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Abstract

We investigate two-party quantum teleportation through noisy channels for multi-qubit

Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information

in the process. The dynamics of states is described by the master equation with the noisy channels

that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation

for n-qubit GHZ states n ∈ {4, 5, 6} where Lindblad operators correspond to the Pauli matrices

and describe the decoherence of states. Using the average fidelity we show that 3GHZ state is

more robust than nGHZ state under most noisy channels. However, nGHZ state preserves same

quantum information with respect to EPR and 3GHZ states where the noise is in x direction in

which the fidelity remains unchanged. We explicitly show that Jung et al. conjecture [Phys. Rev.

A 78, 012312 (2008)], namely, “average fidelity with same-axis noisy channels are in general larger

than average fidelity with different-axis noisy channels” is not valid for 3GHZ and 4GHZ states.
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I. INTRODUCTION

Quantum teleportation is a process based on classical communication that transmits the

quantum information from a location to another with the help of shared quantum entan-

glement between the sender and receiver. This process is a technique for transporting the

state of an atom or photon to the remote recipient even in the absence of quantum commu-

nication channels connecting the sender of the quantum state (called Alice) to the recipient

(called Bob) [1]. The original protocol of this process was firstly introduced by Bennett et

al. using the Einstein-Podolsky-Rosen (EPR) state as the quantum channel [2]. Quantum

teleportation using two qubit systems is discussed also in [3, 4].

Because of the strong connection between quantum entanglement and quantum teleporta-

tion, the usage of multiparticle entangled quantum states other than two-particle entangled

states for quantum teleportation has been the subject of various investigations [5, 6]. In par-

ticular, quantum teleportation with three-qubit GHZ state and W state is studied in Refs. [7–

12]. The possibility of teleportation of an unknown qubit using four-particle GHZ state is

discussed in Ref. [13]. It is also shown that the state in the form |ψ〉 = 1√
2
(|00q1〉+ |11q2〉)

allows perfect two-party teleportation in which |q1〉 and |q2〉 are arbitrary normalized single

qubit states [14].

In quantum information theory and quantum computation, fidelity is a measure to quan-

tify the closeness of two quantum states [1] and is closely related to quantum entanglement

[15], quantum phase transitions [16–18], and quantum chaos [19]. Fidelity can be also used

to quantify how much quantum information is lost due to noisy channel between initial and

final states. This reduction of fidelity is usually due to the interaction of quantum states

with environment which results in imperfect teleportation. Thus, the coherence of the en-

tangled state may be lost and it becomes a mixed state. Some efforts have been performed

in this direction to realize effective factors which cause this phenomenon [2, 20–22]. For

instance, Bennett et al. showed that the fidelity of teleportation and the range of accurately

teleported states reduce in the less entangled quantum channels [2].

The existence of noise is an unavoidable property in quantum teleportation process which

results is decoherence of states and the reduction of fidelity [23–25]. In particular, Oh et

al. using a pair of EPR states showed that the average fidelity and the range of teleported

states depend on the type of the noise that acts on the quantum channel and confirmed
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Bennett et al. results [23]. They solved analytically and numerically the master equation

with Lindblad structure and found the fidelity as a function of decoherence time and angles

of an unknown teleported state.

Note that analytically solving the Lindblad equation in the presence of the noise is not

a trivial task in general. Indeed, for multiparticle systems one needs to solve many coupled

differential equations that involve tedious computation. For example, for three-particle GHZ

state (3GHZ) the master equation reduces to 8 diagonal coupled differential equations and

28 off-diagonal coupled differential equations [26]. The situation is even worse for four-

particle GHZ state (4GHZ) that involves 16 diagonal coupled differential equations and 120

off-diagonal coupled differential equations.

In this paper, we analytically solve the master equation for n-particle GHZ state (n ∈
{4, 5, 6}) through various noisy channels. The number of coupled differential equations for

each case is considerably reduced by using a proper ansatz for the density matrix. The

ansatz is determined from the temporal evolution of the initial state of the system. We

obtain the fidelity of teleportation and the average fidelity of teleportation that depend on

the type of the noisy channel and compare the results with three-particle GHZ state. The

goal of this paper is to find out which state is better (loses less quantum information) in

the teleportation process with noisy channels. Therefore, although various noisy channels

were studied in Ref. [23], we discuss noisy channels which cause the quantum channels to

be mixed to compare nGHZ states in the process of teleportation.

The organization of this paper is as follows: Section II is devoted to general framework

used to evaluate the two-party quantum teleportation circuit. In Sec. III, we analytically

solve the Lindblad equation where the quantum channel is a four-particle GHZ state, i.e.,

|4GHZ〉. We transmit 4GHZ state through isotropic and Pauli noises and compute the

fidelity of teleportation. Moreover, we compare the robustness of 4GHZ state with 3GHZ

state in the noisy channels. Solving the master equation for 5GHZ and 6GHZ states when

Lindblad operators are in x and z directions is the subject of Secs. IV and V, respectively.

We present our conclusions in Sec. VI.
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FIG. 1: A circuit for quantum teleportation through noisy channels with EPR state. The two top

lines belong to Alice and the bottom line to Bob. M denotes measurement and the dotted box

represents noisy channel. The Lindblad operator is turned on inside the dotted box.

II. GHZ STATE, FIDELITY, AND LINDBLAD EQUATION

For n-particle system, an nGHZ state is a quantum state defined as follows

|nGHZ〉 = 1√
2

(

|0〉⊗n + |1〉⊗n
)

, (1)

where n > 2. Note that, teleportation with |EPR〉 through noisy channels is depicted in

Fig. 1 and it is discussed in Ref. [23]. Also, teleportation of 3GHZ state through various

noisy channels has been previously studied in Ref. [26]. Here, we are interested to investigate

the teleportation process for nGHZ state through noisy channels for n ∈ {4, 5, 6}. For this
purpose, we need to solve the master equation with Lindblad form [27]

∂ρ

∂t
= − i

h̄
[HS, ρ] +

∑

i,α

(

Li,αρL
†
i,α − 1

2

{

L†
i,αLi,α, ρ

}

)

, (2)

in which Li,α =
√
κi,ασ

(i)
α denote Lindblad operators that describe decoherence and act on

the ith qubit. Also, σ
(i)
α are the Pauli spin matrices of the ith qubit with α = {x, y, z}, κi,α

is the decoherence rate, and HS is the Hamiltonian of the system.

The unknown state to be teleportated can be written as a Bloch vector on a Bloch sphere

|ψin〉 = cos

(

θ

2

)

eiφ/2|0〉+ sin

(

θ

2

)

e−iφ/2|1〉, (3)

where θ and φ denote the polar and azimuthal angles, respectively. Fig. 2 shows a quan-

tum teleportation circuit through noisy channels with 4GHZ state in which the input state

involves five qubits as the product state of |ψin〉 and |4GHZ〉. The four top lines (qubits)
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FIG. 2: A circuit for quantum teleportation through noisy channels with 4GHZ state. The four

top lines belong to Alice and the bottom line to Bob. M denotes measurement and the dotted box

represents noisy channel. The Lindblad operator is turned on inside the dotted box.

belong to Alice and bottom one belongs to Bob. The difference of this circuit with the

teleportation circuit for EPR state (Fig. 1) is the presence of two more controlled-NOT

(CNOT) gates between ψin and 4GHZ states. After measurement of the top four qubits,

Bob gets the teleported state |ψout〉. It is convenient to describe the teleportation in terms

of the density operator

ρout = Tr1,2,3,4
[

Utelρin ⊗ ε(ρ4GHZ)U
†
tel

]

, (4)

where ρin = |ψin〉〈ψin| is density matrix of the unknown initial state and ε(ρ4GHZ) is the

density matrix after transmission through noisy channel which is given by the Lindblad

equation. In fact, ε is a quantum operation that maps ρ4GHZ to ε(ρ4GHZ) because of noisy

channel and ρ4GHZ = |4GHZ〉〈4GHZ|. Moreover, Utel is the unitary operator corresponding

to the quantum circuit and Tr1,2,3,4 is partial trace over first four qubits which belong to

Alice.

Fidelity can be used as a tool to measure how much information is lost or preserved

through noisy quantum channels in quantum teleportation process. It can be written as

the overlap between the input state |ψin〉 and the density operator for the teleported state

|ρout〉,
F = 〈ψin|ρout|ψin〉, (5)

that depends on an input state and the type of noise. For the perfect teleportation the

fidelity is equal to unity. Also, 1 − F indicates how much information is lost through the

teleportation process. For all possible unknown input states, the average fidelity is given by

F =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θF (θ, φ). (6)
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Similarly, we find the unitary operator, fidelity and average fidelity for 5GHZ and 6GHZ

states in the following sections.

III. FOUR-QUBIT GHZ STATE WITH NOISY CHANNELS

In this section, we analytically solve the Lindblad equation, Eq. (2), for 4GHZ state

through various noisy channels. First, consider (L2,x, L3,x, L4,x, L5,x) noise channel with

κ2,x = κ3,x = κ4,x = κ5,x = κ that acts on 4GHZ state. Also, here and throughout the paper

we assume HS = 0.

For this case, the Lindblad equation involves 16 diagonal and 120 off-diagonal coupled

linear differential equations which make this equation difficult to be solved analytically. To

overcome this problem, we find the time evolution of the density matrix for infinitesimal

time interval δt using the Lindblad equation as

ρ(δt) = ρ(0) +

[

∑

i,α

(

Li,αρ(0)L
†
i,α

)

− 1

2

{

L†
i,αLi,α, ρ(0)

}

]

δt, (7)

where

ρ(0) = |4GHZ〉〈4GHZ| = 1

2

[

|0〉⊗4〈0|⊗4 + |0〉⊗4〈1|⊗4 + |1〉⊗4〈0|⊗4 + |1〉⊗4〈1|⊗4
]

. (8)

Substituting ρ(0) in Eq. (7) results in

ε(ρ4GHZ)
∣

∣

∣

t=δt
=

1

2























1−4κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−4κδt
0 κδt 0 0 0 0 0 0 0 0 0 0 κδt 0
0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0
0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0
0 κδt 0 0 0 0 0 0 0 0 0 0 κδt 0

1−4κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−4κδt























, (9)

where n© denotes n diagonal zeros. Now, because of the form of the density matrix at t = δt,

we use the following ansatz for the density matrix for all times

ε(ρ4GHZ) =























a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a
0 b 0 0 0 0 0 0 0 0 0 0 0 0 b 0
0 0 b 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 c 0 0 0 0 0 0 0 0 c 0 0 0
0 0 0 0 b 0 0 0 0 0 0 b 0 0 0 0
0 0 0 0 0 c 0 0 0 0 c 0 0 0 0 0
0 0 0 0 0 0 c 0 0 c 0 0 0 0 0 0
0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0
0 0 0 0 0 0 c 0 0 c 0 0 0 0 0 0
0 0 0 0 0 c 0 0 0 0 c 0 0 0 0 0
0 0 0 0 b 0 0 0 0 0 0 b 0 0 0 0
0 0 0 c 0 0 0 0 0 0 0 0 c 0 0 0
0 0 b 0 0 0 0 0 0 0 0 0 0 b 0 0
0 b 0 0 0 0 0 0 0 0 0 0 0 0 b 0
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a























. (10)
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Inserting this matrix in the Lindblad equation, Eq. (2), gives us a set of three coupled

differential equations



















ȧ(t) = 4k
(

b(t)− a(t)
)

,

ḃ(t) = k
(

a(t)− 4b(t) + 3c(t)
)

,

ċ(t) = 4k
(

b(t)− c(t)
)

,

(11)

subject to the initial conditions a(0) = 1/2 and b(0) = c(0) = 0 (see Eq. (8)). The solutions

are readily given by



















a(t) = 1
16
(1 + 6e−4κt + e−8κt) ,

b(t) = 1
16
(1− e−8κt) ,

c(t) = 1
16
(1− 2e−4κt + e−8κt) .

(12)

In fact, the infinitesimal temporal behavior of the density matrix helped us to properly

suggest the solution and consequently reduced 136 coupled differential equations to three

coupled differential equations which are readily solved. It is now easy to check that ε(ρ4GHZ),

Eq. (10), exactly satisfies the Lindblad equation, Eq. (2), and the validity of the ansatz is

verfied.

Having ε(ρ4GHZ) and Utel which can be read off from Fig. 2, it is straightforward to compute

ρout. Thus, the fidelity reads

F (θ, φ) =
1

2

[

(1 + sin2 θ cos2 φ) + e−4κt(cos2 θ + sin2 θ sin2 φ)
]

, (13)

and the average fidelity is given by

F =
2

3
+

1

3
e−4κt. (14)

Now consider (L2,y, L3,y, L4,y, L5,y) and assume κ2,y = κ3,y = κ4,y = κ5,y = κ. Similar to

the previous case, using the infinitesimal time evolution of the density matrix

ε(ρ4GHZ)
∣

∣

∣

t=δt
=

1

2

























1−4κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−4κδt
0 κδt 0 0 0 0 0 0 0 0 0 0 −κδt 0
0 0 κδt 0 0 0 0 0 0 0 0 −κδt 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 0 0 κδt 0 0 0 0 −κδt 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 0 0 κδt −κδt 0 0 0 0 0 0
0 0 0 0 0 0 −κδt κδt 0 0 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 −κδt 0 0 0 0 κδt 0 0 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 −κδt 0 0 0 0 0 0 0 0 κδt 0 0
0 −κδt 0 0 0 0 0 0 0 0 0 0 κδt 0

1−4κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−4κδt

























, (15)
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we take the following ansatz

ε(ρ4GHZ) =

























a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a
0 b 0 0 0 0 0 0 0 0 0 0 0 0 −b 0
0 0 b 0 0 0 0 0 0 0 0 0 0 −b 0 0
0 0 0 c 0 0 0 0 0 0 0 0 c 0 0 0
0 0 0 0 b 0 0 0 0 0 0 −b 0 0 0 0
0 0 0 0 0 c 0 0 0 0 c 0 0 0 0 0
0 0 0 0 0 0 c 0 0 c 0 0 0 0 0 0
0 0 0 0 0 0 0 b −b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −b b 0 0 0 0 0 0 0
0 0 0 0 0 0 c 0 0 c 0 0 0 0 0 0
0 0 0 0 0 c 0 0 0 0 c 0 0 0 0 0
0 0 0 0 −b 0 0 0 0 0 0 b 0 0 0 0
0 0 0 c 0 0 0 0 0 0 0 0 c 0 0 0
0 0 −b 0 0 0 0 0 0 0 0 0 0 b 0 0
0 −b 0 0 0 0 0 0 0 0 0 0 0 0 b 0
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

























. (16)

Inserting this matrix in the Lindblad equation, Eq.(2), gives the previous set of coupled

differential equations, Eq. (11), and consequently the solutions agree with Eq. (12). For this

case the fidelity becomes

F (θ, φ) =
1

2

[

1 + (sin2 θ sin2 φ+ cos2 θ)e−4κt + sin2 θ cos2 φe−8κt
]

, (17)

and the average fidelity reads

F =
1

2
+

1

3
e−4κt +

1

6
e−8κt. (18)

For the third case consider (L2,z, L3,z, L4,z, L5,z) and assume κ2,z = κ3,z = κ4,z = κ5,z = κ.

The infinitesimal time evolution of the density matrix gives

ε(ρ4GHZ)
∣

∣

∣

t=δt
=

1

2

(

|0〉⊗4〈0|⊗4 + |1〉⊗4〈1|⊗4
)

+
1− 8κδt

2

(

|0〉⊗4〈1|⊗4 + |1〉⊗4〈0|⊗4
)

. (19)

So the ansatz is

ε(ρ4GHZ) = a
(

|0〉⊗4〈0|⊗4 + |1〉⊗4〈1|⊗4
)

+ b
(

|0〉⊗4〈1|⊗4 + |1〉⊗4〈0|⊗4
)

. (20)

Inserting this matrix in the Lindblad equation, Eq. (2), results in






ȧ(t) = 0,

ḃ(t) = −8k b(t),
(21)

subject to the initial condition a(0) = b(0) = 1/2. The solution is

ε(ρ4GHZ) =
1

2

(

|0〉⊗4〈0|⊗4 + |1〉⊗4〈1|⊗4
)

+
1

2
e−8κt

(

|0〉⊗4〈1|⊗4 + |1〉⊗4〈0|⊗4
)

. (22)

Also, the fidelity and its average read

F (θ, φ) = 1− 1

2

(

1− e−8κt
)

sin2 θ,

F =
2

3
+

1

3
e−8κt.

(23)
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The next noisy channel is the isotropic noisy channel. For this case, the master equation

involves twelve Lindblad operators (L2,α, L3,α, L4,α, L5,α) with α ∈ {x, y, z}. At t = δt we

have

ε(ρ4GHZ)
∣

∣

∣

t=δt
=

1

2























1−8κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−16κδt
0 2κδt 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2κδt 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 0 0 2κδt 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 0 0 2κδt 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2κδt 0 0 0 0 0 0
0 0 0 0 0 2© 0 0 2© 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2κδt 0 0 0 0
0 0 0 1© 0 0 0 0 0 0 1© 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2κδt 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2κδt 0

1−16κδt 0 0 0 0 0 0 0 0 0 0 0 0 1−8κδt























. (24)

So we take the ansatz

ε(ρ4GHZ) =























a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d
0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a























. (25)

Inserting this solution in the Lindblad equation, Eq. (2), we find






























ȧ(t) = 8k
(

b(t)− a(t)
)

,

ḃ(t) = 2k
(

a(t)− 4b(t) + 3c(t)
)

,

ċ(t) = 8k
(

b(t)− c(t)
)

,

ḋ(t) = −16k d(t),

(26)

subject to the initial conditions a(0) = d(0) = 1/2 and b(0) = c(0) = 0. The solutions are






























a(t) = 1
16

(

1 + 6e−8κt + e−16κt
)

,

b(t) = 1
16

(

1− e−16κt
)

,

c(t) = 1
16

(

1− 2e−8κt + e−16κt
)

,

d(t) = 1
2
e−16κt.

(27)

Also the fidelity is

F (θ, φ) =
1

2

[

1 + e−8κt cos2 θ + e−16κt sin2 θ
]

, (28)

and

F =
1

6

(

3 + e−8κt + 2e−16κt
)

. (29)
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To this end, we only considered the noisy channels with the same axis. Now, as a different-

axis noisy channel, consider (L2,x, L3,y, L4,z, L5,x) noise with κ2,x = κ3,y = κ4,z = κ5,x = κ

that exhibits the effects of noises in different directions. After an infinitesimal time interval

and using the Lindblad equation, the density matrix can be written as

ε(ρ4GHZ)
∣

∣

∣

t=δt
=

1

2



















1−6κδt 0 0 0 0 0 0 0 0 0 0 1−10κδt
0 κδt 0 0 0 0 0 0 0 0 κδt 0
0 0 2© 0 0 0 0 0 0 2© 0 0
0 0 0 κδt 0 0 0 0 −κδt 0 0 0
0 0 0 0 2© 0 0 2© 0 0 0 0
0 0 0 0 0 κδt κδt 0 0 0 0 0
0 0 0 0 0 κδt κδt 0 0 0 0 0
0 0 0 0 2© 0 0 2© 0 0 0 0
0 0 0 −κδt 0 0 0 0 κδt 0 0 0
0 0 2© 0 0 0 0 0 0 2© 0 0
0 κδt 0 0 0 0 0 0 0 0 κδt 0

1−10κδt 0 0 0 0 0 0 0 0 0 0 1−6κδt



















. (30)

So, the elements of the density matrix for all time can be read off as

ε(ρ4GHZ) =

























a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g
0 b 0 0 0 0 0 0 0 0 0 0 0 0 h 0
0 0 c 0 0 0 0 0 0 0 0 0 0 m 0 0
0 0 0 d 0 0 0 0 0 0 0 0 k 0 0 0
0 0 0 0 b 0 0 0 0 0 0 n 0 0 0 0
0 0 0 0 0 d 0 0 0 0 k 0 0 0 0 0
0 0 0 0 0 0 d 0 0 f 0 0 0 0 0 0
0 0 0 0 0 0 0 b h 0 0 0 0 0 0 0
0 0 0 0 0 0 0 h b 0 0 0 0 0 0 0
0 0 0 0 0 0 f 0 0 d 0 0 0 0 0 0
0 0 0 0 0 k 0 0 0 0 d 0 0 0 0 0
0 0 0 0 n 0 0 0 0 0 0 b 0 0 0 0
0 0 0 k 0 0 0 0 0 0 0 0 d 0 0 0
0 0 m 0 0 0 0 0 0 0 0 0 0 c 0 0
0 h 0 0 0 0 0 0 0 0 0 0 0 0 b 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

























, (31)

which leads to two sets of four and six coupled differential equations, namely































ȧ(t) = 3κ
(

b(t)− a(t)
)

,

ḃ(t) = κ
(

a(t)− 3b(t) + 2d(t)
)

,

ċ(t) = 3κ
(

d(t)− c(t)
)

,

ḋ(t) = κ
(

2b(t)− 3d(t) + c(t)
)

,

(32)

and


























































ḟ(t) = κ
(

− 5f(t) + 2h(t)−m(t)
)

,

ġ(t) = κ
(

− 5g(t) + 2h(t)− n(t)
)

,

ḣ(t) = κ
(

f(t) + g(t)− 5h(t)− k(t)
)

,

k̇(t) = κ
(

− h(t)− 5k(t) +m(t) + n(t)
)

,

ṁ(t) = κ
(

− f(t) + 2k(t)− 5m(t)
)

,

ṅ(t) = κ
(

− g(t) + 2k(t)− 5n(t)
)

,

(33)

subject to a(0) = g(0) = 1/2 and b(0) = c(0) = d(0) = f(0) = h(0) = k(0) = m(0) = n(0) =

10



TABLE I: Summary of F (θ, φ) and F through various noisy channels.

Noise 3GHZ 4GHZ

Pauli-X 1
2

[

(1 + sin2 θ cos2 φ) 1
2

[

(1 + sin2 θ cos2 φ)

+e−4κt(cos2 θ + sin2 θ sin2 φ)

]

+e−4κt(cos2 θ + sin2 θ sin2 φ)

]

F (θ, φ) Pauli-Y 1
2

[

1 + sin2 θ sin2 φe−2κt + cos2 θe−4κt 1
2

[

1 + (sin2 θ sin2 φ+ cos2 θ)e−4κt

+sin2 θ cos2 φe−6κt

]

+sin2 θ cos2 φe−8κt

]

Pauli-Z 1− 1
2(1− e−6κt) sin2 θ 1− 1

2(1− e−8κt) sin2 θ

isotropic 1
2(1 + cos2 θe−8κt + sin2 θe−12κt) 1

2(1 + cos2 θe−8κt + sin2 θe−16κt)

Pauli-X 2
3 + 1

3e
−4κt 2

3 + 1
3e

−4κt

F Pauli-Y 1
6(3 + e−2κt + e−4κt + e−6κt) 1

6(3 + 2e−4κt + e−8κt)

Pauli-Z 2
3 + 1

3e
−6κt 2

3 + 1
3e

−8κt

isotropic 1
6(3 + e−8κt + 2e−12κt) 1

6 (3 + e−8κt + 2e−16κt)

0. The solutions are readily found































a(t) = e2κtg(t) = 1
16

(

1 + 3e−2κt + 3e−4κt + e−6κt
)

,

b(t) = e2κth(t) = −e2κtn(t) = 1
16

(

1 + e−2κt − e−4κt − e−6κt
)

,

c(t) = −e2κtm(t) = 1
16

(

1− 3e−2κt + 3e−4κt − e−6κt
)

,

d(t) = e2κtf(t) = −e2κtk(t) = 1
16

(

1− e−2κt − e−4κt + e−6κt
)

.

(34)

Thus, the fidelity, F (θ, φ), and its average, F , are given by

F (θ, φ) =
1

2

[

1 + e−2κt cos2 θ + e−4κt sin2 θ cos2 φ+ e−6κt sin2 θ sin2 φ
]

, (35)

and

F =
1

6

(

3 + e−2κt + e−4κt + e−6κt
)

. (36)

In Table I, a summary of fidelity and average fidelity for 3GHZ [26] and 4GHZ states is

reported and compared. Also, their average fidelity versus time is depicted in Fig. 4 for vari-

ous noisy channels. Comparing 3GHZ and 4GHZ states shows that for (L2,x, L3,x, L4,x, L5,x)

noise both states have the same fidelity. This result also agrees with Bell state |β00〉 =

1√
2
(|00〉 + |11〉) [23]. However, for other cases 3GHZ state is more robust, i.e., loses less

11
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FIG. 3: The plot of time dependence of average fidelity through noisy channels for 4GHZ state.

quantum information in the quantum teleportation process with respect to 4GHZ state.

Note that, for the isotropic case, the fidelities are approximately equal. These results and

those obtained in Refs. [23, 26] show that increasing the number of qubits can enhance the

rate of information lost in quantum teleportation process. Moreover, using a proper ansatz

for the density matrix, we reduced the number of coupled differential equations from 136

to at most four coupled equations. Fig. 3 shows average fidelity for 4GHZ state through

various noises. As it can be seen from the figure, (L2,x, L3,x, L4,x, L5,x) noise does lose less

quantum information with respect to others. The next noise with small information lost is

(L2,x, L3,y, L4,z, L5,x) for κt < 0.2. However, for κt > 0.2, (L2,z, L3,z, L4,z, L5,z) noise repre-

sents a better behavior. Moreover, the isotropic noise and the noise in y direction always

result in low fidelity quantum teleportation. In the following sections, we exactly solve the

Lindblad equation for 5GHZ and 6GHZ states through two types of noisy channels.

IV. FIVE-QUBIT GHZ STATE WITH NOISY CHANNELS

In this section, we teleport 5GHZ state through noisy channels as depicted in Fig. 5. For

this case the solution of the Lindblad equation is a 32 × 32 matrix that results in a set of

32 diagonal and 496 off-diagonal coupled differential equations. However, we show that the

number of required equations can be considerably reduced by choosing appropriate ansatz

for the density matrix.

First, consider (L2,x,L3,x,L4,x,L5,x,L6,x) noise and assume κ2,x = κ3,x = κ4,x = κ5,x =

κ6,x = κ. The infinitesimal time evolution of the density matrix now reads

12
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isotropic
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FIG. 4: The plot of time dependence of average fidelity for Pauli-X (left up), Pauli-Y (right up),

Pauli-Z (left down), and isotropic (right down) noisy channels.

|ψin〉

|5GHZ〉{
s

❞

s

❞

s

❞

s

❞

H

s

X

s

Z

M

M

M

M

M

|ψout〉

FIG. 5: A circuit for quantum teleportation through noisy channels with 5GHZ state. The five

top lines belong to Alice and the bottom line to Bob. M denotes measurement and the dotted box

represents noisy channel. The Lindblad operator is turned on inside the dotted box.
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ε(ρ5GHZ)
∣

∣

∣

t=δt
=

1

2































1−5κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−5κδt
0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0
0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0
0 0 0 1© 0 0 0 0 0 0 0 0 0 0 1© 0 0 0
0 0 0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0 0 0
0 0 0 0 0 3© 0 0 0 0 0 0 0 3© 0 0 0 0
0 0 0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0 0 0
0 0 0 0 0 0 0 6© 0 0 6© 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 6© 0 0 6© 0 0 0 0 0 0 0
0 0 0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0 0 0
0 0 0 0 0 3© 0 0 0 0 0 0 3© 0 0 0 0 0
0 0 0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0 0 0
0 0 0 1© 0 0 0 0 0 0 0 0 0 0 1© 0 0 0
0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0
0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0

1−5κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−5κδt































. (37)

So we take the ansatz as

ε(ρ5GHZ) =































a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a
0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0
0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 c©1 0 0 0 0 0 0 0 0 0 0 c©1 0 0 0
0 0 0 0 b 0 0 0 0 0 0 0 0 b 0 0 0 0
0 0 0 0 0 c©3 0 0 0 0 0 0 c©3 0 0 0 0 0
0 0 0 0 0 0 b 0 0 0 0 b 0 0 0 0 0 0
0 0 0 0 0 0 0 c©6 0 0 c©6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c©6 0 0 c©6 0 0 0 0 0 0 0
0 0 0 0 0 0 b 0 0 0 0 b 0 0 0 0 0 0
0 0 0 0 0 c©3 0 0 0 0 0 0 c©3 0 0 0 0 0
0 0 0 0 b 0 0 0 0 0 0 0 0 b 0 0 0 0
0 0 0 c©1 0 0 0 0 0 0 0 0 0 0 c©1 0 0 0
0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a































. (38)

Here c©n denotes n diagonal c.

Now inserting this matrix in Lindblad equation, Eq. (2), four coupled differential equa-

tions are obtained as follows


















ȧ(t) = 5k
(

b(t)− a(t)
)

,

ḃ(t) = k
(

a(t)− 5b(t) + 4c(t)
)

,

ċ(t) = 2k
(

b(t)− c(t)
)

.

(39)

Solving this set of equations with the initial conditions a(0) = 1/2, b(0) = c(0) = 0, leads

to the following solution


















a(t) = 1
32

(

1 + 10e−4κt + 5e−8κt
)

,

b(t) = 1
32

(

1 + 2e−4κt − 3e−8κt
)

,

c(t) = 1
32

(

1− 2e−4κt + e−8κt
)

.

(40)

Substituting ε(ρ5GHZ) in Eq. (4) and using Eqs. (5) and (6) fidelity and its average are given

by

F (θ, φ) =
1

2

[

1 + sin2 θ cos2 φ+ e−4κt(cos2 θ + sin2 θ sin2 φ)
]

, (41)

F =
1

3

(

2 + e−4κt
)

. (42)
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For (L2,z,L3,z,L4,z,L5,z,L6,z) noise with κ2,z = κ3,z = κ4,z = κ5,z = κ6,z = κ, the infinitesi-

mal evolution matrix is

ε(ρ5GHZ)
∣

∣

∣

t=δt
=

1

2

(

|0〉⊗5〈0|⊗5 + |1〉⊗5〈1|⊗5
)

+
1− 10κδt

2

(

|0〉⊗5〈1|⊗5 + |1〉⊗5〈0|⊗5
)

. (43)

Using the ansatz

ε(ρ5GHZ) = a
(

|0〉⊗5〈0|⊗5 + |1〉⊗5〈1|⊗5
)

+ b
(

|0〉⊗5〈1|⊗5 + |1〉⊗5〈0|⊗5
)

, (44)

we obtain two coupled equations







ȧ(t) = 0,

ḃ(t) = −10kb(t),
(45)

subject to a(0) = 1/2, b(0) = 0. Therefore, the density matrix reads

ε(ρ5GHZ) =
1

2

(

|0〉⊗5〈0|⊗5 + |1〉⊗5〈1|⊗5
)

+
1

2
e−10κt

(

|0〉⊗5〈1|⊗5 + |1〉⊗5〈0|⊗5
)

, (46)

and the fidelity and its average are given by

F (θ, φ) = 1− 1

2

(

1− e−10κt
)

sin2 θ, (47)

F =
1

3

(

2 + e−10κt
)

. (48)

V. SIX-QUBIT GHZ STATE WITH NOISY CHANNELS

A quantum circuit for teleportation through noisy channels with 6GHZ state is depicted

in Fig. 6. In the dotted box the Lindblad operators act on the 64× 64 density matrix that

involves five Alice’s qubits and one Bob’s qubits. The Lindblad equation, Eq. (2), leads to

64 diagonal and 2016 off-diagonal linear coupled differential equations. However, similar to

previous sections, we first study infinitesimal temporal behavior of the density matrix and

use a proper ansatz to considerably reduce the number of required equations.

For (L2,x,L3,x,L4,x,L5,x,L6,x, L7,x) noise and κ2,x = κ3,x = κ4,x = κ5,x = κ6,x = κ7,x = κ,

the Lindblad operators after an infinitesimal time transform the input density matrix ρ(0) =

15
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FIG. 6: A circuit for quantum teleportation through noisy channels with 6GHZ state. The six top

lines belong to Alice and the bottom line to Bob. M denotes measurement and the dotted box

represents noisy channel. The Lindblad operator is turned on inside the dotted box.

|6GHZ〉〈6GHZ| to

ε(ρ6GHZ)
∣

∣

∣

t=δt
=

1

2



































1−6κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−6κδt

0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0

0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0

0 0 0 1© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0 0

0 0 0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0 0 0

0 0 0 0 0 3© 0 0 0 0 0 0 0 0 0 0 3© 0 0 0 0 0

0 0 0 0 0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0 0 0 0 0

0 0 0 0 0 0 0 7© 0 0 0 0 0 0 7© 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 14© 0 0 14© 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 κδt κδt 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 14© 0 0 14© 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 κδt 0 0 0 0 κδt 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 7© 0 0 0 0 0 0 7© 0 0 0 0 0 0 0

0 0 0 0 0 0 κδt 0 0 0 0 0 0 0 0 κδt 0 0 0 0 0 0

0 0 0 0 0 3© 0 0 0 0 0 0 0 0 0 0 3© 0 0 0 0 0

0 0 0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0 0 0

0 0 0 1© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0 0

0 0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0 0

0 κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 κδt 0

1−6κδt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−6κδt



































. (49)
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So consider the ansatz

ε(ρ6GHZ) =















































































a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0

0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0

0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0

0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0

0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0

0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d© 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0

0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0

0 0 0 0 0 c© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c© 0 0 0 0 0

0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0

0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0

0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0

0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a















































































, (50)

where c© and d© denote two diagonal c and d, respectively. Substituting this matrix into the

Lindblad equation leads to four coupled equations






























ȧ(t) = 6k
(

b(t)− a(t)
)

,

ḃ(t) = k
(

a(t)− 6b(t) + 5c(t)
)

,

ċ(t) = 2k
(

b(t)− 3c(t) + 2d(t)
)

,

ḋ(t) = −6k
(

c(t)− d(t)
)

,

(51)

subject to a(0) = 1/2 and b(0) = c(0) = d(0) = 0. Thus, the solutions read


























a(t) = 1
64
(1 + 15e−4κt + 15e−8κt + e−12κt) ,

b(t) = 1
64
(1 + 5e−4κt − 5e−8κt − e−12κt) ,

c(t) = 1
64
(1− e−4κt − e−8κt + e−12κt) ,

d(t) = 1
64
(1− 3e−4κt + 3e−8κt − e−12κt) ,

(52)

and finally

F (θ, φ) =
1

2

[

1 + sin2 θ cos2 φ+ e−4κt(cos2 θ + sin2 θ sin2 φ)
]

, (53)

F =
1

3

(

2 + e−4κt
)

. (54)
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For the last case, we study (L2,z,L3,z,L4,z,L5,z,L6,z, L7,z) noise with κ2,z = κ3,z = κ4,z =

κ5,z = κ6,z = κ7,z = κ. For this case, the temporal evolution matrix is

ε(ρ6GHZ)
∣

∣

∣

t=δt
=

1

2

(

|0〉⊗6〈0|⊗6 + |1〉⊗6〈1|⊗6
)

+
1− 12κδt

2

(

|0〉⊗6〈1|⊗6 + |1〉⊗6〈0|⊗6
)

, (55)

Therefore, using the ansatz

ε(ρ6GHZ) = a
(

|0〉⊗6〈0|⊗6 + |1〉⊗6〈1|⊗6
)

+ b
(

|0〉⊗6〈1|⊗6 + |1〉⊗6〈0|⊗6
)

, (56)

we obtain two simple differential equations







ȧ(t) = 0,

ḃ(t) = −12kb(t),
(57)

subject to a(0) = b(0) = 1/2. So the solution is given by

ε(ρ6GHZ) =
1

2

(

|0〉⊗6〈0|⊗6 + |1〉⊗6〈1|⊗6
)

+
1

2
e−12κt

(

|0〉⊗6〈1|⊗6 + |1〉⊗6〈0|⊗6
)

, (58)

and the fidelity and its average read

F (θ, φ) = 1− 1

2

(

1− e−12κt
)

sin2 θ, (59)

F =
1

3

(

2 + e−12κt
)

. (60)

VI. CONCLUSIONS

In this paper, we studied quantum teleportation through noisy channels for nGHZ states,

n ∈ {4, 5, 6}), so that the noisy channels lead to the quantum channels to be mixed states.

We exactly solved the Lindblad equation and obtained corresponding density matrices after

the transmission process. The Lindblad operators are responsible for the decoherence of

quantum states and are defined to be proportional to the Pauli matrices. Solving the Lind-

blad equation for n > 2 is not a trivial task in general. For instance, we need to solve 2080

coupled differential equations to find the density matrix for 6GHZ state. We overcame this

problem by studying the temporal evolution of the input state and using a proper ansatz for

the density matrix. Therefore, we reduced 2080 coupled equations to at most four coupled

equations which are readily solved. We found the fidelity and the average fidelity for various

cases and showed that for the Lindblad operators corresponding to x direction the fidelity

18



is the same for EPR and nGHZ states where n ∈ {3, 4, 5, 6}. However, 3GHZ state does

lose less quantum information for other types of noisy channel. Note that, In Ref. [26] the

authors only studied the same-axis noisy channels and conjectured that “average fidelity

with same-axis noisy channels are in general larger than average fidelity with different-axis

noisy channels”. However, we showed the failure of this conjecture for 4GHZ state which

is apparent in Fig. 3. In the appendix we showed this conjecture also fails for 3GHZ state

(see Fig. 7). In fact, for different-axes noises, the analytical solutions can be obtained in the

same way, but the number of coupled differential equations usually increases with respect

to the same-axes noises.
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FIG. 7: The plot of time dependence of average fidelity for (L2,x, L3,y, L4,z) noisy channels for

3GHZ state.

Appendix A

Here, we present quantum teleportation process through (L2,x, L3,y, L4,z) noisy channel

for 3GHZ state which is not studied in Ref. [26]. For this case, the density matrix after δt

reads

ε(ρ3GHZ)
∣

∣

∣

t=δt
=

1

2









1−2κδt 0 0 0 0 0 0 1−4κδt
0 0 0 0 0 0 0 0
0 0 κδt 0 0 −κδt 0 0
0 0 0 κδt κδt 0 0 0
0 0 0 κδt κδt 0 0 0
0 0 −κδt 0 0 κδt 0 0
0 0 0 0 0 0 0 0

1−4κδt 0 0 0 0 0 0 1−2κδt









. (A1)

So, we examine the following ansatz

ε(ρ3GHZ) =









a 0 0 0 0 0 0 d
0 b 0 0 0 0 e 0
0 0 c 0 0 f 0 0
0 0 0 c g 0 0 0
0 0 0 g c 0 0 0
0 0 f 0 0 c 0 0
0 e 0 0 0 0 b 0
d 0 0 0 0 0 0 a









, (A2)

which results in two sets of coupled equations


















ȧ(t) = 2k
(

c(t)− a(t)
)

,

ḃ(t) = 2k
(

c(t)− b(t)
)

,

ċ(t) = k
(

a(t) + b(t)− 2c(t)
)

,

(A3)

and






























ḋ(t) = k
(

g(t)− 4d(t)− f(t)
)

,

ė(t) = k
(

f(t)− 4e(t)− g(t)
)

,

ḟ(t) = k
(

e(t)− d(t)− 4f(t)
)

,

ġ(t) = k
(

d(t)− e(t)− 4g(t)
)

,

(A4)
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subject to a(0) = d(0) = 1/2 and b(0) = c(0) = e(0) = f(0) = g(0) = 0. The solutions are



















a(t) = e2κtd(t) = 1
8

(

1 + 2e−2κt + e−4κt
)

,

b(t) = −e2κte(t) = 1
8

(

1− 2e−2κt + e−4κt
)

,

c(t) = e2κtg(t) = −e2κtf(t) = 1
8

(

1− e−4κt
)

.

(A5)

By using the unitary gate matrix which can be read off from Fig. 2 of Ref. [26], the fidelity,

F (θ, φ), and the average fidelity, F , are given by

F (θ, φ) =
1

2

[

1 + e−2κt
(

cos2 θ + sin2 θ sin2 φ
)

+ e−4κt sin2 θ cos2 φ
]

, (A6)

and

F =
1

6

(

3 + 2e−2κt + e−4κt
)

. (A7)

In Fig. 7, we depicted the average fidelity for 3GHZ state through various noises where the

results for the same-axes and isotropic noises are given in Ref. [26]. Therefore, the average

fidelity for (L2,x, L3,y, L4,z) noise explicitly contradicts the conjecture proposed by Jung et

al. [26].
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