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Abstract We present a general quantum circuit design for finding eigenval-
ues of non-unitary matrices on quantum computers using the iterative phase
estimation algorithm. In addition, we show how the method can be used for
the simulation of resonance states for quantum systems.
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1 Introduction

In the circuit model of quantum computation, a controlled quantum system,
considered to be a quantum computer, propagates from one state to another
through the application of a local propagator called a quantum gate. A given
algorithm, or computation, can be implemented on a quantum computer us-
ing a sequence of quantum gates. These gates can be represented by unitary
matrices in the computational basis. While this unitary representation is ade-
quate for many problems, it impedes application of quantum computing to new
problems, where computations can only be described through non-unitary ma-
trices. Furthermore, any attempt at approximation of these non-unitary parts
negatively impacts the accuracy of the results. For instance, the algorithm of
Harrow et. al [1] for solving linear systems of equations requires a non-unitary
quantum gate. The circuit designed for this algorithm [2] uses an approximated
gate for the non-unitary parts.
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Quantum algorithms are known to be more efficient than their classical
counterparts [3,4,5]. They often provide exponential efficiency gains for the
simulation of quantum systems [6,7]. The idea of making a computer compat-
ible, from the start, with the principles of quantum theory for simulations of
quantum systems was discussed in 1969 by Finkelstein [8]. Later in 1981, Feyn-
man [9] explained why it is impossible to simulate a quantum system using a
probabilistic classical computer. He also described a universal quantum com-
puter capable of simulating quantum physics. Since then, different algorithms
and quantum circuit designs have been proposed for the simulation of various
quantum systems – simulation of chemical dynamics [10,11,12], simulation
of sparse Hamiltonians [13], calculating the thermal rate constant [14], and
others [15,16,17,18]. Arguably, the most important one of these algorithms
is the phase estimation algorithm [6,19], used for finding the eigenvalues of
a given unitary matrix, or equivalently, the eigen-energies of the correspond-
ing quantum system. The algorithm has been applied in quantum chemistry
to obtain energies of molecular systems [20,21,22,23]. The algorithm has also
been demonstrated experimentally for the simulation of the hydrogen molecule
using photonic [24,25] and NMR quantum computers [16,26]. One of the pos-
tulates of quantum mechanics states that measurable quantities such as the
energy of stable atoms and molecules are real quantities and the operator that
represents them should be a Hermitian operator. Because the eigenvalues of
Hermitian operators are real, the expectation of any measurable quantity re-
lated to these eigenvalues is also real. However, it is almost impossible to obtain
the poles of the scattering matrix within the framework of the standard formal-
ism of the quantum mechanics, where we use only Hermitian operators. In the
non-Hermitian formalism, the poles of the scattering matrix can be directly
calculated from the complex eigenvalues of the non-Hermitian Hamiltonian
[27]. The simulation of non-Hermitian matrices in quantum theory requires
the simulation of non-unitary evolution matrices. However, quantum comput-
ers are based on the standard formalism; hence, computations are done using
unitary evolution operators.

It has been shown that a quantum circuit can be generalized to a non-
unitary circuit, whose constituents are non-unitary gates representing quan-
tum measurement. Furthermore, it is shown that a specific type of one-qubit
non-unitary gates, the controlled-NOT gate, and all one-qubit unitary gates
constitute a universal set of gates for the non-unitary quantum circuit with-
out the necessity of introducing ancilla qubits [28]. Recently, Wang et al. [29],
proposed a measurement-based quantum algorithm for finding eigenvalues of
non-unitary matrices. Their method draws on ideas from conventional phase
estimation algorithm, frequent measurement, and techniques in one-qubit state
tomography. They describe a bipartite system composed of two subsystems,
where the total Hamiltonian includes the Hamiltonians of each subsystem and
their interaction. They show that different non-unitary evolution matrices can
be constructed by performing sequential projective measurements on one of
these subsystem. In addition, they show that an eigenvalue of the constructed
matrix can be estimated within the phase estimation algorithm in two differ-
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ent ways: using the state tomography of a qubit or the measured quantum
Fourier transform with projective measurements to separately compute the
real and imaginary parts of the eigenvalue of the Hamiltonian. However, the
measurement described in their paper is a non-unitary process and, for this
reason, cannot be implemented deterministically. This is also an obstacle to di-
rectly applying their method for a given non-unitary matrix without knowing
the implementation of the subsystems forming the corresponding Hamilto-
nian matrix. Furthermore, the process of successive projective measurements
changes the state to a greater extent [30], which effects the accuracy of the
constructed non-unitary matrices, and hence the computed eigenvalues in the
proposed method. The success probability of the algorithm depends on the
success probabilities of the successive projective measurements in each step
of the algorithm, which may decrease exponentially. The sequential projective
measurements in every step of the phase estimation algorithm causes another
issue – the efficiency of the algorithm becomes dependent on the efficiency of
the implementations of the projective measurements.

In this paper, we introduce a systematic way of estimating the complex
eigenvalues of a general matrix using the standard iterative phase estimation
algorithm with a programmable circuit design [31]. The bit values of the phase
of the target eigenvalue is determined from the outcome of the measurement
on the phase qubit. Then, the statistics of the outcomes of the measurements
on the phase qubit are used to determine the absolute value of the eigenvalue.
Consequently, using the phase and the absolute value of the eigenvalue, the
complex eigenvalue of the non-unitary is determined. Because of the exact cir-
cuit design used for the simulation of a given non-unitary matrix, our method
produces very accurate results. The success probability of the algorithm
depends on the number of qubits needed in the ancilla, and de-
creases exponentially with size, in the case of dense matrices. Our
method can be used as a general circuit equivalent for any non-unitary matrix.
We also present the application of our method to an example of non-Hermitian
Hamiltonians. Since the proposed circuit design is universal, it can be used to
estimate the eigenvalues of any given system.

In the following sections, we first explain and verify the universal circuit
described in ref.[31]. We then explain how to use the circuit within the iter-
ative phase estimation algorithm. We discuss the algorithmic complexity and
implementation issues, and compare our method to the work of Wang et al.
[29]. Finally, we explain how to apply the method to the simulation of non-
Hermitian quantum systems.

2 Universal Circuit for Non-Unitary Matrices

For an arbitrary n-qubit system represented by a matrix U of size N (where
N = 2n), it is known that the relationship between an arbitrary input, assumed
to be |α〉, to the system U and the corresponding output, |β〉, can be defined
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Fig. 1: Each block operations forms a different row of the given matrix as their
leading row. [31]

as U |α〉 = |β〉:

U |α〉 =


u11 u12 . . . u1N

u21 u22 . . . u2N

...
...

. . .
...

uN1 u12 . . . uNN



α1

α2

...
αN

 =


β1

β2

...
βN

 , (1)

Recently [31], we have described a universal programmable circuit design
which can be used to simulate the action of the matrix U in Eq.(1) by simply
determining the gate angles from the matrix elements. The idea is to inde-
pendently generate circuit equivalences for the rows of U in separate N × N
block quantum operations; and then combine the blocks by using 2n+1 differ-
ent states of (n+1) ancillary control qubits. This is shown in Fig.1. The circuit
in Fig.1 can be represented by a block diagonal matrix V with N submatrices
on the diagonal:

V =


V1

V2

. . .

VN

 (2)

Here, each submatrix Vi is to have the ith row of the given matrix as their
first rows in the following form: [kui1 • kui2 • . . . kuiN• ], where k = 1/

√
N

is the normalization constant. We use the sign “•” for the elements that
are insignificant in the overall scheme.

To use the matrix V in place of the matrix U in Eq.(1), we modify the input
|α〉 in Eq.(1) to a vector |ϕ〉 in a way that |ϕ〉 is populated with the elements
of |α〉. Therefore, the expected output of U |α〉 = |β〉 can also be produced on
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some predetermined states in the outcome of V |ϕ〉. This is shown below:

V |ϕ〉 =



ku11 • . . . ku1N •
• • . . . • •
...

...
...

...
...

• • . . . • •
. . .

kuN1 • . . . kuNN •
• • . . . • •
...

...
...

...
...

• • . . . • •





γα1

0
γα2

...
γαN

0
γα1

0
γα2

...
γαN

0



=



κβ1

•
...
•
κβ2

•
...
•

κβN
•
...
•



,

(3)
where γ = 1/

√
N and κ = 1/N are the normalization constants. In the

above equation, the amplitudes {κβ1, κβ2, . . . , κβN} on the states wherein the
main n qubits are zero are the same as the scaled expected outcomes of the
application of U to |α〉. The rest of the states in the output represented by
“•” is to be ignored. Therefore, the probability of success of the post-
selection on the zero state of the main qubits, which is the success
of the simulation, is given by κ2. As an example, if N = 2, Eq.(3) becomes
as follows:

V |ϕ〉 =
1√
2



u11 • u12 •
• • • •
• • • •
• • • •

u21 • u22 •
• • • •
• • • •
• • • •





1√
2
α1

0
1√
2
α2

0
1√
2
α1

0
1√
2
α2

0


=

1

2



β1

•
•
•
β2

•
•
•


, (4)

An instance circuit for this simulation technique is given in Fig.2 [31],
which can simulate any given matrix based on Eq.(3). The separation of the
main and the ancilla qubits in the circuit is largely artificial, since their role
can be interchanged in the circuit. To ease the verification process, the circuit
is divided into three blocks: Formation, Combination, and Input Modification
as shown in the figure. The verification of this circuit is given in Appendix A.

In the phase estimation process, for simplicity, we swap the states of the
first n ancilla qubits with the main qubits at the end of the circuit, and use
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Fig. 2: General Universal circuit design [31]: The angle values of the uniformly
controlled rotation gates are directly determined from the matrix elements:
cos(

θij
2 ) = uij . The matrix elements are tiled row by row on the diagonal of

the matrix representation of the network formed by these rotation gates. The
Hadamards at the end carry the same row elements from the diagonal to the
first rows of each Vi. The initial Hadamards and the SWAPs modify the input.

the following output instead of the one in Eq.(3):

κβ1

...
κβN
•
...
•


, (5)

where the first N states are chosen to be important states. Measuring all
the ancilla qubits in the computational basis and post-selecting for
the result |00...0〉, one obtains in the remaining n qubits in the state
|β〉 (as introduced in Eq. (1)). In this case, the success probability
κ2 = 1/22n.

3 Finding Eigenvalues of Non-Unitary Matrices

The polar form of a complex eigenvalue, λj , belonging to a matrix, U , can be
written as:

λj = rj e
−i2πφj , (6)

where φj is the phase and rj = |λj | is the magnitude of the jth eigenvalue.
For unitary matrices, |λj | is equal to 1. Therefore, the well-known efficient
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Fig. 3: The iterative phase estimation algorithm for the kth iteration [32,
6,19]. In the circuit |ψj〉 is an eigenvalue of U , and the angle wk of
the Rz gate depends on the previously measured bits defined as wk =
−2π(0.0xkxk−1...xm)binary, where m is the number of digits determining the
accuracy of the phase φj . Note that wk is zero in the first iteration of the
algorithm.

quantum phase estimation algorithm (PEA) can be used to find the value of
the phase, φj , and hence the eigenvalue λj . The circuit shown in Fig.3 is the
iterative version of the phase estimation algorithm (IPEA) [32,6,19] which can
also be used to estimate the value of φj . In each iteration of IPEA, a bit of
the m-digit binary expansion of the phase is computed:

φj = (0.x1x2...xm)binary

= x12−1 + x22−2... xm−12−m+1 + xm2−m,
(7)

where m is the total number of iterations, which determines the precision. xk
is the binary value found from the kth iteration of the IPEA using the 2m−kth

power of the matrix, U2m−k

.
However, for non-unitary matrices, the phase estimation algorithm alone

is not enough. This is because two parameters, φj and rj , need to be found
to compute the eigenvalue. In the following sections, we show that by using
IPEA with the general circuit described in the previous section, parameters
φj and rj can be determined, and hence eigenvalues of non-unitary matrices
can also be found by the phase estimation algorithm without additional cost.
Since our circuit design has a fixed size and scheme, the application of IPEA
to the circuit design also has a fixed design. Therefore, we only need to set the
angle values in each iteration of IPEA.

3.1 Estimation of φj

To use the general circuit design shown in Fig.2, within the IPEA framework,
we need to determine the relationship between the chosen states and the phase
qubit resulting in the measurement. As described in the previous section, the
circuit scales the expected output of the chosen states by κ, which clearly
originates from the Hadamard gates. Since there are 2n Hadamard gates in
the circuit, κ = 1/N . In phase estimation, since all of the gates are controlled
by the upper qubit, this scaling effect of κ exists only when the phase qubit
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Fig. 4: The iterative phase estimation algorithm with the circuit shown for a
2× 2 matrix.

is one. In order to have the same scaling when also the phase qubit is zero,
we allow all Hadamard gates on the ancilla qubits except the one on the first
ancilla qubit to operate without any control qubit. Instead of that controlled-
Hadamard gate on the ancilla qubit, a scaling gate is used, which operates
when the phase qubit is zero and has the following structure:

SCALE =

 1√
N

√
1− 1√

N

−
√

1− 1√
N

1√
N

 (8)

The resulting circuit is shown for two qubit systems in Fig.4. Here, we control
all operations except the Hadamard gates on the ancilla qubits by the phase
qubit. If the phase qubit is zero, for the input |α〉 given in Eq.(1), this circuit
produces the following on the remaining qubits:

(
SCALE ⊗H⊗n ⊗ I⊗n

)
×



α1

...
αN
0
...
0


=



κα1

...
καN
•
...
•


, (9)

where κ = 1/N . Therefore, we can estimate the phase on the selected N states,
where the ancilla is zero in the output.

Considering the circuit in Fig.4, in one iteration of the phase estimation
algorithm, the effect of the eigenvalue, represented in polar form, can be ob-
served in the evolution of the system as follows:
Fig.4, is:

Ψ0 = |0〉p |00〉a |ψj〉, (10)
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where |0〉p, |00〉a, and |ψj〉 represents the phase, ancilla and main qubits,
respectively. |ψj〉 is the eigenstate of the operator U . After the first Hadamard
gate on the phase qubit, the state becomes:

Ψ1 =
1√
2

(
|0〉p |00〉a |ψj〉+ |1〉p |00〉a |ψj〉

)
(11)

When the phase qubit is one, the application of the universal circuit generates
the output κλj |ψj〉 = λj/2 |ψj〉 on the chosen states. Since the Hadamard
gates are not controlled, they are the only gates which operates when the
phase qubit is zero. Therefore, after the application of the universal circuit
with the SCALE gate (which scales the input state when the phase
qubit is zero), we have the following:

Ψ2 =
1√
2

(
|0〉p

(
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

)
a

|ψj〉+ |1〉p Ũ |00〉a |ψj〉
)

(12)

where Ũ represents the universal circuit in Fig.2. From the eigenvalue equation,
U |ψj〉 = λj |ψj〉. On the chosen states, Ũ simulates U . Hence, if we consider

chosen states (the states where the ancilla is |00〉a), Ũ |00〉a|ψj〉 = κλj |00〉a|ψj〉
where κ is the normalization constant. Therefore, we have the following wave
function describing the chosen states in the first iteration:

Ψ2 =
1

2
√

2

(
|0〉p |00〉a |ψj〉+ ei2πφj |λj | |1〉p |00〉a |ψj〉

)
, (13)

where the states which are not including |00〉a are ignored. Application of the
rotation gate around the z-axis on the phase qubit in the circuit guarantees
that only one bit, xk in 0.xk, of the phase is estimated in each iteration. Hence,
after this gate, the term ei2πφj becomes ei2π(0.xk):

Ψ3 =
1

2
√

2

(
|0〉p |00〉a |ψj〉+ ei2π(0.xk)|λj | |1〉p |00〉a |ψj〉

)
, (14)

After the last Hadamard applied to the phase qubit, the final state is as follows:

Ψ4 =
1

2
√

2

(
|0〉+ |1〉√

2
|ψj〉+ ei2π(0.xk)|λj |

|0〉 − |1〉√
2
|ψj〉

)
(15)

or more concisely:

Ψ4 =
1

4

((
1 + ei2π(0.xk)|λj |

)
|0〉+

(
1− ei2π(0.xk)|λj |

)
|1〉
)
|ψj〉. (16)

Here, because of the system size, κ = 1/2. For general case, κ is directly related
to the size of the ancilla and is 1/N if there are (n+ 1) qubits in the ancilla.
Thus, the above equation can be represented in general form as follows:

Ψ4 =
κ

2

((
1 + ei2π(0.xk)|λj |

)
|0〉+

(
1− ei2π(0.xk)|λj |

)
|1〉
)
|ψj〉. (17)
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Since xk is a bit value, it can be either 0 or 1. When xk = 0, since ei2π0 = 1,
the above equation reduces to:

Ψ4 =
κ

2
((1 + |λj |) |0〉+ (1− |λj |) |1〉) |ψj〉. (18)

In the case, when xk = 1, since eiπ = −1, Eq.(17) becomes:

Ψ4 =
κ

2
((1− |λj |) |0〉+ (1 + |λj |) |1〉) |ψj〉. (19)

Since κ
2 (1− |λj |) ≤ κ

2 (1 + |λj |); if xk = 0, the probability to find the phase
qubit in |0〉 state is higher then the probability to find it in |1〉. If xk = 1,
then the probability to find the phase qubit in |1〉 is higher. Thus, from the
measurement on the phase qubit xk can be determined.

In each iteration of the phase estimation algorithm, a different bit of the
phase is determined in this manner. For the kth iteration of the phase estima-

tion algorithm to determine the kth digit of the phase, we see κ
2 (1− |λj |2

k

) ≤
κ
2 (1 + |λj |2

k

). Hence, for |λj | < 1, the more we increase the power of U or
the accuracy, the more the amplitudes of the states, |0〉 and |1〉, come closer.
In this case, a single iteration of the PEA may repeat the protocol
several times to collect enough statistics to determine the phase bit
with high confidence. This is particularly important for later itera-
tions, where, for |λj | < 1, the probability of finding the phase qubit
in |0〉 or |1〉 is exponentially (in the iteration index k) close.

3.2 Computing |λj |

As we have shown above, the output probability of the phase qubit when
the ancilla is zero is determined by κ

2 (1 + |λj |). We measure |0〉 or |1〉 with
probability P equal to κ

2 (1 + |λj |). Hence, we get

P = (
κ

2
(1 + |λj |))2,

|λj | =
2
√
P

κ
− 1.

(20)

Since κ and P are known (for a 2 × 2 matrix, the value of κ is 1
2 due to two

Hadamard gates in the circuit), |λj | can be determined from the statistics of
the measurement. Therefore, the accuracy of the estimate value of |λj | can be
further improved by using all iterations of the phase estimation algorithm: For
the kth iteration, as a general form, the following is obtained:

P(k) =
(κ

2
(1 + |λj |2

k

)
)2

,

|λj |2
k

=
2
√
P(k)

κ
− 1.

(21)

Taking the average of the estimates from different phase estimation iterations,
the estimate of |λj | may become more accurate. Finally, by using values of |λj |
and φj in Eq. (6), we can compute the eigenvalue of the non-unitary matrix.
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4 Discussion

In the phase estimation algorithm, to be able to generate the matrix elements
by using rotation gates around y- and z-axis, the absolute values of the ele-
ments should be less than one. One way to achieve this is to divide all the
elements by the absolute value of the maximum element. Based on the norm
and the eigenvalue relationship, this guarantees that the absolute value of the
largest eigenvalue is less than the absolute row or column sums of the matrix
which can be maximum N (i.e. because the absolute value of the maximum is
1.). The eigenvalue is not required to be less than one. However, if the eigen-
value is greater than 1, this approach may require scaling in the very iteration
of the algorithm since in the powers there is a possibility the elements may
become greater than one again. Another approach to scale the elements is to
use the 1-norm or the infinity-norm of the matrix, which are easy to compute.
Scaling the matrix by the norm makes the eigenvalue less than 1, and so in
the power of the matrix the elements goes to zero. Hence, the scaling is only
done at the beginning. Therefore, in the kth iteration of the phase estimation

algorithm, we have (λ2k

j /µ
2k

< 0), where µ is the scaling used at the begin-
ning. Hence, if |λj | < 1, without any scaling, the more we increase the power
of U or the accuracy, the more the amplitudes of the states, |0〉 and |1〉, come
closer. For |λj | � 1, after a few iterations, it becomes infeasible to distinguish
whether the phase qubit is 0 or 1. Scaling the powers of U which generates

the eigenvalue λ2k

j /µ can be used to remedy this problem.
The accuracy for determining the value of rj , requires to determine the

terms (1 + rj) and (1− rj) in the probabilities for finding the phase qubit in
|0〉 or |1〉 from the statistics on the measurements. The accuracy of in these
statics differs based on the measurement protocol, the quantum state, the
underlying quantum machine, and even the amount of the entanglement [33,
34].

4.1 Algorithmic Complexity

The complexity of one-iteration of the phase estimation algorithm is mainly
dominated by the complexity of implementing the given operator. There is also
need to obtain the state tomography of the phase qubit in order to determine
the absolute value of the eigenvalue which differs based on the underlying
quantum machine used for the phase estimation algorithm.

It is known that the complexity of implementing an operator on quantum
computer requires O(N2) number of one and two qubit operations [35]. In ad-
dition, more efficient circuits are possible for the sparse matrices. The general
circuit described in Fig.2 also obeys these complexity behavior (see ref.[31]
for the detailed complexity analysis of the circuit.). In the circuit, there is
a quantum network composed of N2 rotation gates uniformly controlled by
the first 2n qubits. The decomposition of this network requires 22n number
of CNOT and 22n single rotation operations, which is explained in Appendix
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B. Therefore, the circuit in total requires 22n CNOT, 22n single rotation, 2n
Hadamard, and n SWAP gates [31]. Hence, the total complexity is O(N2) .
Also note that for zero elements, there is no need to use rotation gates. Thus,
for the sparse matrices, the number of operations can be reduced [31].

Since the complexity of an iteration of the phase estimation algorithm is
dominated by the complexity of the implementing the given operator, each
iteration of the algorithm requires O(N2) operations. Then for m number of
iterations, we get O(mN2) as the complexity.

When the powers of the matrix cannot be efficiently computed, the com-
plexity of computing the power of matrix U on classical computers should also
be considered. The power of a matrix can be found by using the successive
squaring method which requires only one matrix multiplication. Then the total
complexity becomes the combination of these two:

O(mM) +O(mN2) = O(m(N +M)), (22)

where m is the number of iterations, and M is the complexity of matrix mul-
tiplication. Note that even if the powers of the matrix needs to be computed,
this is still at least as efficient as the classical algorithms which requires in
general O(N3) time for finding an eigenvalue [36]. Also, note that the al-
gorithmic complexity in Eq.(22) does not include the complexities
of measuring and determining the value of rj. These are dependent
on the measurement protocol, the quantum state, and the underly-
ing quantum machine. In addition, the total number of iterations m
may be large in cases where, for |λj | < 1, the probability of finding
the phase qubit in |0〉 or |1〉 states gets exponentially (in the itera-
tion index k) close, since a single iteration of the PEA may require
repeating the protocol several times to collect enough statistics to
determine the phase bit with high confidence.

In comparison to the work done by Wang et al. [29], the success probability
decreases exponentially in both algorithms described in this paper and their
paper. However, in our case by scaling the matrix elements in every iteration
of the algorithm, the probability can be increased. Furthermore, here, one can
finds the angle values for the rotation gates very easily (see Appendix B.1)
to implement the given operator. However, in their method, one needs to find
subsystems HA and HB and their interaction HAB in order to implement the
given H: H = HA +HB +HAB . In terms of quantum complexity, since their
method is based on the non-unitary successive projective measurements on
HA which cannot be implemented deterministically, the complexity is expo-
nentially gets larger [29]. On the other hand, in their case finding the powers
of the given operator is easier, however, when the size of the subsystem HA is
large, the complexity is dominated by the complexity of the measurements.
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5 Application to Non-Hermitian Quantum Systems

Some problems can be extremely hard or even impossible to solve within the
framework of the standard formalism of quantum mechanics where the ob-
servable properties of the dynamic nature are real and associated with the
eigenvalues of Hermitian operators. Most extensions of the standard Hermi-
tian formalism of quantum mechanics are equivalent to use a non-Hermitian
operator instead of a Hermitian one. Resonance phenomena, where the par-
ticles are temporarily trapped by the potential, can be explored within the
non-Hermitian quantum mechanics. In the non-Hermitian quantum mechan-
ics, the lifetime of the resonant states are proportionally dependent on the
behavior of the imaginary part of the eigenvalue [37,27]. Suppose we have
the non-unitary operator U = e−iHt/h̄ for a non-Hermitian Hamiltonian H
with energy eigenstates |ψj〉 and corresponding energy eigenvalues Ej , i.e.,
H|ψj〉 = Ej |ψj〉. Since Ej is an eigenvalue of H; if t and h̄ are set to 1, then
e−iEj is the eigenvalue of U . Therefore, a N × N non-unitary transforma-
tion U has eigenvectors |ψ1〉, |ψ2〉, ..., |ψN 〉, with corresponding eigenvalues
λj = |λj |e−i2πφj . As shown in Sec.3, the eigenvalue λj of the matrix U can
be estimated. This also allows us to determine the corresponding eigenvalue
Ej of the Hamiltonian H from λj = e−iEj . Note that in our phase estimation
procedure, since the matrix elements are directly used in the circuit, one can
also directly use the Hamiltonian matrix, H, instead of U .

5.1 Example

As an example, we consider the following radial Hamiltonian [37]:

H = −1

2

d

dr
(r2 d

dr
) + (

r2

2
− J)e−ar

2

, (23)

where J and a are free potential parameters (J is the depth of the potential
in the potential graph. a is related to the width of the potential barrier.) The

potential term, ( r
2

2 − J)e−ar
2

, in the above Hamiltonian exhibits predissocia-
tion resonances which are quasibound states associated with the complex part
of the eigenvalues [37]. For the illustration purpose, using only two basis func-
tions (the orthonormalized eigenfunctions of the harmonic oscillator, where
mass equals one and the frequency equals a) and setting J = 0.1 and a = 0.1;
the Hamiltonian matrix is found as 1:

H =

(
1.4216− 0.1576i 0.2782 + 0.2802i
0.2782 + 0.2802i 0.6807− 0.2361i

)
, (24)

which has the eigenvector:

|ψj〉 =

(
−0.3790− 0.1962i

0.9044

)
, (25)

1 This matrix is given by Pablo Serra, private communication, 2012. [37]
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and the ground state eigenenergy (0.6249 − 0.4139i). Since the above Hamil-
tonian matrix is non-Hermitian, the time evolution operator found from U =
e−iHt/h̄ is non-unitary, which is found as:

U = eiH

=

(
0.2588 + 1.1214i −0.4569− 0.1109i
−0.4569− 0.1109i 1.0594 + 0.7394i

)
,

(26)

with eigenvalue 1.2268 + 0.8849i. We have used the phase estimation method
described above to simulate this non-unitary operator and determine the com-
plex eigenvalues ofH. In the simulation, since the absolute values of the matrix
elements of U are greater than 1, we scale the elements by the 1-norm of the
matrix. This makes the matrix elements of U go to zero in the limit. We use
11 iterations in the phase estimation algorithm. After the 11th iteration, the
probability difference between seeing the phase qubit 0 or 1 becomes almost
equal.

Therefore, from the simulation output, we find the eigenvalue of U as
1.22255 + 0.88355i, and so the eigenvalue of H as 0.6259 − 0.4089i, which
gives an error in the order of 10−3. This comes from computer round-off errors
and the limited available powers of U (when the power of λ goes to zero, we can
no longer distinguish between |0〉 and |1〉 on the phase qubit; the probabilities
becomes the same). The simulation details are given in Appendix B.

6 Conclusion

We have presented a general scheme for the execution of the phase estima-
tion algorithm for non-unitary matrices. Since the circuit design used for non-
unitary matrices is a general programmable circuit, the circuit for the phase
estimation algorithm is also universal: It can be used for any type of ma-
trix to compute its eigenvalues. We have shown that the complex eigenvalues
of non-Hermitian quantum systems can be found by using this method. As
an example we have shown how to explore the resonance states of a model
Hamiltonian.
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A Verification of the Circuit in Fig.2

The circuit is divided in three blocks: Formation, Combination, and Input Modification as
shown in the figure. In the Input Modification block, the initial input is modified to |ϕ〉.
Then, the matrix V is constructed in the Formation and Combination blocks.

A.0.1 Formation Block:

The second block in Fig.2 is called Formation Block which consists of uniformly controlled
rotation gates for each element of U . For the matrix element uij , assumed to be real, the
rotation gate Rij(θij) is defined as follows:

Rij(θij) =

(
cos(

θij
2

) sin(
θij
2

)

− sin(
θij
2

) cos(
θij
2

)

)
(27)

where θij is determined from the value of the element in accordance with the equality

cos(
θij
2

) = uij to get the following:

Rij(θij) =

(
uij

√
1− uij

−
√

1− uij uij

)
(28)

Based on the linear indices of the elements (row-wise), Rijs are controlled by the different
states of (2n) qubits: e.g., u12 is the second element in the matrix and has a linear index of
2. Hence, the control of R12 is set accordingly so that this gate operates when the first (2n)
qubits in |0 . . . 01〉 state. Combination of these controlled rotation gates forms a network
as the second block in Fig.2. This block has the following matrix representation in the
computational basis:

F =


R11

R12

. . .

RNN

 , Rij =

(
uij

√
1− uij

−
√

1− uij uij

)
. (29)

Here, we have used rotations around the y-axis since the matrix elements are assumed to
be real. However, for the complex elements of U , a product of Rz and Ry gates is needed
for each Rij . For instance, if uij = eiφcos(θ), eiφ is created by Rz , and cos(θ) is by Ry .

A.0.2 Combination Block:

For a system of (2n+ 1) qubits, the third block in Fig.2 is defined as the application of the
Hadamard gates to (n + 1)th, (n + 2)th, ..., (2n − 1)th, and (2n)th qubits from the top of
the circuit: i.e. (I⊗n ⊗H⊗n ⊗ I), where H and I are the Hadamard and identity matrices,
respectively. The matrix representation of this block is as follows:

C =


Cblock

Cblock
. . .

Cblock

 ,where Cblock =


k 0 . . . k 0
0 k . . . 0 k
...

...
...

...
...

k 0 . . . k 0
0 k . . . 0 k


2N×2N

. (30)

Note that Cblock also has negative elements, however, they are not located in the first
row. Therefore, they shall not affect the predetermined states. The application of the above
matrix C to the matrix F defined in Eq.(29) forms the matrix V defined in Eq.(3) where
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the same row elements of U are located on the leading rows of each Vi (i represents the row
index of U):

V = CF

=


Cblock

Cblock
. . .

Cblock




u11
√

1− u11
−
√

1− u11 u11
. . .

uNN
√

1− uNN
−
√

1− uNN uNN



=



ku11 • ku12 . . . • ku1N •
..
.

...
...

...
...

...

. . .

kuN1 • kuN2 . . . • kuNN •
...

...
...

...
...

...


.

(31)

Since the negative elements are not in the first row of Cblock, the resulting leading rows are
not affected by these elements. The elements represented by the symbol “•” are disregarded
by modifying the input to the circuit in the modification block explained below.

A.0.3 Input Modification Block:

The initial input to the circuit in Fig.2 is defined as ˜|α〉 = |0..0〉 ⊗ |α〉 where |0...0〉 is the
input to the ancilla qubits. The first block in Fig.2 consists of the Hadamard gates on the
first n qubits and sequential swap operations between the (n+ 1)th and the remaining last
n qubits (We apply swap operations between the ancilla (n+ 1)th qubit and the
main qubits: First we swap the (n + 1)th qubit with the (2n + 1)th, then the
(n+1)th with the (2n)th, then the (n+1)th with the (2n−1)th, and so on. Finally

we swap the (n+ 1)th with the (n+ 2)th). This block modifies the input ˜|α〉 in a way
that in the application of V = CF to the input, the output is not affected by the elements
represented by “•” between kuij and kui(j+1). Hence, the application of this block to the

initial input transforms ˜|α〉 to |ϕ〉 in Eq.(3):

˜|α〉 → |ϕ〉

[α1 α2 . . . αN 0 . . . 0]T →[γα1 0 γα2 . . . 0 γαN . . . γα1 0 γα2 . . . 0 γαN 0]T ,
(32)

where γ is a normalization constant.

Consequently, the circuit in Fig.2 describes the operation V |ϕ〉 = CF |ϕ〉 which sim-
ulates any matrix U , having elements less than or equal to 1, on the following normalized
set of N states: {|0 . . . 000〉a |0 . . . 0〉, . . . , |0 . . . 110〉a |0 . . . 0〉}, where |. . . 〉a represents the
ancilla qubits. This is shown in Eq.(3).

For illustration purposes, we also present the full forms of the operators
for the formation, combination and input modification blocks and the output
vector for the simulation of the following 2× 2 arbitrary matrix [31]:

U =

(
u11 u12
u21 u22

)
(33)
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The full form of the matrix for the formation block is as follows:

F =



u11

√
1− u211 0 0 0 0 0 0

−
√

1− u211 u11 0 0 0 0 0 0

0 0 u12

√
1− u212 0 0 0 0

0 0 −
√

1− u212 u12 0 0 0 0

0 0 0 0 u21

√
1− u221 0 0

0 0 0 0 −
√

1− u221 u21 0 0

0 0 0 0 0 0 u22

√
1− u222

0 0 0 0 0 0 −
√

1− u222 u22


(34)

The combination matrix C and the matrix for the input modification M are defined as:

C =



1√
2

0 1√
2

0 0 0 0 0

0 1√
2

0 1√
2

0 0 0 0
1√
2

0 − 1√
2

0 0 0 0 0

0 1√
2

0 − 1√
2

0 0 0 0

0 0 0 0 1√
2

0 1√
2

0

0 0 0 0 0 1√
2

0 1√
2

0 0 0 0 1√
2

0 − 1√
2

0

0 0 0 0 0 1√
2

0 − 1√
2


, M =



1√
2

0 0 0 1√
2

0 0 0

0 0 1√
2

0 0 0 1√
2

0

0 1√
2

0 0 0 1√
2

0 0

0 0 0 1√
2

0 0 0 1√
2

1√
2

0 0 0 − 1√
2

0 0 0

0 0 1√
2

0 0 0 − 1√
2

0

0 1√
2

0 0 0 − 1√
2

0 0

0 0 0 1√
2

0 0 0 − 1√
2


(35)

For the initial input |0〉 |α〉 = ˆ|α〉, we find the following final state:

CFM ˆ|α〉 = V |ϕ〉 =
1

2



α1u11 + α2u12

−α1

√
1− u211 − α2

√
1− u212

α1u11 − α2u12

−α1

√
1− u211 + α2

√
1− u212

α1u21 + α2u22

−α1

√
1− u221 − α2

√
1− u222

α1u21 − α2u22

−α1

√
1− u221 + α2

√
1− u222


(36)

Clearly the normalized states |000〉 and |100〉 simulate the original given system.

B Simulation Details

B.1 The decomposition of a multi controlled network

The circuit in Fig.2 includes a network of rotation gates in the formation block which
dominates the complexity of the circuit. The uniformly controlled networks such as the one
in Fig.5a controlled by k qubits can be decomposed in terms of 2k CNOT gates and 2k

single rotation gates[38]. For instance, the circuit as illustrated for k = 2 in Fig.5a can be
decomposed as in Fig.5b. The angle values in the decomposed circuit are solutions of the
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(a)

(b)

Fig. 5: (a) A uniformly controlled multi-qubit network. (b) The decomposition
of the network in (a) into CNOT and single quantum gates. The change of
the bits in the gray code representations determines the control qubit for the
CNOT gates. The network in the phase estimation algorithm includes two
consecutive circuits such as in (b) with Rz and Ry single gates.

system of the linear equation Mkθ = φ:

Mk


θ1
θ2
...
θ2k

 =


φ1
φ2
...

φ2k

 , (37)

where k is the number of control qubits in the network, and the entries of M are defined as:

Mij = (−1)bi−1.gj−1 , (38)

in which the power term is found by taking the dot product of the standard binary code of
the index i − 1, bi−1, and the binary representation of j − 1th Gray coded integer, gj−1.
Since Mk is a column permuted version of the Hadamard matrix, we see that M is unitary.
Thus, (Mk)−1 = 2−k(Mk)T , and the new angle values in the decomposed circuit are results
of the matrix vector multiplication[38]:

θ = 2−k(Mk)Tφ. (39)

B.2 Simulation Details for the Example System

In Fig.4, we have a multi controlled network composed of 4 gates. This network basically
comes from the Formation step of the circuit design method, which has been represented in
matrix form as F in Eq.(29). Since the elements of U are complex, we need to have rotations
around the z−axis and the y−axis. Hence, the above matrix is the product of two matrices
Fz for rotation around the z-axis, and Fy for rotations around the y-axis: F = FzFy :

F =

R
z
11

. . .

RzNN


R

y
11

. . .

RyNN

 (40)
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To complete this network to a whole uniformly controlled network, we assume that the
initial four other gates are identity. Hence, the final decomposition for 2 × 2 matrix, the
decomposed circuit includes: 4 Hadamard gates, 16 CNOT and 16 single gates (8 CNOTs
and 8 Ry gates for the Fy ; and 8 CNOTs and 8 Rz gates for the Fz), and 2 swaps.

The parameters for the last iteration (The operator is U20 .) of the phase estimation
algorithm is shown below, where after scaling the elements of U by the matrix norm ||U ||1
(maximum of the absolute sums of the columns), we find the angle values for Ry and Rz
gates:

Matrix Elements Scaled Elements Angles for Rys Angles for Rzs
0.2588 + 1.1214i 0.1469 + 0.6364i 1.0521 -0.9634
-0.4569 - 0.1109i -0.2593 - 0.0629i 0.0278 0.1837
-0.4569 - 0.1109i -0.2593 - 0.0629i -0.2486 1.9401
1.0594 + 0.7394i 0.6012 + 0.4196i 0.0278 0.1837

-0.0278 -0.1837
0.2486 -1.9401
-0.0278 -0.1837
-1.0521 0.9634

The angle value for the Rz gate on the first qubit is -2.51572849. The output of the phase
estimation algorithm on the chosen states and the normalized probability of the phase qubit
are shown below.

States
Probabilities on the

Chosen States

Normalized
Probabilities of the

phase qubit
0 0.0002 0.0058
1 0.001 0.9942
2 0.0393
3 0.1765

The bit values of the phase is found as (11100110100) which corresponds to 0.9004. The
absolute value of the eigenvalue is found from the ratio of the probability values of the phase
qubit:

(1 +
|λ|
||U||1

)2

(1− |λ|
||U||1

)2
=

0.9942

0.0058
(41)

From the above, we find |λ| = 0.8560 × ||U ||1 = 1.5084. The eigenvalue of U is found as
ei2π0.9004×1.5084 = 1.22255+0.88355i. The eigenvalue of the Hamitlonian matrix is found
from (log(1.22255 + 0.88355i)/i) which is 0.62581− 0.41105i.
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