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Abstract

It is known that under some assumptions the hitting time in quantum
Markov chains is quadratically smaller than the hitting time in classical
Markov chains. This work extends this result for decoherent quantum
Markov chains. The decoherence is introduced using a percolation-like graph
model, which allows us to define a decoherent quantum hitting time and to
establish a decoherent-intensity range for which the decoherent quantum
hitting time is quadratically smaller than the the classical hitting time. The
detection problem under decoherence is also solved with quadratic speedup
in this range.

1 Introduction

In Computer Science, Markov chains are employed in randomized algorithms
such as searching algorithms on graphs. The expected time to reach a vertex for
the first time, known as hitting time, plays an important role in those algorithms
as the running time to find a solution. For instance, randomized algorithms are
used to address the k-SAT and the graph connectivity problem [15].

In the classical case, Markov chains and random walks are equivalent for-
malisms. In the quantum case, there are three versions of quantum walks:
1) discrete-time quantum walks [1], 2) continuous-time quantum walks [8], and
3) Szegedy’s formalism [21]. All of them have been used for developing quantum
algorithms that outperform their classical versions [19, 4, 7, 3, 11, 22]. These
models use Hilbert spaces of different size and they seem to be non-equivalent.
Reference [25] reviews the discrete-time quantum walk and its relationship with
the continuous-time quantum walk. Our focus is the Szegedy’s formalism, which
is also called quantum Markov chain.

Szegedy [21] showed that the quantum hitting time has a quadratic improve-
ment over the classical one to detect a set of marked vertices for ergodic and sym-
metric Markov chains. This model was developed further by Magniez et al. [14],

1

http://arxiv.org/abs/1204.6238v4


who described a quantum algorithm with quadratic speedup for finding a marked
vertex on reversible, state-transitive Markov chains restricted to the case of only
one marked vertex. Recently, Krovi et al. [11] showed that the quadratic speedup
for finding a marked vertex also holds for any reversible Markov chain using a
new interpolating algorithm. Santos and Portugal [18] worked out the details of
Szegedy’s model on the complete graph, obtaining analytical results.

When implementing quantum systems, decoherence problems are inevitable.
It is impossible to completely isolate a real physical system and interactions with
the environment will reduce or possibly destroy quantum coherence. These gen-
erally undesired effects are present in quantum walk implementations. Hence,
it is crucial to understand how decoherence affects them. Many papers address
this issue. Brun et al. [5] analyzed the transition of a discrete-time quantum
walk to a classical random walk by introducing decoherence in the coin opera-
tor. Kendon and Tregenna [10] also studied decoherence in the coin operator
and highlighted some useful application of decoherence. Romanelli et al. [17]
analyzed the decoherence produced by random broken links of a one-dimensional
lattice. This technique was generalized for the two-dimensional case by Oliveira
et al. [16]. Alagic and Russel [2] analyzed the effect of performing independent
measurements on the continuous-time quantum walk on the hypercube. A review
on decoherence in quantum walks can be found in [9].

Decoherence inspired by percolation graphs was analyzed in many papers [17,
16, 23, 12, 13], using the discrete-time and the continuous-time quantum walk
models. Recently, Kollar et al [24] analyzed the asymptotic behavior of discrete-
time quantum walks affected by a similar model of decoherence. Previous to our
work, decoherence in Szegedy’s formalism was studied by Chiang and Gomez [6],
who analyzed the sensibility to perturbation due to system’s precision limita-
tions, by adding a symmetric matrix E, representing the noise, to the transition
probability matrix. The quadratic speedup vanishes when the magnitude of the
noise ||E|| is greater or equal to Ω(δ(1 − δǫ)), where δ is the spectral gap of the
transition probability matrix of the graph and ǫ is the ratio between the number
of marked vertices and the number of vertices of the graph.

Our contribution in this paper is to investigate the effects of decoherence
on quantum Markov chains using percolation-like graphs. Our focus is on the
quantum hitting time behavior in the presence of this kind of decoherence. By
performing averages over all possible evolution operators affected by the deco-
herence, we are able to define a decoherent quantum hitting time. We obtain
a percolation-probability range in which the quadratic speedup on the quantum
hitting time for ergodic and symmetric Markov chains is still valid. We show that
the problem of detecting a set of marked vertices is also solved with a quadratic
speedup in this range.

This paper is organized as follows. In Sec. 2, we review Szegedy’s quantum
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walk and the definition for the quantum hitting time. In Sec. 3, we describe
the decoherence model on Szegedy’s quantum walk and we define the decoherent
quantum hitting time. The bound obtained for the decoherent quantum hitting
time is presented in Sec. 4. In Sec. 5, we analyze the Detection Problem and, in
Sec. 6, we draw our conclusions.

2 Quantum Markov Chains

Szegedy [21] has proposed a quantum walk driven by reflection operators in
an associated bipartite graph obtained from the original one by a process of
duplication. Let Γ(X,E) be a connected, undirected and non-bipartite graph,
where X is the set of vertices and E is the set of edges. Consider that the
stochastic matrix P associated with this graph is symmetric and pxy are its
components. Define a bipartite graph associated with Γ(X,E) through a process
of duplication. X and Y are the sets of vertices of same cardinality of the bipartite
graph. Each edge {xi, xj} in E of the original graph Γ(X,E) is converted into
two edges in the bipartite graph {xi, yj} and {yi, xj}.

To define a quantum walk in the bipartite graph, we associate with the graph
a Hilbert space Hn2

= Hn ⊗Hn, where n = |X| = |Y |. The computational basis
of the first component is

{∣

∣x
〉

: x ∈ X
}

and of the second
{∣

∣y
〉

: y ∈ Y
}

. The

computational basis of Hn2

is
{∣

∣x, y
〉

: x ∈ X, y ∈ Y
}

. The quantum walk on
the bipartite graph is defined by the evolution operator UP given by

UP := RB RA, (1)

where

RA = 2AAT − In2 , (2)

RB = 2BBT − In2 , (3)

with the operators A : Hn → Hn2

and B : Hn → Hn2

defined as follows

A =
∑

x∈X

∣

∣Φx

〉〈

x
∣

∣, (4)

B =
∑

y∈Y

∣

∣Ψy

〉〈

y
∣

∣, (5)

and

∣

∣Φx

〉

=
∣

∣x
〉

⊗





∑

y∈Y

√
pxy
∣

∣y
〉



 , (6)
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∣

∣Ψy

〉

=

(

∑

x∈X

√
pyx
∣

∣x
〉

)

⊗
∣

∣y
〉

. (7)

In the bipartite graph, an application of UP corresponds to two quantum
steps of the walk, from X to Y and from Y to X. We have to take the partial
trace over the space associated with Y to obtain the state on the set X.

2.1 Coherent Quantum Hitting Time

Instead of using the stochastic matrix P , Szegedy defined the quantum hitting
time by using a modified evolution operator UP ′ associated with a modified
stochastic matrix P ′, which is given by

p′xy =

{

pxy, x 6∈M ;
δxy, x ∈M ,

(8)

whereM is the set of marked vertices. The initial condition of the quantum walk
is

∣

∣ψ(0)
〉

=
1√
n

∑

x∈X
y∈Y

√
pxy
∣

∣x, y
〉

. (9)

Note that
∣

∣ψ(0)
〉

is an eigenvector of UP with eigenvalue 1. However,
∣

∣ψ(0)
〉

is
not an eigenvector of UP ′ in general.

Definition 2.1 [21] The quantum hitting time HP,M of a quantum walk with
evolution operator UP given by Eq. (1) and initial condition

∣

∣ψ(0)
〉

is defined as
the least number of steps T such that

F (T ) ≥ 1− m

n
, (10)

where m is the number of marked vertices, n is the number of vertices of the
original graph and F (T ) is

F (T ) =
1

T + 1

T
∑

t=0

∥

∥

∥
U t
P ′

∣

∣ψ(0)
〉

−
∣

∣ψ(0)
〉

∥

∥

∥

2
, (11)

where U t
P ′ is the evolution operator after t steps using the modified stochastic

matrix.

The key operator to find the spectral decomposition of UP ′ is C = ATB [21].
The components of Cxy are

√
pxypyx. We have to replace pxy by p′xy. Then, we

have

C =

(

PM 0
0 Im

)

, (12)
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where PM is the matrix that we obtain from P by deleting its rows and columns
indexed by M . The eigenvectors and eigenvalues of the evolution operator are
obtained from the singular decomposition of the operator C. Therefore, its sin-
gular values and vectors are directly related to the spectral decomposition of PM

and we can write each of these singular values as cos θ for some 0 ≤ θ ≤ π
2 .

Lemma 6 of Szegedy’s paper [21] states that HP,M is at most

100

1− m
n

n−m
∑

k=1

ν2k
√

1− λ′k
, (13)

where λ′1, . . . , λ
′
n−m are the eigenvalues of PM and

∣

∣v′1
〉

, . . . ,
∣

∣v′n−m

〉

are the as-
sociated normalized eigenvectors. Coefficients νk are defined such that

∣

∣û
〉

=
∑n−m

k=1 νk
∣

∣v′k
〉

for
∣

∣û
〉

=
1√
n
1, where 1 is the (n − m)-dimensional vector with

entries equal to 1.

3 Decoherent Quantum Hitting Time

Percolation model was introduced in the context of a porous media for analyzing
liquid flows, and is now a paradigm model of statistical physics [20]. The de-
coherence model inspired by percolation can be explained in the following way:
Suppose that a walker is on a vertex of a graph. Before moving to the neigh-
boring vertices, each edge can be removed and each non-edge can be inserted
with probability p. With probability 1 − p, an edge stays unchanged and the
same is valid for a non-edge. After this change in the graph topology, the walker
moves following the dynamics of the model. The original graph is reset and the
process is repeated over in the next step. This decoherence model is called bond
percolation.

The occurrence probability of a given Pi is determined as follows. If 0 < p < 1,
then Pr(Pi) = (1 − p)ac−adpad , where ac =

n(n−1)
2 is the number of edges of the

complete graph with n vertices and ad is the number of edges removed plus the
number of edges included to obtain Pi from P . If p = 0, Pr(Pi = P ) = 1, and
Pr(Pi 6= P ) = 0. And, if p = 1, we have Pr(Pi = P̄ ) = 1, and Pr(Pi 6= P̄ ) = 0,
where P̄ is the complement of P . The evolution under maximum decoherence
occurs when p = 1/2, since at each step a random graph is selected.

Another decoherence model can be analyzed at this point. If only removal of
edges are allowed (no insertions), ac must be replaced by the number of edges of
the original graph and ad will be the number of removed edges.

The dynamics under decoherence has a new behavior, because at each step
the graph changes. This process changes the transition probability matrix, which
also changes the evolution operator. Therefore, instead of having a usual walk
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evolving as
∣

∣ψ(t)
〉

= U t
P

∣

∣ψ(0)
〉

, we have
∣

∣ψ(t)
〉

= UPt
UPt−1

· · ·UP1

∣

∣ψ(0)
〉

=: U~Pt

∣

∣ψ(0)
〉

, (14)

where ~Pt = (P1, . . . , Pt−1, Pt) and U~Pt
= UPt

UPt−1
· · ·UP1

. Pi’s are not necessarily
equal and they are independent and identically distributed. They are obtained
from P and for each Pi we have a P ′

i associated depending on the cardinality of
M .

In this context, it is useful to define an operator that will represent the be-
havior of the operators affected by the decoherence. Let

Ūdec :=
∑

P

Pr(P )UP , (15)

be the operator obtained by performing an average over all possible evolution
operators affected by the decoherence. The following result shows that the av-
erage over all possible sequences ~P , with size T , according to its probability
distribution, is equal to ŪT

dec.

Lemma 3.1 For t ≤ T we have
∑

~PT

Pr(~PT )U~Pt
= Ū t

dec. (16)

Proof Since Pr(~PT ) =
∏T

i=1 Pr(Pi), we have

∑

~PT

Pr(~PT )UPt
UPt−1

· · ·UP1
=
∑

~PT

T
∏

i=1

Pr(Pi)UPt
UPt−1

· · ·UP1

=
∑

PT

∑

PT−1

· · ·
∑

P2

(

T
∏

i=2

Pr(Pi)

)

UPt
UPt−1

· · ·UP2





∑

P1

Pr(P1)UP1





=
∑

PT

∑

PT−1

· · ·
∑

Pt+1

Pr(PT )Pr(PT−1) · · ·Pr(Pt+1)Ū
t
dec

= Ū t
dec

To define the quantum hitting time for the decoherent evolution, we have to
do an average over all possible sequences ~P . Define,

Fdec(T ) :=
∑

~PT

Pr(~PT )

(

1

T + 1

T
∑

t=0

∥

∥

∥U~Pt

∣

∣ψ(0)
〉

−
∣

∣ψ(0)
〉

∥

∥

∥

2
)

. (17)
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Lemma 3.2

Fdec(T ) = 2− 2

T + 1

T
∑

t=0

〈

ψ(0)
∣

∣Ū t
dec

∣

∣ψ(0)
〉

. (18)

Proof Expanding Eq. (17) and using that the initial condition and the evolution
operators are real, we obtain

Fdec(T ) =
∑

~PT

Pr(~PT )

(

1

T + 1

T
∑

t=0

(

2− 2
〈

ψ(0)
∣

∣U~Pt

∣

∣ψ(0)
〉

)

)

=
1

T + 1

T
∑

t=0



2− 2
〈

ψ(0)
∣

∣





∑

~PT

Pr(~PT )U~Pt





∣

∣ψ(0)
〉



 . (19)

Using Lemma 1, we obtain Eq. (18).

Now, we can naturally define the decoherent quantum hitting time (DQHT),
using the expression of Fdec obtained in Lemma 2.

Definition 3.3 The decoherent quantum hitting time Hdec
P,M of a quantum walk

with evolution operator UP given by Eq. (1) and initial condition
∣

∣ψ(0)
〉

given by
Eq. (9) is defined as the least number of steps T such that

Fdec(T ) ≥ 1− m

n
. (20)

Note that when p = 0, we have the original definition, since Ūdec = UP ′ .

4 Bounds on DQHT

It is important to mention that we are considering ergodic Markov chains with
symmetric transition matrix. Thus, the following result generalizes the result
from Szegedy [21] by introducing a decoherence term.

Theorem 4.1 The decoherent quantum hitting time Hdec
P,M of a quantum walk

with evolution operator UP , given by Eq. (1), initial condition
∣

∣ψ(0)
〉

, and p ≤
1

400acE
where

E =
1

1− m
n

n−m
∑

k=1

ν2k
arccos(λ′k)

, (21)

is at most

8

1− m
n

n−m
∑

k=1

ν2k
√

1− λ′k
+

1434 ac p
(

1− m
n

)2

(

n−m
∑

k=1

ν2k
√

1− λ′k

)2

. (22)
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Proof Using expression (22) and replacing λ′k by cos θk, define

T (p) = 8
n−m
∑

k=1

ν2k
(1− ǫ)

√
1− cos θk

+ 1434acp

(

n−m
∑

k=1

ν2k
(1− ǫ)

√
1− cos θk

)2

, (23)

where ǫ = m
n
. For now on, we are going to omit the dependence of p for the time

T . Using 1− cosα ≥ 2α2/5 (α ∈ (0, π/2]), we obtain

T ≤ 13

n−m
∑

k=1

ν2k
(1− ǫ)θk

+ 3585acp

(

n−m
∑

k=1

ν2k
(1− ǫ)θk

)2

. (24)

Using 1− cosα ≤ α2, we obtain

T ≥ 8

n−m
∑

k=1

ν2k
(1− ǫ)θk

+ 1434acp

(

n−m
∑

k=1

ν2k
(1− ǫ)θk

)2

. (25)

Using E =
∑n−m

k=1
ν2
k

(1−ǫ)θk
, we obtain

8E + 1434acpE
2 ≤ T ≤ 13E + 3585acpE

2. (26)

Let us write the initial condition as
∣

∣ψ(0)
〉

=
∣

∣ψM⊥

〉

+
∣

∣ψM

〉

, where

∣

∣ψM⊥

〉

=
1√
n

∑

x∈X\M
y∈X

√
pxy
∣

∣x
〉∣

∣y
〉

, (27)

∣

∣ψM

〉

=
1√
n

∑

x∈M
y∈X

√
pxy
∣

∣x
〉∣

∣y
〉

. (28)

Note that ‖
∣

∣ψM⊥

〉

‖2 = 1− ǫ and ‖
∣

∣ψM

〉

‖2 = ǫ. We want to show that Fdec(T ) is
greater than or equal to 1− m

n
when T is in the range (26). Using Eq. (19) and

∣

∣ψ(0)
〉

=
∣

∣ψM⊥

〉

+
∣

∣ψM

〉

, we can write Fdec(T ) as

Fdec(T ) = 2− 2(GM +GM,M⊥ +GM⊥), (29)

where

GM =
1

T + 1

∑

~PT

Pr(~PT )
T
∑

t=0

〈

ψM

∣

∣U~Pt

∣

∣ψM

〉

, (30)

GM,M⊥ =
1

T + 1

∑

~PT

Pr(~PT )
T
∑

t=0

(

〈

ψM⊥

∣

∣U~Pt

∣

∣ψM

〉

+
〈

ψM

∣

∣U~Pt

∣

∣ψM⊥

〉

)

,(31)
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GM⊥ =
1

T + 1

∑

~PT

Pr(~PT )

T
∑

t=0

〈

ψM⊥

∣

∣U~Pt

∣

∣ψM⊥

〉

. (32)

Let us establish bounds for GM , GM,M⊥ and GM⊥ :

GM ≤ 1

T + 1

∑

~PT

Pr(~PT )
T
∑

t=0

〈

ψM

∣

∣ψM

〉

= ǫ. (33)

Expression (31) can be expanded in two terms

GM,M⊥ =
1

T + 1
Pr
(

~PT = (P ′, ..., P ′)
)

T
∑

t=0

(

〈

ψM⊥

∣

∣U t
P ′

∣

∣ψM

〉

+
〈

ψM

∣

∣U t
P ′

∣

∣ψM⊥

〉

)

+
1

T + 1

∑

~PT 6=(P ′,...,P ′)

Pr(~PT )

T
∑

t=0

(

〈

ψM⊥

∣

∣U~Pt

∣

∣ψM

〉

+
〈

ψM

∣

∣U~Pt

∣

∣ψM⊥

〉

)

.

(34)

The first term of Eq. (34) is zero because
∣

∣ψM⊥

〉

is in the space spanned by A
∣

∣wk

〉

and B
∣

∣vk
〉

, that is invariant under the action of UP ′ . Taking ǫ ≤ 1/2,
〈

ψM⊥

∣

∣U~Pt

∣

∣ψM

〉

+
〈

ψM

∣

∣U~Pt

∣

∣ψM⊥

〉

≤ 2max
{〈

ψM

∣

∣ψM

〉

,
〈

ψM⊥

∣

∣ψM⊥

〉}

= 2max{ǫ, 1 − ǫ}
= 2(1− ǫ).

Then, using that (1− p)acT = 1− acpT + acTp2

2 (acT − 1) +O(p3), we have

GM,M⊥ ≤ 2(1 − ǫ)(1− (1− p)acT ) ≤ 2(1− ǫ)acpT. (35)

Finally for GM⊥ , we have

GM⊥ =
1

T + 1
Pr(~PT = (P ′, ..., P ′))

T
∑

t=0

〈

ψM⊥

∣

∣U t
P ′

∣

∣ψM⊥

〉

+

1

T + 1

∑

~PT 6=(P ′,...,P ′)

Pr(~PT )
T
∑

t=0

〈

ψM⊥

∣

∣U~Pt

∣

∣ψM⊥

〉

≤ (1− ǫ)(1− p)acT

T + 1

n−m
∑

k=1

ν2k
1− ǫ

T
∑

t=0

cos(2tθk) + (1− ǫ)(1 − (1− p)acT ).

From Eq. (13) of Szegedy’s paper [21], we know that

1

T + 1

n−m
∑

k=1

ν2k
1− ǫ

T
∑

t=0

cos(2tθk) ≤
1

T + 1

n−m
∑

k=1

4ν2k
(1− ǫ)θk

. (36)
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Using again the Taylor series expansion for (1− p)acT and that 4E
T

≤ 1
2 , we have

GM⊥ ≤ (1− ǫ)

(

(1− acpT )
4E

T
+ acpT

)

. (37)

From Eqs. (33), (35), and (37), we obtain

GM +GM,M⊥ +GM⊥ ≤ ǫ+ (1− ǫ)

(

4E

T
− 4acpE + 3acpT

)

. (38)

Using that T is in the range (26),

4E

T
− 4acpE +3acpT ≤ 1

2(1 + 179.25acpE)
+ 35acpE +10755a2cp

2E2 ≤ 1

2
, (39)

if we choose p ≤ 1
400acE

. Then, we have

GM +GM,M⊥ +GM⊥ ≤ ǫ+ 1

2
, (40)

and

Fdec(T ) ≥ 2− 2

(

ǫ+ 1

2

)

= 1− ǫ. (41)

Corollary 4.2 The decoherent quantum hitting time Hdec
P,M of UP with respect

to any M ⊆ X with m ≤ n/2 and 0 ≤ p ≤ 1
400acE

, where

E =
1

1− m
n

n−m
∑

k=1

ν2k
arccos(λ′k)

,

is in O

(

1√
1−λ(PM )

)

, where λ(PM ) is the largest eigenvalue of PM .

Proof Using 1− cosα ≥ 2α2/5, we obtain

E ≥ 1

2

n−m
∑

k=1

ν2k
1− ǫ

√

1

1− cos θk
(42)

and

p ≤ 1

200ac
∑n−m

k=1
ν2
k

1−ǫ

√

1
1−λ′

k

. (43)
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By substituting Eq. (43) for the expression of Hdec
P,M given by (22) and since

n−m
∑

k

ν2k

√

1

1− λ′k
≤

√

√

√

√

n−m
∑

k

ν2k
1− λ′k

≤
√

1

1− λ(PM )
, (44)

we conclude that Hdec
P,M is in O

(

1√
1−λ(PM )

)

.

Expression (22) of Theorem 1 shows that the decoherent hitting time has an
additional term that is proportional to the square of the usual term. If p is small
enough, the contribution of the new term for the hitting time scales as a linear
function in terms of p. Corollary 1 describes a range of p such that the quadratic
speedup is valid.

5 The Detection Problem

Let M ⊆ 2X be a set of non-empty subsets of M . The Detection Problem stands
as the problem of finding out if the set of marked vertices is either empty or
belongs to M.

Theorem 5.1 Assume that T is an upper bound for

16

n−|M |
∑

k=1

ν2k
√

1− λ′k
+ 5736acp





n−|M |
∑

k=1

ν2k
√

1− λ′k





2

, (45)

where M runs through all elements of M (λ′k and νk depend on M) and p obeys
the same inequality of Theorem 1. Then, the Detection Problem can be solved
within time T with bounded two-sided error.

Select 0 ≤ t ≤ T uniformly random and let U1, · · · , Ut be unitary operators
of the dynamics under decoherence. Algorithm 1 creates the state

1

2

∣

∣0
〉 (∣

∣ψ(0)
〉

+ UtUt−1...U1

∣

∣ψ(0)
〉)

+
1

2

∣

∣1
〉 (∣

∣ψ(0)
〉

− UtUt−1...U1

∣

∣ψ(0)
〉)

, (46)

which has an additional control register of one qubit. Note that, when using
Algorithm 1, we do not know if UP or UP ′ are being used. By measuring the
state given by Eq. (46) in the computational basis, the probabilities of having
the control register in state 0 and 1 are

P (0) =
1

4

∣

∣

∣

∣

∣

∣

∣

∣ψ(0)
〉

+ UtUt−1...U1

∣

∣ψ(0)
〉

∣

∣

∣

∣

∣

∣

2
, (47)
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Algorithm 1: Detect if marked

input : U1, · · · , Ut

output: 0 (M = ∅) or 1 (M ∈ M)
1 begin

2 prepare the state:
∣

∣0
〉∣

∣ψ(0)
〉

;
3 apply H to the control register;
4 apply C(U1), · · · , C(Ut), where C(U) is the controlled-U;
5 apply H to the control register;
6 measure in computational basis;
7 if the control register is 1 then

8 return 1

9 else

10 return 0

P (1) =
1

4

∣

∣

∣

∣

∣

∣

∣

∣ψ(0)
〉

− UtUt−1...U1

∣

∣ψ(0)
〉

∣

∣

∣

∣

∣

∣

2
. (48)

Now, analyzing the algorithm after measuring (Step 6), if M = ∅, the control
register is in state

∣

∣0
〉

with probability at least (1− p)acT , that is the probability
of having U = UP . IfM ∈ M, the control register is in state

∣

∣1
〉

with probability
at least

1

4(T + 1)

∑

~PT

Pr(~PT )

T
∑

t=0

∣

∣

∣

∣

∣

∣

∣

∣ψ(0)
〉

− U~Pt

∣

∣ψ(0)
〉

∣

∣

∣

∣

∣

∣

2
≥ 1

4

(

1− m

n

)

. (49)

Eq. (49) is obtained from Eq. (48) by performing two averages: an average on
time, because the algorithm chooses a time t at random, and another average on
the possible sequences ~PT since the algorithm can be affected by the decoherence.
Therefore, using that m

n
≤ 1

2 , we obtain 1 in the control register with probability
at least 1

8 , which means that there is at least one marked element.
This result can be improved if we consider the decoherence model which allows

only removal of edges from the graph (insertions are not allowed). We can solve
the Detection Problem within time T with bounded one-sided error, because the
initial condition will be invariant under the action of any UPi

when M is empty.
In this case, the probability to obtain 0 when there are no marked vertices is 1.

6 Conclusions

We have proposed a decoherence model on Szegedy’s quantum walk inspired by
percolation graphs. This model is characterized by the possibility of removing

12



or inserting edges at each time step with probability p. The graph probability
matrix and the evolution operator change at each time step. We were able to
define a decoherent quantum hitting time by using a new operator, which is
obtained by performing an average over all possible evolution operators affected
by the decoherence. Note that when the percolation probability p is zero, the
evolution operator is equal to Szegedy’s original definition and the decoherent
hitting time is equal to the original quantum hitting time [21].

We have proved that, for p small enough, the decoherent quantum hitting
time has an additional term which depends linearly on p, preserving the quadratic
speedup on the quantum hitting time over the classical case for some range of
p. Moreover, the Detection Problem can be solved in time of the order of the
DQHT with bounded two-sided error, and with bounded one-sided error if the
decoherence model does not allow edge insertions.

It is interesting to analyze the behavior of the hitting time in the complement
of the original graph. This case occurs when p = 1 and Ūdec = UP̄ ′ . Since the
initial condition is associated to the original graph P , it is easy to show that
∣

∣ψ(0)
〉

is invariant under the action of UP̄ ′ . This occurs because the initial
condition is a superposition over all edges of the original graph and those edges
do not exist in its complement. Thus,

∣

∣ψ(0)
〉

is an eigenvector of UP̄ ′ with
eigenvalue 1 and the quantum hitting time goes to infinity when p goes to 1.

In future works, it is interesting to obtain a better upper bound for the
DQHT. The approximations used in Eqs. (33), (35), and (37) help the analytical
calculations, but seem to weaken the final value of the bound. It is also interesting
to analyze the decoherence effects on spatial search algorithms.
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