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Atomic entanglement purification using photonic Faraday rotation
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We describe an entanglement purification protocol (EPP) for atomic entangled pair using photonic
Faraday rotation. It is shown that after the two single photons input-output process in cavity QED,
the high quality entangled atomic state can be obtained from the low quality mixed entangled atomic
states. Different from other EPPs, the two pairs of mixed states do not need to intact directly. As
the photonic Faraday rotation works on the low-Q cavities, this EPP is useful in both quantum
communication and computation.
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I. INTRODUCTION

Entanglement is the important resource in current quantum information processing [1]. For example, quantum
teleportaton [2, 3], quantum dense coding [4], quantum key distribution [5], quantum state sharing [6–8], and quantum
direct secure communication [9–11], they all require the maximally entangled state to set up the quantum channel.
However, the entanglement will inevitably interact with the environment and it will degrade during the process of
distribution and storage in the solid system.
Entanglement purification is a powerful way for distilling the high quality mixed entangled states in a small ensemble

from the low quality mixed states in a large ensembles. In the early works of entanglement purification, they usually
used the CNOT gates or similar logic gates, such as the entanglement purification protocol (EPP) proposed by Bennett
et. al. [12], the improved EPP proposed by Deustch et. al. [13], the EPP for multipartite entangled systems [14],
and so on [15]. In long-distance quantum communication, the photons as the flying qubits are the good candidate
for carrying quantum information. So there are many EPPs based on the photons. For example, In 2001, Pan et

al. proposed the EPP with the linear optics [16]. In 2003, they realized their protocol in experiment [17]. In 2002,
Simon and Pan proposed an EPP using spatial entanglement [18]. In 2008, EPP based on the cross-Kerr nonlinearity
was proposed [19]. There are also other EPPs for photonic systems [20–24]. Actually, the flying qubits distribute
the entangled states between distance locations, and they should be stored into the solid memory systems for the
further application. So there are other EPPs for such solid systems [25–31]. In 2005, Cao et al. proposed an EPP for
arbitrary unknown ionic states via linear optics [25]. In the same year, Feng et. al. proposed an EPP with charge
detection [26]. In 2006, Reichle et. al. reported their experimental report for purification of two-atom entanglement
[27]. In 2011, Wang et al. proposed an EPP for hybrid entangled state using quantum-dot and microcavity coupled
system [28].
On the other hand, over the pase decades, cavity quantum electrodynamics (QED) has become an important

platform for understanding the basic principle of quantum mechanics and quantum information processing [32]. Some
excellent experiments, such as the coupling of the trapped atoms with cavity [33], generation of single photons [34],
conditional logic gate [35] have been reported. However, the quantum information processing based on the high-Q
cavities and strong coupling to the confined atoms are still the challenge in current techniques. Interestingly, in 2009,
An et al. discussed the quantum information processing with a single photon by an input-output process with low-Q
cavities [36]. It is shown that the differently polarized photons can obtain different phase shift after they interacting
with an atom trapped in a low-Q cavity. It is so called the Faraday rotation. Based on the Faraday rotation,
the protocols for entanglement generation [37], quantum logic gates [38], quantum teleportation [39], controlled
teleportation [40], entanglement swapping [41] and entanglement concentration for atoms were proposed [42].
Inspired by above works with Faraday rotation [36–42], we discuss the EPP for entangled atomic systems. The

information of the entangled states are encoded in lambda configured three-level atoms trapped inside coupled cavities
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by optical fibers. Through the two single photons input-output process in cavity QED, we can extract the high fidelity
mixed entangled atomic state from two pairs of low fidelity mixed entangled states. The distinct feature of this EPP is
that the two pairs of atomic entangled states do not intact directly and can be purified by photonic Faraday rotation.
Furthermore, this EPP works on the low-Q cavities which lead this EPP feasible in current experimental condition.
This paper is organized as follows: In Sec. 2, we briefly discuss the basic principle of the photonic Faraday rotation.

In Sec. 3, we explain our EPP. In Sec. 4, we make a discussion and summary.

II. BASIC THEORETICAL MODEL OF PHONIC FARADAY ROTATION

In this section, we will explain the basic theoretical model for our protocol. As shown in Fig. 1, the cavity
coherently interacts with a trapped two-level atom. The atom has two degenerate round states |gL〉 and |gR〉. The
transitions between two ground states and the excited state |e〉 are assisted with left-circularly (L) and right-circularly
(R) polarized photon. The Hamiltonian of this system is written as [40, 41]

H =
∑

j=L,R

[
h̄ω0σjz

2
+ h̄ωca

†
jaj ] + h̄λ

∑

j=L,R

(a†jσj− + ajσj+) +HR, (1)

with

HR = HR0 + ih̄[

∫ ∞

−∞
dω

∑

j=L,R

α(ω)(b†j(ω)aj + bj(ω)a
†
j)]

+

∫ ∞

−∞
dω

∑

j=L,R

α(ω)(c†jσj− + cjσj+). (2)

Here a† and a are the creation and annihilation operators of the cavity field and the frequency of the cavity field is ωc.
The ω0 is the atomic frequency. The σR−, σR+, σL− and σR+ are the lowering and raising operators of the transition
R(L), respectively. HR0 means the Hamiltonian of the free reservoirs. The field and the atomic reservoirs are given
by

HRC = h̄

∫ ∞

−∞
dωb†jbj,

HRA = h̄

∫ ∞

−∞
dωc†jcj . (3)

The coupling amplitudes α =
√

κ/2π and α =
√

γ/2π, respectively. κ and γ are the cavity-field and atomic damping

rates. The b†j and c
†
j (bj and cj)are the creation (annihilation) operators of the reservoirs. We consider a single photon

FIG. 1: (a) The relevant three-level atomic structure confined in a cavity. |gR〉 and |gL〉 are the two degenerated ground states
which couple with a right (|R〉) and a left (|L〉) polarization photon, respectively. (b) Atomic configuration of the three-level
atom trapped in the low-Q cavity. Interaction between the atom and a single-photon pulse propagating input-output in the
low-Q cavity according to the photonic Faraday rotation.

pulse with frequency ωP input in the optical cavity as shown in Fig. 1 (b). In the rotating frame with respect to the
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frequency of the input pulse, the Heisenberg equation of the cavity mode driven by the corresponding cavity input
state can be written as

ȧj(t) = −[i(ωc − ωp) +
κ

2
]aj(t)− λσj−(t)−

√
λain,j(t),

σ̇j−(t) = −[i(ωc − ωp) +
γ

2
]]aj−(t)− λσiz(t)aj(t) +

√
γσz(t)bin,j(t). (4)

The input and output fields of the cavity are related by the intracavity field as

aout,j(t) = ain,j(t) +
√
κaj(t). (5)

We denote r(ω) ≡ aout,j(t)

ain,j(t)
as the reflection coefficient of the atom-cavity system. Here, assuming that we have a weak

excitation by the single-photon pulse on the atom initially prepared in the ground state, which means that we keep
〈σz〉 = −1 through out operation. Using the adiabatic approximation, we can obtain the input-output relation of the
cavity field in the form of [37, 40, 41]

r(ωp) =
[i(ωc − ωp)− κ

2 ][i(ω0 − ωp) +
γ
2 ] + λ2

[i(ωc − ωp) +
κ
2 ][i(ω0 − ωp) +

γ
2 ] + λ2

. (6)

From Eq. (6), if λ = 0, above equation for an empty cavity can be written as

r0(ωp) =
i(ωc − ωp)− κ

2

i(ωc − ωp) +
κ
2

. (7)

So if the atom initially is in the state |gL〉 and a photon with the |L〉 (left circular polarization) entrances into the
cavity, the |gL〉 ↔ |e〉 is due to the coupling of the cavity mode aL and the |L〉 photon. After the photon is reflected
to the output mode, the state becomes |L〉 → r(ωp)|L〉 ≈ eiθ|L〉. The output state leads a phase shift which is
determined by the parameter values of the cavity. Interestingly, if the atom initially is in the state |gL〉 and a photon
with the the |R〉 (right circular polarization) entrances into the cavity, it only senses the empty cavity. So after the
photon is reflected and in the output mode, it becomes |R〉 → r0(ωp)|R〉 ≈ eiθ0 |R〉. Therefore, if the initial photon
is in the linearly polarized state α|L〉+ β|R〉 and the atom is in the state |gL〉, after the photon passing through the
cavity and being reflected, it becomes

α|L〉+ β|R〉 → αeiθ|L〉+ βeiθ0 |R〉. (8)

On the other hand, if the atom is in the state |gR〉, we can also obtain the output mode of the photon as

α|L〉+ β|R〉 → αeiθ0 |L〉+ βeiθ|R〉. (9)

The ∆ΘF = θ − θ0 or ∆ΘF = θ0 − θ is called the Faraday rotation.
If we consider the cases that ω0 = ωc, ωp = ωc − κ

2 , and λ = κ
2 , we can obtain θ = π and θ0 = π

2 . The evolution of
the photon and atom can be written as

|L〉|0〉 → −|L〉|0〉, |R〉|0〉 → i|R〉|0〉,
|L〉|1〉 → i|L〉|1〉, |R〉|1〉 → −|R〉|1〉. (10)

Here |gL〉 ≡ |0〉 and |gR〉 ≡ |1〉.

III. EPP USING FARADAY ROTATION

Now we start to explain our protocol with a simple example. From Fig. 2, suppose that the entangled pairs of two
atoms a1 and b1, a2 and a2 are in the same mixed state written as

ρab = F |φ+〉ab〈φ+|+ (1− F )|ψ+〉ab〈ψ+|. (11)

Here |φ+〉ab = 1√
2
(|0〉a|0〉b+ |1〉a|1〉b), and |ψ+〉ab = 1√

2
(|0〉a|1〉b+ |1〉a|0〉b). From Eq. (11), the mixed state contains a

bit-flip error with the probability of 1−F . The two mixed states ρa1b1 ⊗ρa2b2 can be viewed as the four combinations
of pure states: with the probability of F 2, it is in the state |φ+〉a1b1 ⊗ |φ+〉a2b2 , with the equal probability F (1− F ),
it is in the state |φ+〉a1b1 ⊗ |ψ+〉a2b2 and |ψ+〉a1b1 ⊗ |φ+〉a2b2 , with the probability of (1 − F )2, it is in the state
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FIG. 2: A schematic drawing of the basic element of our EPP. Two pairs of low fidelity of mixed states a1b1 and a2b2 belong
to Alice and Bob. The two single-photon pulses are sent to the a1 and b1, respectively. According the the measurement results
of the photons, Alice and Bob decide to remain or discard the atomic entangled states.

|ψ+〉a1b1 ⊗ |ψ+〉a2b2 . Our EPP can be started as follows: first, Alice and Bob both prepare the single photon of the
form 1√

2
(|L〉 + |R〉). The two single photons are named p1 and p2, respectively, as shown in Fig. 2. Then they let

their photons entrance into the cavities. After the two photons coupling with the cavities, they will finally be output
of the cavities and detected by the two of the four single-photon detectors. If the detectors D1D3 or D2D4 fire, then
they remain the atomic mixed states, which is a successful case for purification. Otherwise, if the detectors D1D4 or
D2D3 fire, they will discard the atomic mixed states for it is a failure. The cross-combinations |φ+〉a1b1 ⊗ |ψ+〉a2b2

and |ψ+〉a1b1 ⊗ |φ+〉a2b2 cannot lead the D1D3 or D2D4 fire. In detail, the cross-combination item |φ+〉a1b1 ⊗ |ψ+〉a2b2

coupling with the two single photons evolves as

1√
2
(|L〉p1 + |R〉p1)⊗

1√
2
(|L〉p2 + |R〉p2)⊗ |φ+〉a1b1 ⊗ |ψ+〉a2b2

=
1

4
[(|L〉p1 + |R〉p1)⊗ (|L〉p2 + |R〉p2)⊗ (|0〉a1 |0〉a2 |0〉b1 |1〉b2 + |0〉a1 |1〉a2 |0〉b1 |0〉b2)

+ |1〉a1 |0〉a2 |1〉b1 |1〉b2 + |1〉a1 |1〉a2 |1〉b1 |0〉b2 ]
→ [−i(|L〉p1 − |R〉p1)⊗ (|L〉p2 + |R〉p2)⊗ (|0〉a1 |0〉a2 |0〉b1 |1〉b2 − |1〉a1 |1〉a2 |1〉b1 |0〉b2)
− i(|L〉p1 + |R〉p1)⊗ (|L〉p2 − |R〉p2)(|0〉a1 |1〉a2 |0〉b1 |0〉b2 − |1〉a1 |0〉a2 |1〉b1 |1〉b2).

(12)

The |φ+〉a1b1 ⊗ |φ+〉a2b2 coupling with the two single photons evolve as

1√
2
(|L〉p1 + |R〉p1)⊗

1√
2
(|L〉p2 + |R〉p2)⊗ |φ+〉a1b1 ⊗ |φ+〉a2b2

=
1

4
[(|L〉p1 + |R〉p1)⊗ (|L〉p2 + |R〉p2)⊗ (|0〉a1 |0〉a2 |0〉b1 |0〉b2 + |0〉a1 |1〉a2 |0〉b1 |1〉b2)

+ |0〉a1 |1〉a2 |1〉b1 |0〉b2 + |1〉a1 |1〉a2 |1〉b1 |1〉b2 ]

→ 1

4
[(|L〉p1 − |R〉p1)⊗ (|L〉p2 − |R〉p2)⊗ (|0〉a1 |0〉a2 |0〉b1 |0〉b2 + |1〉a1 |1〉a2 |1〉b1 |1〉b2)

− (|L〉p1 + |R〉p1)⊗ (|L〉p2 + |R〉p2)⊗ (|0〉a1 |1〉a2 |0〉b1 |1〉b2) + |1〉a1 |0〉a2 |1〉b1 |0〉b2)].
(13)

After the two photons reflect from two cavities respectively, both of each perform a Hadamard operation on their
photons and let them pass through the polarization beam splitters (PBSs) which transmit the |L〉 photon and reflect
the |R〉 photon, respectively. The Hadamard operation can be described as

|L〉 → 1√
2
(|L〉+ |R〉),

|R〉 → 1√
2
(|L〉 − |R〉). (14)
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Finally, the two photons are detected by single-photon detectors. From Eq. (12), the polarization of the photons are
different. They cannot lead the D1D3 or D2D4 fire. On the other hand, If the initial state is |ψ+〉a1b1 ⊗ |φ+〉a2b2 , they
can obtain the similar result analogy with Eq. (12). So the cross-combination items can be eliminated automatically.
Therefore, by selecting the cases that both Alice and Bob have the same measurement results |L〉, they will obtain

|Φ+〉 = 1√
2
(|0〉a1 |0〉a2 |0〉b1 |0〉b2 + |1〉a1 |1〉a2 |1〉b1 |1〉b2), (15)

with the probability of F 2, and

|Ψ+〉 = 1√
2
(|0〉a1 |0〉a2 |1〉b1 |1〉b2 + |1〉a1 |1〉a2 |0〉b1 |0〉b2), (16)

with the probability of (1− F )2. On the other hand, if both the measurements results are |R〉, they will obtain

|Φ+〉′ = 1√
2
(|0〉a1 |1〉a2 |0〉b1 |1〉b2 + |1〉a1 |0〉a2 |1〉b1 |0〉b2), (17)

with the probability of F 2, and

|Ψ+〉′ = 1√
2
(|0〉a1 |1〉a2 |1〉b1 |0〉b2 + |1〉a1 |0〉a2 |0〉b1 |1〉b2), (18)

with the probability of (1 − F )2. Finally, they perform the Hadamard operation on the atoms a2 and b2, which will
lead

|0〉 → 1√
2
(|0〉+ |1〉),

|1〉 → 1√
2
(|0〉 − |1〉). (19)

So if the measurement results is |0〉|0〉 or |1〉|1〉, they will obtain the new mixed state in a1b1 with

ρa1b1 = F ′|φ+〉a1b1〈φ+|+ (1− F ′)|ψ+〉a1b1〈ψ+|. (20)

Here F ′ = F 2

F 2+(1−F )2 . If F > 1
2 , F

′ > F . In this way, they can purify the bit-flip error. On the other hand, if

the measurement result is |0〉|1〉 or |1〉|0〉, they will obtain the |φ−〉a1b1 with the same fidelity F ′. Here |φ−〉a1b1 =
1√
2
(|0〉a1 |0〉b1 − |1〉a1 |1〉b1). In this case, one of the parities say Alice or Bob should perform a phase-flip operation on

her/his atom to obtain the state in Eq. (20). Once the bit-flip error can be purified, the phase-flip error can also be
purified, for the phase-flip error can be converted into the bit-flip error with the Hadamard operation and it can be
purified in a next round. That is, if a phase-flip error is existed, the mixed state can be written as

ρ′ab = F |φ+〉ab〈φ+|+ (1− F )|φ−〉ab〈φ−|. (21)

Before they starting the EPP, they first perform the Hadamard operations on their own atoms. The |φ+〉ab does not
change after the Hadamard operations while the |φ−〉ab will become |ψ+〉ab. They can get the same mixed states as
Eq. (11), which can be purified in a next round. In this way, they can purify an arbitrary mixed state.

IV. DISCUSSION AND SUMMARY

So far, we have briefly described our EPP. During the whole process, the photonic Faraday rotation acts as the key
role in the protocol. As we known, in Ref. [16], the polarization entangled state can be purified with the linear optics,
say PBS. Actually, during their protocol, the function of the PBS is to make a parity check. It is to distinguish the
|H〉|H〉 and |V 〉|V 〉 states from the |H〉|V 〉 and |V 〉|H〉 states, according to the photon number of the output mode
of the PBS. Her |H〉 (|V 〉) are the horizonal (vertical) polarization of the photon. Similarly, in Ref. [19], one can
make the parity check by the different phase shift of the coherent, after the photons and the coherent state coupling
with the cross-Kerr nonlinearity. In this paper, the photonic Faraday rotation essentially acts as the same role of the
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parity check after the photons passing through the two cavities. According to Eq. (10), if the photon couples with
the two cavities, we can obtain

|L〉|0〉|0〉 → |L〉|0〉|0〉, |R〉|0〉|0〉 → −|R〉|0〉|0〉,
|L〉|1〉|1〉 → −|L〉|1〉|1〉, |R〉|1〉|1〉 → |R〉|1〉|1〉,

|L〉|0〉|1〉 → −i|L〉|0〉|1〉, |R〉|0〉|1〉 → −i|R〉|0〉|0〉,
|L〉|1〉|0〉 → −i|L〉|1〉|1〉, |R〉|1〉|0〉 → −i|R〉|1〉|0〉. (22)

From Eq. (22), the 1√
2
(|L〉+ |R〉) photon will be flipped to 1√

2
(|L〉 − |R〉) if the atoms are in the even parity state

FIG. 3: The success probability PT is altered with the initial fidelity F . We choose F ∈ (0.5, 1) to ensure the initial mixed
state be entangled.

|0〉|0〉 or |1〉|1〉, while it does not change if the atoms are in the odd parity state |0〉|1〉 or |1〉|0〉. In this way, one can
make the parity check of the atoms by measuring the photon. Interestingly, we do not require the atoms to interact
directly. So the whole process essentially is the quantum nondemolition (QND) like Refs. [26, 29]. In their protocols,
by measuring the charges of the electrons, they can make the parity check, while in this protocol, with the help of
photonic Faraday rotation, we can realize the similar function by measuring the polarization of the photon.
The most advantage for using the photonic Faraday rotation is that the purified high fidelity mixed entangled

state can be remained. It is quite different from the EPP in Ref. [16]. In Ref. [16], after selecting the four-mode
cases, the four photons will be destroyed because of the post-selection principle. Therefore, they cannot perform the
further purification. In this paper, they remain or discard the atomic entanglement according to the polarization
of the photons. So the remained atomic entangled state can be improved to obtain the higher fidelity in the next
purification round.
From above discussion, one can find that the photon loss may be the main obstacle in realistic experiment. The

photon loss may occur due to cavity mirror absorption and scattering. It can also occurs on the fiber absorption and
the detector inefficiency. From Sec. 3, the successful condition of purification requires that Alice and Bob pick up
the cases that both the photons have the same polarization, according to the classical communication. Therefore, the
photon loss does not affect the fidelity of the mixed state. However, it will decrease the success probability of the
whole protocol. Suppose that the efficiency of the single-photon detector is ηd = 28% [43], the efficiency of coupling
and transmission of each photon through the single-mode fiber is Tf = 0.2, and the transmission of each photon
through the other optical components is To = 0.9. We can estimate the total success probability of our EPP as

PT = Pp × T 2
f × T 2

o × η2d. (23)

Here Pp = F 2 + (1− F )2. It is the success probability in the ideal case of purification. We calculate the total success
probability altered with the initial fidelity F in Fig. 3. It is shown that if F = 0.8, PT ≈ 1.7 × 10−3. By using the
generation rate 1 × 10−4s−1 of the single photons, our EPP can be realized within 0.1 s. Certainly, in a practical
experiment, in order to ensure the two photons reach the two cavities simultaneously, we can use the spontaneous
parametric down-conversion (SPDC) source to substitute the single-photon source. As shown in Ref. [44], a 25-mm-
long type-II PPLN waveguide generates both the input and the auxiliary photon using SPDC source. Then the pairs
are separated by a PBS and can be sent to the different cavities in distant locations.
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In conclusion, we have presented an EPP for atomic entanglement with photonic Faraday rotation. Through the
two single photons input-output process in cavity QED, one can obtain one pair of the high fidelity of the maximally
entangled state from two pairs of low fidelity mixed states. In our EPP, we require the low-Q cavity, the three-level
atom inside the cavity, some linear optics and the photon detectors to achieve the task. The most advantage of this
EPP is that the purified atomic entangled state can be remained to repeat to obtain the higher fidelity in the next
purification round. It maybe useful in current long-distance quantum communication and quantum computation.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 11104159, Open
Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics Scientific, Tsinghua
University, Open Research Fund Program of National Laboratory of Solid State Microstructures under Grant No.
M25020 and M25022, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions.

[1] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
[2] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state

via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
[3] Deng, F.G., Li, C.Y., Li,Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary

twoparticle entanglement. Phys. Rev. A 72, 022338 (2005)
[4] Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states.

Phys. Rev. Lett. 69, 2881 (1992)
[5] Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)
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