

√
3 +

√
3i)/6, (−2

√
3i+

√
3)/6, (

√
3 +

√
3i)/6]〉, (51)

W ′′
41 = e−iτ1(−i|0〉〈0|+ |1〉〈1|+ (−1 + i)|2〉〈2|)/2, (52)

W ′′
42 = e−iτ2 [(−2

√
3−

√
3i)|0〉〈0|+ (2

√
3i+

√
3)|1〉〈1|+ (

√
3−

√
3i)|2〉〈2|]/6. (53)

4 Comparisons and discussions

Now let us move to compare our schemes from the following four aspects: the resource consumption

consisting of its classical and quantum parts, the necessary-operation complexity including its difficulty

and intensity, the scheme success probability and the intrinsic efficiency of the scheme. We have already

summarized the two schemes in Table 1 with respect to the four aspects. The intrinsic efficiency of any

single-qutrit operation sharing scheme reads

η =
P

Qt + Ct

, (54)

where Qt is the number of the qutrits which are used as quantum channels (except for those chosen for

security checking), Ct is the classical trits transmitted and P is the final success probability.

Table 1. Comparisons between our two schemes S1 and S2. QRC: quantum resource con-

sumption; NO: necessary operations; CRC: classical resource consumption; GB: generalized

Bell state; GG: generalized GHZ state; GM: generalized Bell-state measurement; SM: single-

qutrit measurement; SO: single-qutrit unitary operation. Note that, in the text the two

single-qutrit operations on c are used for the sake of convenient expressions. Because they

can be commuted with other operations on other qutrits, they can be incorporated as one.

S U QRC NO CRC P η

S1 arbitrary GB, GG 2 GMs, SM, 2 SOs 5 ctrits 1 1/10

S2 arbitrary 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 1/3 1/24

S2 U (34\12) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 2/3 1/12

S2 U (67\15) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 2/3 1/12

S2 U (910\18) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 2/3 1/12

S2 U (12) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 1 1/8

S2 U (15) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 1 1/8

S2 U (18) 2 GBs V , GM, 2 SMs, 3 SOs 4 ctrits 1 1/8

Obviously, one can see that the general scheme (i.e., S1) is a deterministic one, that is, Alice’s task can

be achieved with unit probability. As can be seen from the first line of the table. As a matter of fact, the
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first scheme is essentially an ordering incorporation of three processes, i.e., QST and Alice’s operation

performance as well as QSTS. Although it looks like a trivial one, it actually offers an upper limit of

resource consumptions and shows the complexity of necessary operations in accomplishing the quantum

task. Specifically, in the scheme two units of entanglements and five trits of the classical communication

cost are indispensable, the necessary operations are two generalized Bell-state measurements and two

single-qutrit unitary operations as well as a single-qutrit measurement, the intrinsic efficiency of the

scheme is 1/10. The distinct feature of this scheme is its universality for sharing any single-qutrit

operation in a deterministic manner. All these can be taken as a useful frame of reference for some

other optimal schemes which might be proposed later aiming at some special considerations.

In our second scheme, the quantum channels are changed by instituting the generalized GHZ state with

the generalized Bell state. Very intuitively, the quantum resource consumption is decreased. Moreover,

the classical resource consumption is also reduced, too. All these can be seen from the table by inspecting

the third and fifth columns of the the schemes S1 and S2. Nonetheless, the second scheme can not be

simply decomposed as the three processes mentioned in the last paragraph anymore. This essential

change will bring some variance, as will be see later.

As far as the sharing of any single-qutrit operation is concerned, besides the common advantages men-

tioned in the last paragraph, the quantum operation complexity in the second scheme is also apparently

simplified. Note that, generally speaking, the complexity of a generalized Bell-state measurement can

be decomposed into a series of ordering two-qutrit control operation and a single single-qutrit operation

as well as two single-qutrit measurements. Hence its implementation difficulty is approximately equal

to that of the operation V and a single-qutrit operation as well as two single-qutrit measurements. All

these advantages can be seen from the second line contrasting to the first one in the table. However,

the cost of these resultant advantages is also very clear. It is obvious that in the second scheme both

the scheme success probability and its intrinsic efficiency are much smaller than those in the first one.

Evidentally, these two indicators mentioned just are violently decreased. The scheme S2 becomes a

probabilistic one.

As for sharing the restricted sets of operations, two cases in the second scheme are grouped. One

considers the restricted sets listed in the second column of the third, fourth and fifth lines in the table,

i.e., U (34\12), U (67\15) and U (910\18). The other treats the restricted sets shown in the second column

of the last three in the table, namely, U (12), U (15) and U (18). With a priori knowledge on these sets

(only on the sets themselves, not the detailed information of the elements in the sets), contrasting to

the sharing an arbitrary operation, one can easily find that in the former case both the scheme success

probability and the intrinsic efficiency are doubled while in the latter the two indicators are tripled. We

have mentioned before that the scheme S2 has become a probabilistic one after the quantum channel

change. In the present former case on restricted sets, The scheme remains probabilistic. However, in the

latter case, an essential variance happens, i.e., the scheme has already changed to be a deterministic one.

Alternatively, the scheme success probability has been increased to 1. In this situation, it is intriguing to

compare the specific scheme S2 in this case with the general scheme S1. They both have the unit success

probability. Nonetheless, with the priori knowledge on the restricted sets, S2 completely overwhelms

S1 in all the four aspects of quantum resource consumption, classical resource consumption, difficulty

and intensity of necessary operations, and the intrinsic efficiency. In this sense, one can think that S2

is more optimal with the precondition of the priori knowledge.

At last, we want to briefly point out that the present schemes are actually the generalization of

the ZC schemes from the aspect of particle degrees. The former is a qutrit one while the latter is a

qubit one. In the ZC scheme on restricted sets, there only exist two kinds of success probabilities

(1/2 or 1), and the success probability 1/2 corresponds to the universal applicability while the unit

probability to the successful application to two restricted sets of unitary operations. After the degree

extension, the results become more abundant. Easily one can see that more restricted sets occur and

more possibilities appear. Our present qutrit schemes actually contains the ZC schemes. Alternatively,

the present schemes can be reduced to the ZC schemes, as can be easily seen from the restricted sets.

In the case of the unit success probability, if one degree is frozen, the restricted sets U (12), U (15) and

U (18) can be easily reduced to the diagonal or anti-diagonal sets in the ZC scheme.
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5 Summary

To summarize, in this paper we have actually considered the shared remote control in the form of

quantum operation sharing on a single-qutrit state. By integrating the ideas of quantum operation

teleportation and quantum secret sharing, we have presented two possible schemes. The first scheme is

universally applicable for any arbitrary single-qutrit unitary operation. The second scheme is generally

a probabilistic one. However, after intensive investigations we have found that, if the operation U
in question is known to belong to some restricted sets, both the scheme success probability and its

efficiency can be doubled or even tripled. We have concretely compared the schemes in different cases

from the four aspects of quantum and classical resource consumption, necessary-operation complexity,

success probability and efficiency. In the tripled case the latter scheme becomes a deterministic one

and is more optimal than the general scheme.
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[2] Bennett, C.H., Brassard, G., Crépeau, C. Phys. Rev. Lett. 70, 1895 (1993)

[3] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A. Nature 390, 575

(1997)

[4] Deng, F.G., Long, G.L., Liu, X.S. Phys. Rev. A 68, 042317 2003

[5] Cheung, C.Y., Zhang, Z.J. Phys. Rev. A 80, 022327 (2009)

[6] Lo, H.K. Phys. Rev. A 62, 012313 (2000)

[7] Huelga, S.F., Vaccaro, J.A., Chefles, A. Phys. Rev. A 63, 042303 (2001)

[8] Huelga, S.F., Plenio, M.B., Vaccaro, J.A. Phys. Rev. A 65, 042316 (2002)

[9] Hillery, M., Buzk, V., Berthiaume, A. Phys. Rev. A 59, 1829 (1999)

[10] Cleve, R., Gottesman, D., Lo, H.K. Phys. Rev. Lett. 82, 648 (1999)

[11] Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K. Phys. Rev. Lett. 92, 177903

(2005)

[12] Zhang, Z.J., Man, Z.X., Li, Y.: Phys. Rev. A 71, 044301 (2005)

[13] Zhang, Z.J., Man, Z.X. Phys. Rev. A 72, 022303 (2005)

[14] Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J. Phys. Rev. A 72, 044302 (2005)

[15] Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H. Phys. Rev. Lett. 98, 020503 (2007)

[16] Muralidharan, S., Panigrahi, P.K. Phys. Rev. A 77, 032321 (2008)

[17] Muralidharan, S., Panigrahi, P.K. Phys. Rev. A 78, 062333 (2008)

[18] Muralidharan, S., Jain, S., Panigrahi, P.K. Opt. Commun. 284, 1082 (2011)

[19] Choudhury, S., Muralidharan, S., Panigrahi, P.K. J. Phys. A 42, 115303 (2009)

[20] Saha, D., Panigrahi, P.K. Quantum Inf. Process. 11, 615 (2012)

[21] Deng, F.G., Long, G.L. Phys. Rev. A 69, 052319 (2004)

[22] Zhang, Z.J., Liu, J., Wang, D., Shi, S.H. Phys. Rev. A 75, 026301 (2007)

[23] Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S. Phys. Rev. A 73, 022338 (2006)

[24] Nielsen, M.A. Phys. Rev. Lett. 93, 040503 (2004)

[25] Briegel, H.J., Raussendorf, R. Phys. Rev. Lett. 86, 910 (2001)

[26] Zhang, Z.J., Cheung, C.Y. J. Phys. B 44, 165508 (2011)

[27] Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J. Chin. Phys. Lett. 30, 020301 (2013)

[28] Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S. Zhang, Z.J. Quantum Inf. Process. (in press)

[29] Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J. Quantum Inf. Process. (in press)

[30] Giampaolo, S.M., Illuminati, F. Phys. Rev. A 76, 042301 (2007)



11
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