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Abstract

We investigate the cost of three phase estimation procedures that require only constant-
precision phase shift operators. The cost is in terms of the number of elementary gates, not
just the number of measurements. Faster phase estimation requires the minimal number of
measurements with a log ∗ factor of reduction when the required precision n is large. The
arbitrary constant-precision approach (ACPA) requires the minimal number of elementary gates
with a minimal factor of 14 of reduction in comparison to Kitaev’s approach. The reduction
factor increases as the precision gets higher in ACPA. Kitaev’s approach is with a reduction
factor of 14 in comparison to the faster phase estimation in terms of elementary gate counts.

1 Introduction

Quantum phase estimation (QPE) is a commonly used technique in many important algorithms,
such as prime factorization[1], quantum walk [2], discrete logarithm[3] and quantum counting[4].
Various approaches have been devised to implement QPE and all have different requirements. For
instance, the standard QFT† [5] requires high precision of the control rotation gates. The one by
Kitaev [6, 7] requires constant rotation gates and Hadamard gates. The advantage of the former is
that it does not require repetition while the latter needs repetition and classical post-measurement
process in order to achieve the required precision. Between these two extreme approaches, there
exist some approaches [8, 9, 10] that scale between two extremes in terms of the required precision
of the rotation gate. By examining the trade off between the rotation gate precision and the re-
quired number of repetition, those approaches tend to be of lower complexity.

We are interested in comparing the approaches from a lower level by examining the cost that
comes from the phase kick back and the phase shift operators. Here we would like to point out that
we are comparing the number of required elementary gates (single qubit gates and two-qubit gates).
By doing so, if in the near future we can explicitly express the cost for obtaining a gate within
certain precision, we can select the best (less costly) implementation based on various scenarios.

For QFT†, Kitaev’s Hadamard test is the standard and it performs efficiently with classical
post measurement processing. In [8] it is shown that its circuit depth for QFT† is about 1/14 of
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Kitaev’s approach when the constant-precision phase shift operator is precise to the third degree.
Recently the faster phase estimation (FPE) algorithm [11] shows FPE has a log ∗ factor of reduction
in terms of the total number of measurements in comparison to Kitaev’s approach. The core of
this algorithm is similar to Kitaev’s approach but it reduces the number of measurements by use
of multiple bit inference. Despite of the reduction in the number of measurements, this algorithm
still must invoke the corresponding unitary for phase kick back for a certain number of times. We
investigate the required number of invocations of unitary U in FPE and compare with two other
approaches.

In our analysis, we assume that

• A unitary Um is implemented by applying the unitary U m times.

• We use the Chernoff bound to obtain the minimal number of trials needed for each approach.
Based on the required minimal trials, we compare the number of elementary gates used in
each approach.

The remainder of this article is organized as the following: we briefly describe Kitaev’s approach,
ACPA and FPE in section 2 and provide the analysis for obtaining the required repetition of each
approach. In section 3 we compare the circuit complexity and discuss the scenario when the phase
shift operation is imperfect for the ACPA.

2 Overview and Analysis

There are various settings for phase estimation. For instance, based on the availability of eigen-
vector. If there are multiple copies, approaches based on Hadamard tests can be run in parallel.
Therefore, in terms of time complexity, Hadamard test based approaches should be chosen. If there
is only one copy, then time complexity of all approaches are proportional to their circuit size. Here
we consider there is only one copy of eigenvector as we are interested in the number of required
elementary gates used.

Problem. [Phase Estimation] Let U be a unitary matrix with eigenvalue e2πiϕ and corresponding
eigenvector |u〉. Assume only a single copy of |u〉 is available, the goal is to find ϕ̃ such that

Pr(|ϕ̃− ϕ| < 1

2n
) > 1− c, (1)

where c is a constant less than 1
2 .

To simplify the analysis, let us choose c = 1/4 such that the result from phase estimation is
precise to the nth bit and the success probability is at least 3/4. To achieve such a goal, in this
section we will compute the numbers of trials needed for Kitaev’s approach, ACPA and FPE.

2.1 Kitaev’s original approach

Theorem 1. [8] Assume U is a unitary matrix with eigenvalue e2πiϕ and corresponding eigenvector
|u〉. Suppose ϕ = 0.ϕ1 . . . ϕn and let φl = 2l−1ϕ (1 ≤ l ≤ n). To obtain the recovered ϕ̃ that is
precise to the nth bit with constant success probability greater than 1− c where c < 1/2, for each φl
we need to run at least 55 ln n

c trials of Hadamard tests when using Kitaev’s approach.
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To be complete, here we briefly describe the analysis given in [8] for the above theorem. For the
interested readers, a similar analysis on the FPE is given in section 2.3. In Kitaev’s approach, a
series of Hadamard tests are performed. In each test the phase 2k−1ϕ (1 ≤ k ≤ n) will be computed
up to precision 1/16. Assume an n-bit approximation is desired. Starting from k = n, in each step
the kth bit position is determined consistently from the results of previous steps.

Figure 1: Hadamard test with extra phase shift operator.

For the kth bit position, we perform the Hadamard test depicted in Figure 1. Denote ϕk = 2k−1ϕ
and choose gate K = I2, the probability of the post measurement state is

Pr(0|k) = 1 + cos(2πϕk)

2
, Pr(1|k) = 1− cos(2πϕk)

2
. (2)

By choosing the gate

K =

(
1 0
0 i

)
(3)

as the square root of Pauli-Z (σz) gate, we have

Pr(0|k) = 1− sin(2πϕk)

2
, Pr(1|k) = 1 + sin(2πϕk)

2
. (4)

From the estimates of the probabilities, we have enough information to recover ϕk. In Kitaev’s
original approach, after performing the Hadamard tests, some classical post processing is also
necessary. Suppose ϕ = 0.x1x2 . . . xn is an exact n-bit. If we are able to determine the values of
ϕ, 2ϕ, . . . , 2n−1ϕ with some constant-precision (1/16 to be exact), then we can determine ϕ with
precision 1/2n efficiently [7, 6].

Starting with ϕn we increase the precision of the estimated fraction as we proceed toward ϕ1.
The approximated values of ϕk (k = n, . . . , 1) will allow us to make the right choices.

For k = 1, . . . , n the value of ϕk is replaced by βk, where βk is the closest number chosen from
the set {0

8 ,
1
8 ,

2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8} such that

|ϕk − βk|mod 1 <
1

8
. (5)

The result follows by a simple iteration. Let βn = 0.xnxn+1xn+2 and proceed by the following
iteration:

xk =

{
0 if |0.0xk+1xk+2 − βk|mod 1 < 1/4
1 if |0.1xk+1xk+2 − βk|mod 1 < 1/4

(6)
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for k = n− 1, . . . , 1. By using simple induction, the result satisfies the following inequality:

|0.x1x2 . . . xn+2 − ϕ|mod 1 < 2−(n+2). (7)

In Eq. 5, we do not have the exact value of ϕk. So, we have to estimate this value and use the
estimate to find βk. Let ϕ̃k be the estimated value and

ǫ = |ϕ̃k − ϕk|mod 1 (8)

be the estimation error. Now we use the estimate to find the closest βk. Since we know the exact
binary representation of the estimate ϕ̃k, we can choose βk such that

|ϕ̃k − βk|mod 1 ≤
1

16
. (9)

By the triangle inequality we have,

|ϕk − βk|mod 1 ≤ |ϕ̃k − ϕk|mod 1 + |ϕ̃k − βk|mod 1 ≤ ǫ+
1

16
. (10)

To satisfy Eq. 5, we need to have ǫ < 1/16, which implies

|ϕ̃k − ϕk|mod 1 <
1

16
. (11)

Therefore, it is necessary that the phase be estimated with precision 1/16 at each stage. Let sk be
the estimate of sin(2πϕk) and tk the estimate of cos(2πϕk). By Eq. 11 we should have

∣∣∣∣ϕk −
1

2π
arctan

(
sk
tk

)∣∣∣∣
mod 1

<
1

16
. (12)

To estimate the phase ϕk with precision 1/16, sk and tk must be estimated with error at most
around 0.2706 [8]. By use of Chernoff bound, in order to obtain

Pr

(
|ϕ̃k − ϕk| <

1

16

)
> 1− ε, (13)

we require a minimum of

m ≈ 76 + 55 ln
1

ε
(14)

many trials. And by use of union bound, we desire 1− nε ≥ 3/4. In our case ε = 1
4n , hence

m ≈ 76 + 55 ln 4n. (15)

Therefore, for this approach the number of total unitary U invocation will be

(76 + 55 ln 4n)× (2n − 1). (16)
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Figure 2: 3-qubit inverse QFT where 1 ≤ i ≤ 3, |yi〉 = 1√
2
(|0〉+ e2πi(0.xi...x3) |1〉.

2.2 Arbitrary Constant-Precision Approach

The arbitrary constant-precision approach (ACPA) draws a trade-off between the highest degree
of phase shift operators being used and the depth of the circuit. As a result, when smaller degrees
of phase shift operators are used, the depth of the circuit increases and vice versa. ACPA is useful
when the precision of the rotation gate is limited. Let rotation gate Rk, that is precise to the kth
degree, be defined as follows

Rk ≡
[
1 0

0 e2πi/2
k

]
. (17)

A simple example of k = 3 for estimating the third least significant eigenphase bit is given in Fig. 2.
Assume the eigenphase is ϕ = 0.x1x2x3 . . . xn and suppose we are at step j, that is we are to

estimate xj . It is clear that after applying controlled phase shift operators R−1
2 , R−1

3 , . . . , R−1
k , we

obtain ∣∣∣ψ̃j

〉
=

1√
2
(|0〉+ e2πiϕ̃ |1〉), (18)

where
ϕ̃ = 0.xj 00 . . . 0︸ ︷︷ ︸

k 0s

xj+kxj+k+1 . . . . (19)

It is easy to see that

|ϕ̃− 0.xj | <
1

2k
. (20)

Hence, we can express
ϕ̃ = 0.xj + θ. (21)

The post measurement probabilities of achieving |0〉 or |1〉 where xj+1 = 0 1 are

Pr(0|j) = cos2(πθ), Pr(1|j) = sin2(πθ) (22)

where θ < 1
2k
. Let τ = π

2k−1 and we can rewrite the above formula as

P (0|j) = cos2(πθ) ≥ cos2(
π

2k
) =

cos(τ) + 1

2
. (23)

By use of Taylor expansion for the cosine function, we obtain a lower bound that

Pr(0|j) > 1− (τ/2)2. (24)

1A similar analysis can be applied to xj+1 = 1.
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In order to achieve a success probability of 1 − ε for estimating the jth bit, we can bound the
required number of iterations, m, from below. For simplicity, let us denote p as Pr(0|j) and let Xi

be the random variable for Bernoulli trials. By Chernoff bound, we have

Pr

(
1

m

m∑

i=0

Xi ≤
1

2

)
≥ 1− e−2m(p− 1

2
)2 = 1− ε. (25)

Hence, we would need at least

m ≥ ln(1/ε)

2(p − 1/2)2
(26)

trials for estimating each eigenphase bit in order to achieve success probability 1− ε (each bit) by
use of rotation gates precise up to the kth degree. By Eq. 24, we know that it is sufficient to choose

m =
2 ln(1/ε)

(1− (τ)2

2 )2
=

2 ln(4n)

(1− π2

22k−1 )2
. (27)

Therefore, for this approach the number of unitary U invocation will be

2 ln(4n)

(1− π2

22k−1 )2
× (2n − 1). (28)

For instance, when k = 3, this approach requires about 1/14 of trials of Kitaev’s method to achieve
the same degree of success probability for each bit. However, this rough comparison is only in
terms of measurements (trials). Kitaev’s approach does not require higher degree of rotation gates,
except the Hadamard. In our approach we need constant-precision rotation gates and this should
be taken into account when comparing the cost.

2.3 Faster Phase Estimation

The Faster Phase Estimation (FPE) by Svore and et. al. [11] cleverly modifies Kitaev’s original
approach and applies the two-stage-multiple-round strategy. By such modifications, FPE reduces
the number of measurements by a logarithm factor, log∗, in comparison to Kitaev’s approach.
However, for each measurement it uses a multiple bits inference that introduces an extra logarithm
factor in terms of the required number of invoking the unitary U .

Figure 3: FPE Stage 2: Multiple Bits Inference

The algorithm contains two stages and the second stage contains multiple rounds. We list the
quantum part of that algorithm in Algorithm 1 as follows:
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Algorithm 1 Faster Phase Estimation

First Round:
for j = n− 1 to 1 do

Estimate 2j−1ϕ using O(1) measurements per j.
end for
Later Rounds:
for r = 2 to Number of Rounds do

Set density, S, and number of measurements per bit, sr , for given round.
for i = 1 to srn do

Set Mi to a sum of S different powers of two, choosing these powers of two at random
or with a pseudo-random distribution. Perform C measurements with given Mi.

end for
end for
Post Processing:
Perform multi-bit inference to determine estimate of βj = 2j−1ϕ for all j from eigenphase estimates
obtained in stage 1 and stage 2.
Infer eigenphase from the βjs.

The first stage (see Fig. 1) is the same as Kitaev’s Hadamard tests but it requires fewer repeti-
tions. Interested readers can refer to their work for details. The estimated eigenphase from the first
stage will be used to obtain a more refined result in the second stage from multiple bits inference
(see Fig. 3). We refer interested reader to [11] for details. Here we are interested in finding the
constant number of repetitions, referred as C in their work, required in the second stage of FPE
algorithm for resources comparison with other approaches. As shown in [11], it is necessary to
obtain an estimate of Miϕ, let us say σi, with precision of 1/32 and failure probability ≤ 1/8, that
is

Pr[|ϕMi − σi|mod 1 > 1/32] < 1/8. (29)

For simplicity, let us look at the 2-round algorithm of FPE and Mi =
∑

j∈S 2
j , S = {s ∈ N|1 ≤

s ≤ n} and2 |S| ≈ log n [11]. Denote ϕMi as ϕi. When K = I2, the probability of the post
measurement state is

Pr(0|i) = 1 + cos(2πϕi)

2
, Pr(1|i) = 1− cos(2πϕi)

2
. (30)

In order to recover ϕi, we can estimate Pr(0|i) with higher probabilities by iterating the process.
But we also need to distinguish between ϕi and −ϕi. This can be solved by the same Hadamard
test in Figure 1, but instead we use the gate K =

√
σz. The probabilities of the post-measurement

states based on the modified Hadamard test become

Pr(0|i) = 1− sin(2πϕi)

2
, Pr(1|i) = 1 + sin(2πϕi)

2
. (31)

Hence, we have enough information to recover ϕk from the estimates of the probabilities.
In the first Hadamard test (Eq. 30), in order to estimate Pr(1|i) an iteration of Hadamard tests

should be applied to obtain the required precision of 1/32 (see Eq. 29) for ϕi. To get an estimate

2No matter how many rounds there are, the very last round must have S of size log n
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of Pr(1|i), we can count the number of states |1〉 in the post measurement state and then divide
that number by the total number of iterations.

The Hadamard test outputs |0〉 or |1〉 with a fixed probability. We can model an iteration
of Hadamard tests as Bernoulli trials with success probability (obtaining |1〉) being pi. The best
estimate for the probability of obtaining the post measurement state |1〉 with κ samples is

p̃i =
h

κ
, (32)

where h is the number of ones in κ trials. In order to find sin(2πϕi) and cos(2πϕi), we can use
estimates of probabilities in Eq. 30 and Eq. 31. Let si be the estimate of sin(2πϕi) and ti the
estimate of cos(2πϕi). It is clear that if

|p̃i − pi| < δ/2, (33)

then
|si − sin(2πϕi)| < δ, |ti − cos(2πϕi)| < δ. (34)

As the inverse tangent function is more robust to error than the inverse sine or cosine functions,
we use

ϕ̃i =
1

2π
arctan

(
si
ti

)
(35)

as the estimation of ϕi. By the condition given Eq. (29), the following constraint

Pr[|ϕMi −
1

2π
tan−1(

si
ti
)| ≤ 1/32]mod 1 > 7/8 (36)

must be satisfied.
The inverse tangent function can not distinguish between the two values ϕi and ϕi ± 1/2.

However, because we find estimates of the sine and cosine functions as well, the correct value can
be determined properly. It is easy to see, in order to estimate the phase ϕi with precision 1/32, we
should make sure that∣∣∣∣∣tan

−1 sin(2πϕi)√
1− sin2(2πϕi)

− tan−1 sin(2πϕi) + δ√
1− sin2(2πϕi)− δ

∣∣∣∣∣ ≤ π/16 (37)

is satisfied. We obtain δ ≤ 1
4

√
1− 1√

2
and therefore the error of estimated probabilities should be

less than 1
8

√
1− 1√

2
. By use of the simpler bound of Chernoff-Hoeffding theorem, the number of

repetition, m, should satisfy

Pr

(∣∣∣∣∣
1

m

m∑

i=0

Xi − pi

∣∣∣∣∣ >
δ

2

)
≤ 2e−2( δ

2
)2m ≤ 1/16. (38)

Because we have to estimate both sine and cosine, the failure probability is 1/16, instead of 1/8.
The total number of repetition is therefore C = 2m ≈ 756. The algorithm later generates the
estimate of each βj that needs to satisfy

Pr[|2j−1ϕ− βj |mod 1 > 1/16] < e−s2S ≤ 1/4n. (39)

Hence, if we choose S = lnn, then s2 = ln 4n/ln n. If we are sampling from a uniform distribution

for selecting S different numbers for each iteration i, then for s2n iterations each unitary U2l−1

where 1 ≤ l ≤ n will be summoned at least s2 · S · C times. Therefore, the number of unitary U
invocation will be s2 · S · C · (2n − 1).
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3 Cost Estimation

The cost of phase estimation comes from phase kick back and inverse quantum Fourier transform. In
this section, we will compare these three approaches under the perfect and the imperfect scenarios.
Suppose unitary U can be decomposed into γ logical gates. In the perfect scenario we assume
that the unitary can be perfectly simulated and the cost of simulating a logical gate is one. In the
imperfect case, a logical gate can only simulated imperfectly and we need to determine how the
imperfection affects the required number of repetition.

3.1 Perfect Gate Generation

The cost of phase kick back is in direct proportion to the number of required measurements. As
shown in the analysis in section 2, In comparison to Kitaev’s approach, even though FPE has
significantly reduced the number of required measurements but it invokes at least 14 times more
than Kitaev’s in invoking the unitary U for phase kick back. The cost of rotation gates only occurs
in the ACPA method and the number of rotation gate invocations is

kn
2 ln(4n)

(1− π2

22k−1 )2
. (40)

In comparison to the cost of the phase kick back, for any n the contribution from the cost of rotation
gates is negligible. The logic is that the cost in Eq. 40 will only carry a small factor for lnn with
various k. Due to the fact that k is integer and k ≥ 3, the case where the denominator is 0, i.e.
k ≈ 2.2, never occurs. Therefore, the cost of logical gate invocation in phase kick back in ACPA is
by far larger than the cost of rotation gate invocations (kn lnn v.s. γ2

n−1).
In Fig. 4 and Fig. 5, where k ∈ [3, 10] and n ∈ [1, 100], we plot the ratio between the numbers

of unitary U invocations among the three approaches. We can see that as k goes up, we should
choose ACPA as the total invocation of the unitary U is significantly reduced, in comparison to
those that use Hadamard test.
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Figure 4: Ratio: Kitaev/ours.
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Figure 5: Ratio: FPE/ours.

Here we summarize the result in Table 1.
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Case Kitaev Faster Phase Estimation Ours Perfect

Measurements n · (76 + 55 ln(4n)) n · (log log(4n) + C · s2) n · 2 ln(4n)

(1− π2

22k−1
)2

Elementary gates (76 + 55 ln(4n)) · γ2n−1 (log(log 4n) + S · s2 · C) · γ2n−1 2 ln(4n)

(1− π2

22k−1
)2

· (γ2n−1 + kn)

Table 1: Phase kick back invocations. s2 =
ln(4n)
lnn , S = lnn.

3.2 Imperfect Gate Generation

In reality, we cannot generate the rotation gate perfectly. We can only generate rotation gate R̃k

that is η-close to rotation gate Rk. When considering the success probability of estimating each
eigenphase bit, the errors propagated from imperfect gate simulations must also be considered.
As mentioned in the perfect case, our approach has extra cost in the rotation gates. We need to
examine the impact of imperfect rotation gates on the success probability because it directly affects
the required number of repetition. Similar to the analysis in the perfect case, we have the same
constraints but the analysis slightly varies. The Eq. 22 would become

Pr(0|j) = cos2(πθ̃), Pr(1|j) = sin2(πθ̃) (41)

where θ̃ = θ+(k−1)η < 1
2k

+(k−1)η as the error propagates from the imperfect gate simulations.

Let us choose η = 1
(k−1)2k

. By following the same computation logic in Eq. 23 and Eq. 24, we have

the success probably of estimating the eigenphase bit correctly as

P (0|j) = cos2(πθ̃) ≥ cos2(
π

2k−1
) =

cos(2τ) + 1

2
> 1− τ2 (42)

where τ = π
2k−1 . Therefore, Eq. 27 can be rewritten as

m =
2 ln(1/ε)

(1− 2(τ)2)2
=

2 ln(4n)

(1− π2

22k−3 )2
(43)

in this scenario. It is clear to see that the result is almost identical to the perfect case, except the
value of k in the perfect case is now shifted to the left by 1 in the imperfect case. From Fig. 63 we
know that the smallest ratio occurs when 3 < k < 4 (to be exact, it should be around 3.2 as the
imperfect case is the perfect case shifted to the left by 1). When k = 3, the ratio is about 1.7 and
when k = 4, the ratio is around 14 . Because k must be an integer in our case, we know that in
the imperfect case the number of required repetition is still smaller than other the two approaches.
Hence, the number of unitary U invocations in our approach still requires fewer resources.

3As k gets larger, the figure would be identical to Fig. 4
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There are some clever approaches [5, 12] for simulating rotation gates. For instance, in a recent
paper [12], the authors show the cost of such a gate is O(logc(1/η)) where 1.12 ≤ c ≤ 2.27 and
η is the rotation angle error. In Solovay-Kitaev’s decomposition theorem, c is around 3.94 and is
bounded from below by 1. By applying the cost function given in the decomposition theorem, the
extra cost in ACPA would be

kn · 2 ln(4n)

(1− π2

22k−3 )2
· O(logc(1/η)) = O((k + log k)c(kn · 2 ln(4n)

(1− π2

22k−3 )2
)). (44)

Similar to the argument in the perfect case, the extra cost (O((k + log k)c(kn lnn)) v.s. γ2
n−1) is

negligible (by use of L’Hôpital’s rule) when n is large and k is small (as we are discussing constant
precision rotation gates) and c is a constant less than 4.

4 Discussion

In this work, we are analyzing the three approaches solely in terms of the circuit complexity. Hence,
it pays off if higher degree of rotation gates can be implemented as it significantly reduces the cost
from phase kick back. However, if we need to consider time complexity when multiple eigenvectors
are available and higher degrees of rotation gates are unfeasible, Hadamard test based approaches
should be chosen as they can be run in parallel while the ACPA can be run partially in parallel.
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