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Quantum discord in spin systems with dipole-dipole interaction
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The behavior of total purely quantum correlation (discord) in dimers consisting of dipolar-coupled
spins 1/2 is studied. We found that the discord Q = 0 at the absolute zero temperature. With
increasing the temperature T , at first the quantum correlations in the system increase, smoothly
reach the maximum, and then turn again into zero according to the asymptotic law T−2. It is also
shown that in absence of external magnetic field B, the classical correlation C at T → 0 is, vice versa,
maximal. Our calculations predict that in crystalline gypsum CaSO4 · 2H2O the value of natural
(B = 0) quantum discord between nuclear spins of hydrogen atoms is maximal at the temperature
of 0.644 µK, and for 1,2-dichloroethane H2ClC − CH2Cl the discord achieves the largest value at
T = 0.517 µK. In both cases, the discord equals Q ≈ 0.083 bit/dimer what is 8.3% of its upper limit
in two-qubit systems. We estimate also that for gypsum at room temperature Q ∼ 10−18 bit/dimer,
and for 1,2-dichloroethane at T = 90 K the discord is Q ∼ 10−17 bit per a dimer.

PACS numbers: 03.65.Ud, 03.67.Mn, 75.10.Jm, 75.50.Xx

I. INTRODUCTION

The notion quantum discord has been intro-
duced in the quantum information theory by
Zurek1. Discord was regarded as “a measure
of a violation of classicality of a joint state of
two quantum subsystems”1. However later its
initial definition undergone some changes.
In 2001, Henderson and Vedral and then in-

dependent of them Ollivier and Zurek in their
papers2,3 (see also4,5) performed analysis of ev-
ery possible correlations I in a bipartite system
and suggested the ways to extract from them,
on the one hand, the purely classical part C
and, on the other hand, only the quantum con-
tribution Q. The quantum excess of correla-
tions, Q = I − C, has been called “discord” —
in the modern understanding of this term3.
The authors of above papers established also

that the quantum correlation can be non-zero
even in separable (but mixed) states. In other
words, quantum correlations are not exhausted
by entanglement (E). Entanglement, which
can relate the different parts of a system even
when there are no interactions between these
parts (the Einstein-Podolsky-Rosen effect), is
only a special kind of quantum correlations.
Since the 80–90s of past century the entangle-
ment was considered as a fundamental resource
for quantum information processing, teleporta-
tion, cryptography, metrology, and other tasks
in quantum technology6–10.
It is remarkable that quantum discord can

also lead to a speedup over classical compu-
tation and lead even without containing much
entanglement11,12. This important property
of discord evoked extremely great interest to

the new kind of correlations. One discovered
also that discord can detect the quantum phase
transitions13,14. Moreover, it has been shown
that in contrast to entanglement and thermo-
dynamical quantities, the discord makes it pos-
sible to catch the approach of quantum phase
transitions even at finite temperatures15. Other
important features of discord have been also
noted. By this, a surprising fact turned out:
“Almost all quantum states have nonclassical
correlations”16. Achieved up to now results on
the theory and applications of quantum discord
are given in the recent reviews17,18.

The goal of this paper is to study the be-
havior of discord in spin systems with dipo-
lar couplings. There is a large number of sub-
stances magnetic interactions in which have the
dipole-dipole character, and exchange and indi-
rect ones are weak enough. By this, the spins
both electrons and nuclears can serve as ele-
mentary magnetic moments. The class of dipo-
lar magnets with electron spins includes, for ex-
ample, the Tutton salts, alums19, and numer-
ous salts of rare earth elements20. The typi-
cal temperatures at which the effects of their
dipole interactions show themselves lie in the
millikelvin region. However the spin-lattice in-
teractions in electron paramagnets are strong
that leads to short relaxation times too. Nu-
clear spins, of course, have an indubitable asset:
the spin-lattice relaxation times for them can
achieve minutes and hours. Using the available
NMR data for the two classical examples, gyp-
sum CaSO4 · 2H2O

21 and 1,2-dichloroethane
H2ClC− CH2Cl

22 (see also, e.g.,23,24) which
contain the sufficiently isolated pairs of dipolar-
coupled nuclear hydrogen spins, we estimate
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the discord between these spins.
In following sections of the paper we give

definitions for the different correlations, formu-
late the model, calculate the classical and quan-
tum information correlations in it, estimate the
discord for materials with spin-nuclear dimers,
and, lastly, briefly summarize the results ob-
tained.

II. CLASSICAL AND QUANTUM

CORRELATIONS

In statistical theory, a degree of relationship
(correlation) between two random variables x
and y with the joint probability distribution
function p(x, y) is often measured by covaria-
tions or by Pearson’s correlation coefficient

R =
(x− x)(y − y)√

D1

√
D2

. (1)

Here the bar denotes the average over the prob-
ability distribution and D1 = (x− x)2 and

D2 = (y − y)2 are dispersions respectively for x
and y. Notice that in the mathematical statis-
tics other types of correlation coefficients are
used also. One should emphasize that the con-
dition R = 0 does not imply, generally speak-
ing, the independence of random variables, i. e.,
that p(x, y) = p1(x)p2(y)

25,26.
In the classical information theory

(e. g.,27,28), one uses the notion of mutual
information

I(X : Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0 (2)

between two objects X Y . Here H(X), H(Y ),
and H(X,Y ) are the Shannon entropies

H(X) = −
∑

x

p1(x) log p1(x),

H(Y ) = −
∑

y

p2(y) log p2(y),

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y), (3)

where p1(x) =
∑

y p(x, y), p2(y) =
∑

x p(x, y).

(A choose of logarithm base defines the infor-
mation measure unities: bits, nats, dits, hart-
ley.) It is remarkable that now the equality
I = 0 is a necessary and sufficient condition
for the independence of X and Y . This prop-
erty allows to use the mutual information as a
measure of information correlation between the
systems X and Y 25.

Taking into account the Bayes rule one can
rewrite the right part of Eq. (2) in Shannon’s
nonsymmetric form

I ′(X : Y ) = H(X)−H(X |Y ), (4)

where

H(X |Y ) = H(X,Y )−H(Y ) (5)

is the condition entropy. In the classical case,
I ′ ≡ I.
In the quantum information theory6,29, the

equation (2) is replaced by the new definition

I(A : B) = S(ρA) + S(ρB)− S(ρAB), (6)

which serves as a measure of quantum mutual
information between the two subsystems A and
B composing together the joint system AB =
A∪B. In Eq. (6), ρAB is the density matrix of
the joint system AB, ρA and ρB are the reduced
density matrices, respectively, for subsystems
A and B, and S(ρ) (ρ = {ρA, ρB, ρAB}) repre-
sents the von Neumann entropy

S(ρ) = −Tr ρ log ρ. (7)

It is important that I = 0 is the necessary and
sufficient condition for the factorization ρAB =
ρA ⊗ ρB, what means, of course, the absolute
independence (non-correlativety) of A and B in
the product state. Therefore, in the quantum
information theory, one takes the mutual infor-
mation to measure the total (both classical and
quantum) correlations between the two subsys-
tems of bipartite quantum system.
On the other hand, measurements performed

on one system, in general, influence on the
quantum state of another system (see, for
instance,30). Postulating that the total classi-
cal part of correlations is the maximal amount
of information about one subsystem, say A,
that can be extracted by performing a measure-
ment on the other subsystem B, Henderson and
Vedral2 suggested to take as a measure of clas-
sical correlation the quantity

C(ρAB) = max
{Bi}

{S(ρA)−
∑

i

piS(ρ
i
A)}. (8)

Here {Bi} is a complete set of measurements
on the subsystem B,

ρiA = TrB(BiρABB
+
i )/TrAB(BiρABB

+
i ) (9)

is the remaining state of A after obtaining the
outcome i on B, and

pi = TrAB(BiρABB
+
i ) (10)
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is the probability to detect the result i.
Ollivier and Zurek3, on the contrary, focused

their attention on an extraction of quantum
correlations. Further analysis of the measure-
ments led to the generalization of expression (4)
for the quantum case,

I ′(A : B) = S(ρA)−
∑

i

piS(ρ
i
A). (11)

(It is obvious that the right hand of this equal-
ity is a non-optimized classical correlation of
Henderson and Vedral.) In the paper3, themin-

imal difference I − I ′ ≡ Q has been identified
with an amount of quantum correlation and has
been called the quantum discord — a measure
of the quantum excess of correlations, a mea-
sure of the quantumness of correlations. Taking
into account that

I = C +Q, (12)

we see the equivalentness of results of
Henderson-Vedral and Ollivier-Zurek.
Quantum discord displays a number of prop-

erties (see, e. g., the reviews17,18). We note be-
tween them the following ones. For a pure state,
discord coincides with the entanglement E. In
mixed states, the quantum correlation (discord)
can present even in that case when the entan-
glement is absent. Quantum discord Q ≥ 0.
Discord is limited from above by the entropy of
one subsystem, Q ≤ S(ρA(B)). In particular, if
the system is two-qubit and the logarithm base
for entropy equals two then Q ≤ 1.

III. HAMILTONIAN AND DENSITY

MATRIX

Consider a system consisting of two identical
particles with the spins 1/2 which couple be-
tween themselves by the magnetic dipole-dipole
interaction. Let moreover, the external homo-
geneous magnetic field with induction B was
applied to the system. Then the Hamiltonian
of a model can be written as (see, e. g.,6)

H = Hdd +HZ , (13)

where the dipolar part is

Hdd =
µ0

4π

γ2
~
2

4r3
[σ1σ2 − 3(n · σ1)(n · σ2)] (14)

and the Zeeman energy equals

HZ = −1

2
γ~(σ1 + σ2)B. (15)

In these equations, µ0 is the magnetic constant
(magnetic permeability of free space), γ is the
gyromagnetic ratio, σ1,2 are the vectors of Pauli
matrices at the sites 1 and 2, r is the distance
between the spins in a dimer, n is the unit vec-
tor in the direction from one spin to the other,
and B is the vector of magnetic field induction.
The dipole-dipole interaction reflects the exact
law (in that sense that it does not contain the
fitting parameters), the interaction is sharply
anisotropic and long-acting (in contrast, say, to
the exchange interaction).

In the spherical coordinates when B =
(0, 0, B) and n = (sin θ, 0, cos θ), the Hamilto-
nian (13) – (15) takes the form

H =
µ0

4π

γ2
~
2

4r3
[σ1σ2 − 3(σx

1 sin θ + σz
1 sin θ)

×(σx
2 sin θ + σy

2 sin θ)]−
1

2
γ~B(σz

1 + σz
2).

(16)

It has been shown31 that when the polar angle
θ = π

2 (the external field is applied perpendicu-
larly to the direction of dimer longitudinal axis
the entanglement in the system is maximal. On
the contrary, when θ = 0 or π (the longitudinal
dimer axis is parallel to the external field) the
entanglement between spins is absent (below we
prove this strongly/exactly).

Because the special interest is to discover and
investigate the quantum correlations without
entanglement, we will consider from this point
the case θ = 0. By this, the Hamiltonian (16)
takes the form

H =
1

2
D(σx

1σ
x
2 +σy

1σ
y
2 +∆σz

1σ
z
2)−

1

2
h(σz

1 +σz
2),

(17)
where the dipolar coupling constant equals

D =
µ0

4π

γ2
~
2

2r3
(18)

and the normalized external field is

h = γ~B. (19)

In dipole-dipole coupled dimer, the anisotropy
parameter is ∆ = −2. However, below we will,
in some cases for the sake of generality, extend
the values of ∆. But all graphical and nu-
merical material in our paper is presented for
∆ = −2.

The Hamiltonian (17) corresponds to the
XXZ model in Z field. In the matrix forn, it
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is given as

H =









∆
2 D − h

−∆
2 D D
D −∆

2 D
∆
2 D + h









.

(20)
The 2 × 2 subblock presented here is a cen-
trosymmetric matrix which under the orthog-
onal transformation

O =
1√
2

(

1 1
1 −1

)

(21)

undegoes in diagonal form.
The energy spectrum of the Hamiltonian (20)

with condition ∆ = −2 consists of two indepen-
dent on external field levels

E1 = 2D, E2 = 0 (22)

and two levels

E3,4 = −D ± h. (23)

Because D > 0, the ground state energy is

E0 = −D + |h|. (24)

In absence of external field, the ground state is
two-fold degenerate.
We will consider the dimer in a termal equi-

librium state. In this case, its density matrix
ρ ≡ ρAB has the Gibbs form

ρ =
1

Z
exp(−βH), (25)

where β = 1/kBT , kB is Boltzmann’s constant,
and Z is the partition function,

Z = Tr exp(−βH). (26)

Performing necessary calculations we find that
in the original (standard) basis |00〉, |01〉, |10〉
|11〉 the density matrix has the structure

ρ =







a
b v
v b

d






, (27)

where

a = 1
Z exp[−β(∆2 D − h)],

d = 1
Z exp[−β(∆2 D + h)],

b = 1
Z exp(β∆

2 D)chβD,

v = − 1
Z exp(β∆

2 D)shβD,

(28)

and partition function is

Z = 2(chβD + e−βD∆chβh)eβD∆/2. (29)

Expressions (28) satisfy the condition

a+ d+ 2b = 1, (30)

which provides the normalization Trρ = 1.
Expanding the density matrix (27) into pow-

ers of Pauli matrices we obtain it in the (nor-
mal) Bloch form

ρ =
1

4
[1 + (a− d)(σz

1 + σz
2) + 2v(σx

1σ
x
2 + σy

1σ
y
2 )

+(1− 4b)σz
1σ

z
2 ]. (31)

Expansion coefficients are the unary and binary
correlators,

m ≡ 〈σz
1〉 = 〈σz

1〉 = a− d =
2

Z
e−βD∆/2shβh,

(32)

G‖ ≡ 〈σz
1σ

z
2〉 = 1− 4b = 1− 4

Z
eβD∆/2chβD,

(33)

G⊥ ≡ 〈σx
1σ

x
2 〉 = 〈σy

1σ
y
2 〉 = 2v = − 2

Z
eβD∆/2shβD.

(34)
Brackets denote the trace operation for the
expression in brackets with density operator,
〈·〉 = Tr(·ρ). The coefficient a − d = m in the
expansion (31) is equal to the z components
(projections) of the Bloch vectors for the re-
duced density matrices of subsystems A and B.
Moreover, the quantities m, G‖, and G⊥ have a
physical sense, correspondingly, as the normal-
ized magnetization, longitudinal and transverse
components of correlation matrix. Relations

a =
1

4
(1 + 2m+G‖), b =

1

4
(1 −G‖),

v =
1

2
G⊥, d =

1

4
(1− 2m+G‖) (35)

give the expressions for the matrix elements of
the density operator (27) through the system
correlators.
From Eq. (32)–(34) we find the high temper-

ature behavior for the magnetization and cor-
relation functions,

m(T, h) =
1

2

h

kBT
− ∆

4

h

D

(

D

kBT

)2

+O(1/T 3),

(36)

G‖(T, h) = −∆

2

D

kBT
− 1

4

[

1−
(

h

D

)2
]

(

D

kBT

)2

+O(1/T 3), (37)
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G⊥(T, h) = −1

2

D

kBT
− ∆

4

(

D

kBT

)2

+
1

8

[1

3
+

(

h

D

)2
]

(

D

kBT

)3

+O

(

1

T 4

)

.

(38)

Thus, when T → ∞, the main contributions
to the correlators tend to zero according to the
law 1/T . By this, a weak external field does
not exercise an influence on the G‖ and G⊥.
Moreover, the leading term in the expansion of
the transverse correlator G⊥ does not depend
on the anisotropy ∆.
At lower temperature, the correlation func-

tions for the dipolar dimer (D > 0, ∆ = −2) in
absence of external field behave as

G‖|T→0 ≈ 1− exp(− D

kBT
), (39)

G⊥|T→0 ≈ −1

2
exp(− D

kBT
). (40)

If the field h 6= 0, the additional statistical
weights at the exponents arise (due to a change
of ground state of the system; see below),

G‖|T→0 ≈ 1− 2 exp(− D

kBT
), (41)

G⊥|T→0 ≈ − exp(− D

kBT
). (42)

Thus, the lower temperature behavior of cor-
relators is described by a function of the form
e−1/x.

IV. QUANTUM ENTANGLEMENT

The entanglement through the relation

E = −1 +
√

1− C̃2

2
log2

(

1 +
√

1− C̃2

2

)

−1−
√

1− C̃2

2
log2

(

1−
√

1− C̃2

2

)

(43)

is expressed via the concurrence C̃32,33.
In the case of density matrix having the

block-diagonal form

ρ =







u1

x1 w
w∗ x2

u2






, (44)

the equation34

C̃ = 2max{|w| − √
u1u2, 0} (45)

serves for calculation of concurrence. The
expression (45) is a particular case of Hill-
Wootters formula32,33 which allows to calculate
the pairwise concurrence in general two-qubit
system.
Our density matrix (27) has the form of

Eq. (44). Using Eqs. (28) we find that

|w| − √
u1u2 = −v −

√
ad ≤ 0, (46)

if ∆ ≤ −1. This inequality is valid for arbi-
trary external field B. Hence, the concurrence
(45) and together with it the entanglement (43)
are equal identically to zero. So, in the dipole-
dipole (∆ = −2) dimer under question, the
quantum entanglement is absent for all tem-
peratures and arbitrary longitudinal fields.

V. INFORMATION CORRELATIONS

In this section, we give a calculation of in-
formation correlations in dipolar dimer both in
and out magnetic field.

A. Arbitrary external field

Discord in a system with the density matrix
having the structure (27) equals35,36

Q = min{Q1, Q2}, (47)

where

Q1 = SA − SAB − a log2

(

a

a+ b

)

−b log2

(

b

a+ b

)

− b log2

(

b

b+ d

)

−d log2

(

d

b+ d

)

, (48)

Q2 = SA − SAB − δ1 log2δ1 − δ2 log2δ2, (49)

and

δ1,2 =
1

2
[1± ((a− d)2 + 4v2)1/2]. (50)

In equations (48) and (49),

SA = −(a+ b) log2(a+ b)− (b + d) log2(b+ d)
(51)
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is the von Neumann entropy of reduced density
matrix ρA and

SAB = −a log2a− d log2d− (b+ v) log2(b+ v)

−(b− v) log2(b − v) (52)

equals the von Neumann entropy for the density
matrix ρ of full system.
The total correlation is I = 2SA − SAB, and

classical one C = I − Q. These relations and
also (47)–(52) together with Eqs. (28) and (29)
define the quantum discord, classical, and to-
tal correlations as functions of the temperature
and external magnetic field by arbitrary values
of parameters D and ∆.
At high temperatures,

Q1 =
1

4 ln 2

(

D

kBT

)2

+
∆

8 ln 2

(

D

kBT

)3

+O(1/T 4),

(53)

Q2 =
1

8 ln 2
(1+∆2)

(

D

kBT

)2

+O(1/T 3). (54)

Thus, the main terms of these expressions do
not depend on the external magnetic field.
From the relations (53) and (54), one can see
that by |∆| > 1 the discord, according to
Eq. (47), is defined by the branch Q1. Hence,
when ∆ > 1 or ∆ < −1, the quantum discord
by high temperatures behaves as

Q|T→∞ ≈ 1

4 ln 2

1

(kBT/D)2
. (55)

Thus, it does not depend on both external mag-
netic field or interaction anisotropy ∆. With
increasing the temperature, the quantum cor-
relations decrease according to the law 1/T 2,
i. e., essentially rapidly than ordinary statisti-
cal correlations which, how it can was empha-
sized above, tend to zero according to the law
1/T .
From equations presented above, we estab-

lish also that by high temperatures the classical
correlation is

C|T→∞ ≈ ∆2

8 ln 2

1

(kBT/D)2
(56)

and does not depend on external field.

B. Dimer in absence of external field

In important particular case of zero external
field, the information correlations can be calcu-
lated via the simpler formulas37. In absence of

Figure 1: Quantum discord in dipolar system
(∆ = −2) as a function of temperature and ex-
ternal longitudinal magnetic field.

field, a = d and SA = SB = 1. Besides, using
expressions (33) and (34), it is not difficult to
establish that by ∆ < −1 one has G‖ ≥ |G⊥|
(below this will be seen in graphics). Therefore,
in absence of magnetic field, the classical part
of mutual correlations is

C =
1

2
[(1+G‖|)log2(1+G‖|)+(1−G‖|)log2(1−G‖|),

(57)
and the quantum discord equals

Q =
1

4
[(1 + 2G⊥ −G‖)log2(1 + 2G⊥ −G‖)

−2(1−G‖)log2(1−G‖) + (1− 2G⊥ −G‖) ·
log2(1− 2G⊥ −G‖)]. (58)

How can one see from Eq. (57), the classical
correlation is completely determined by the lon-
gitudinal correlator G‖. Using expressions for
the correlation functions (33), (34) and setting
h = 0 in them, we get the following formula for
the discord,

Q(T ) =
D

kBT sh
D

kBT − ch D
kBT ln[ch D

kBT ]

(ch( D
kBT ) + exp(− D∆

kBT )) ln(2)
.

(59)

For a dipolar dimer (D > 0, ∆ = −2) in zero
field and at lower temperatures, we have

Q|T→0 ≈ 1

2
exp (−D/kBT ). (60)

Arbitrary order derivatives with respect to the
temperature for the function in the right hand
of this equation is zero at T = 0. Therefore, by
small deviation of temperature from absolute
zero, Q ≈ 0. This is connected with existence
of a gap in the energy spectrum of the system.
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Figure 2: Isolines of quantum discord in dipolar
system (∆ = −2).

VI. DISCUSSION

A behaviour of quantum discord in the
dipole-dipole system under question (∆ = −2)
is shown in Fig. 1. We see the smooth hill-like
surface stretched in the temperature axis direc-
tion. Along a straight line h = 0, two ridges
go; one ridge goes in the direction of tempera-
ture decreasing and the other in the direction
of its increasing. The surface is symmetrical
under reflection in vertical plane going through
the hill top and the straight line h = 0 in the
temperature-field plane. By given temperature,
the discord is maximal in absence of external
magnetic field, that is, the field leads only to a
suppression of quantum correlation. At the ab-
solute zero temperature, the discord in dimer is
identically equal to zero. In the high tempera-
ture limit, quantum correlation is also vanished.
In Fig. 2, the cross sections (profiles) of a dis-
cord surface are shown by different values of Q.
It is seen that the isolines form a set of non-
crossing ovals.

To study in detail the behavior of discord, we
represented in VI its temperature dependence
by different values of external field. The discord
reaches the largest value at h = 0 and

kBTm/D = 0.881 297 . . . . (61)

The discord in this point equals

Qm = 0.083 061 . . . . (62)

what is 8.3% of maximal value which is possi-
ble in any two-qubit system. The value (61), we
have found both by a numerical search of max-
imum for the function Q of kBT/D and from

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3

Q

kBT/D

∆ = −2

h/D = 0

1

2

Figure 3: Discord isoterms by different values of
external field.

solution of transcendental equation

x(e∆·x+chx+∆·shx) = (shx+∆·chx) ln(chx),
(63)

where x = D/kBT . This equation follows from
the condition ∂Q/∂T = 0 in which the function
Q(T ) is given by expression (59).

One can see from Fig. 3 that, with increasing
the field, the discord maximum is moved in the
direction of higher temperatures. This is a good
feature. However by this the value of discord at
the maximum is less than its value at the same
temperature in absence of external field.

We see also that with the help of external
field and temperature (these parameters are in
our hands), one can control the discord varying
its value from zero to 0.083 bit per a dimer.

Let us consider the case when the dipolar
dimer is in absence of external field. The tem-
perature dependences of ordinary spin-spin cor-
relation functions G‖ and |G⊥| (G⊥ ≤ 0, there-
fore its absolute value is taken), as well as total
classical correlation C and discord Q are pre-
sented in Fig. 4. At zero temperature, both
longitudinal and total classical correlation are
equal to their maximal magnitudes. The tem-
perature increasing leads only to their decrease.
Both the value of transverse correlation |G⊥|
and quantum discord are zero at T = 0.

To clarify the situation in correlation behav-
ior at zero, we consider the limit of density ma-
trix (27) when T → 0. Using the expressions
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Figure 4: Temperature behavior of statistical (G‖

and |G⊥|), classical (C), and quantum (Q) correla-
tions in absence of magnetic field.

for its matrix elements (28) one finds

ρ|T=0 =







1/2
0

0
1/2






. (64)

This matrix has the expansion

ρ =
1

2
(|0〉〈0|A⊗|0〉〈0|B+|1〉〈1|A⊗|1〉〈1|B, (65)

i. e., it is a sum of the direct products of sepa-
rate particles. Such state belongs to the class of
purely classical ones38 and therefore, according
to the criteria39, all quantum correlations in it
are entirely absent. This explains that we ob-
tained Q|T=0 = 0. On the other hand, classical
correlations are available and equal the total
correlations C = I.
So the behavior of system at T = 0 is purely

classical. However, with increasing the tem-
perature, the behavior acquires the quantum
features, i. e., the temperature leads to the
generation of quantum correlations. Such un-
usual phenomenon (it is much ordinary when
the temperature destroys the quantum states)
one can explain by following. In the Hamil-
tonian (17) with ∆ < −1, the purely classical
ferromagnetic contribution

Hzz = ∆Dσz
1σ

z
2 (66)

is dominate at lower temperatures. The trans-
verse components of spins are actually “frozen”

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

kBT/D

CORRELATIONS

∆ = −2

h/D = 0.1
G‖

C

|G⊥|

Q

Figure 5: The same as in Fig. 4 but in presence of
a field.

(the value G⊥ = 0 witnesses this). With in-
creasing the temperature these degrees of free-
dom “revive” and the system from classical be-
comes a quantum one. But when the temper-
ature fluctuations begin to exceed the system
energy gap, the temperature produces its usual
destroying action and the correlations go down
to non.
From Fig. 4 and asymptotical behavior of

correlations, it is not difficult to notice a corre-
spondence in qualitative behavior, on the one
hand, C and G2

‖ and, on the other hand, Q and

G2
⊥. The latter correspondence is not an ac-

cident. Indeed, if the quantum correlation is
measured by geometrical discord Qg, i. e., by a
distance (in sense of the Hilbert-Schmidt norm)
from the given state ρ to the nearest classical
one, the general formula39,40 applied to the den-
sity matrix (31) by an absence of external field
yields

Qg = G2
⊥. (67)

Consider now the situation in a presence of
external magnetic field. In Fig. 5, the behavior
of different correlations is again shown but for
h/D = 0.1. It is seen that correlations G‖, G⊥,
and Q were changed weakly. But the behavior
of classical correlation C undergoes an essential
change — it tends now to zero when T → 0. At
the point of absolute zero temperature, there
are no any correlations in the system at all.
To understand a happening, we turn out

again to the density matrix. The matrix (27)
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in the limit T → 0 is equal now to both

ρ|T=0 =







1
0

0
0






, (68)

if h > 0 or

ρ|T=0 =







0
0

0
1






, (69)

if h < 0. These states correspond to the com-
pletely orderings of spins along the field. Both
matrices (68) and (69) are factorized into a di-
rect product of two density matrices 2× 2,







1
0

0
0






=

(

1 0
0 0

)

⊗
(

1 0
0 0

)

,







0
0

0
1






=

(

0 0
0 1

)

⊗
(

0 0
0 1

)

.(70)

This means that the states (68) and (69) are
completely uncorrelated and therefore any cor-
relations are absent in them.
Emphasize that G‖ 6= 0 at T = 0 does not

contradict to the said above. In the factorized
state must be zero only the centered correlator.
By h 6= 0, the spins at the point of absolute
zero temperature are ordered and therefore

〈(σz
1 − 〈σz

1〉)(σz
2 − 〈σz

2〉)〉 = 0. (71)

Thus, any statistical relation between spins is
also absent.

Fig. 6 shows the behavior of classical corre-
lation C upon the external field. The curves
have the form of bell-like splashes. Their largest
value is arrived at in the point when the field
vanishes. With decreasing the temperature, the
maximums become more narrow and their value
tends to the value C = 1. At T = 0, a splash
becomes infinitely thin,

C =

{

1, h = 0

0, h 6= 0
. (72)

The external field sweeping will on a moment
lead to a spasmodic jump appearance of classi-
cal correlation and at the same time to a disap-
pearance of this correlation by going the field
of the zero point. By this, the quantum corre-
lation in the system does not arise.

Let’s turn to the available experimental data.
Measurements performed by the nuclear mag-
netic resonance (NMR) at room temperature
show that in gypsum crystals CaSO4 · 2H2O
the distance between protons in each water
molecule is r = 0.158 nm21 (see also, e. g.,
the book23). For protons, the gyromagnetic
ratio, as it is known24, equals γ = 2.675 ·
108 rad/(c·T), therefore the dipole-dipole cou-
pling constant (18) in gypsum is D/kB =
0.73 µK (in temperature units). Consequently,
in accord with (61), the maximum discord value
Qmax = 0.083 will arrive at the temperature
0.64 µK. At room temperature (T = 300),
the discord in gypsum, according to (55), must
be equal to Q ∼ 2 · 10−18. In spite of ex-
tremely small value of quantum correlations in
spin-nuclear systems at room temperatures, at
present the attempts are undertaken to detect
their by NMR methods41–44.

As an another example, let us consider 1,2-
dichloroethane ClH2C− CH2Cl. In this com-
pound, two protons at each carbon atoms are
coupled much stronger between themselves by
dipole-dipole interaction than with protons be-
long to an other carbon atom. NMR mea-
surements performed on solid dichloroethane at
the temperature 90 K have shown that here
r = 0.17(2) nm22 (see also23,24). Using again
the relations (18) and (61), we estimate the
temperature for the discord maximum in this
substance as Tm = 0.517 µK. At the temper-
ature 90 K, the value of quantum correlations
must equal Q ∼ 1.5 · 10−17.
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VII. CONCLUSIONS

In the paper, a study of information correla-
tions in dipolar dimers both in absence of exter-
nal magnetic field and in the field directed along
the longitudinal axis of a dimer has been per-
formed. It bas been shown that the quantum
correlations are completely absent at the ab-
solute zero temperature and arbitrary strength
of magnetic field but they arise with increasing
the temperature. We proposed an interpreta-
tion such of phenomenon.
In the high temperature region, the discord

obeys the law

Q ∼ G2
⊥ ∼ 1/(kBT/D)2.

This, in particular, means that at room, ni-
trogen, or helium temperatures, the non-zero
quantities of spin-spin correlations between the
xx or yy spin components can serve as a witness
of quantum correlations. The spin-spin correla-
tions go down with increasing the temperature
according to the essentially slow law T−1 and
one can directly measure them, for example, in
scattering experiments.

It was shown also that the classical correla-
tions have a sharp maximum in the point of
zero external magnetic field when T → 0.
A qualitative analogy between the quantum

discord and the squared correlatorG⊥ has been
found. In supporting this observation, it was
shown that the geometrical discord equalsQg =
G2

⊥.
In the paper, the estimates for the thermal

quantum discord between spins of hydrogen nu-
cleous 1H in gypsum and 1,2-dichloroethane
have been done.
Our investigation can be extended to many-

nuclear clusters if to perform a density matrix
reduction for all spins except any two. Exper-
imental NMR data are available for clusters in
a form, for example, triangles, tetrahedron, lin-
ear magnetic structures, etc.,23,45,46.
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