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Abstract Comparative analyses of graph structured datasets underly diverse
problems. Examples of these problems include identification of conserved func-
tional components (biochemical interactions) across species, structural simi-
larity of large biomolecules, and recurring patterns of interactions in social
networks. A large class of such analyses methods quantify the topological sim-
ilarity of nodes across networks. The resulting correspondence of nodes across
networks, also called node alignment, can be used to identify invariant sub-
graphs across the input graphs.

Given k graphs as input, alignment algorithms use topological information
to assign a similarity score to each k-tuple of nodes, with elements (nodes)
drawn from each of the input graphs. Nodes are considered similar if their
neighbors are also similar. An alternate, equivalent view of these network align-
ment algorithms is to consider the Kronecker product of the input graphs, and
to identify high-ranked nodes in the Kronecker product graph. Conventional
methods such as PageRank and HITS (Hypertext Induced Topic Selection)
can be used for this purpose. These methods typically require computation of
the principal eigenvector of a suitably modified Kronecker product matrix of
the input graphs. We adopt this alternate view of the problem to address the
problem of multiple network alignment. Using the phase estimation algorithm,
we show that the multiple network alignment problem can be efficiently solved
on quantum computers. We characterize the accuracy and performance of our
method, and show that it can deliver exponential speedups over conventional
(non-quantum) methods.
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1 INTRODUCTION

1 Introduction

Recent developments have shown that quantum computers can efficiently solve
diverse important problems – often delivering exponential seedups compared
to their classical counterparts [1,2]. Examples of such problems include finding
low energy states in lattice protein folding [3], simulation of chemical dynamics
[4,5,6], calculation of thermal rate constants [7], Shor’s factoring technique [8],
Grover’s search algorithm [9] and others [10,11,12,13,14,15,16,17,18,19]. The
phase estimation algorithm [1,20], used for finding eigenvalues of a matrix, has
been a key ingredient of many of these quantum algorithms [14,15,16,17].

Graph structured datasets play an essential role in the representation of
relationships and interactions between entities. Comparative analyses of these
datasets underly diverse applications, including problems in chemoinformatics
and bioinformatics. A commonly used analysis technique aims to quantify
the topological similarity of nodes across a given set of graphs. Aligning nodes
with high similarity, one may identify approximate invariant subgraphs among
the input graphs. The approximation, in this case, is desirable, since it renders
the underlying methods more robust to noise in the input datasets. This paper
focuses on the problem of multiple network alignment. Specifically, it aims to
develop quantum methods for computing the topological similarity of nodes
across a given set of n graphs.

Techniques for quantifying topological similarity of nodes can be classified
as local or global. The former defines similarity on the basis of local neighbor-
hoods of nodes, while the latter uses the entire graph to compute similarity. A
commonly used global approach to computing node similarity uses the follow-
ing principle: two nodes are similar if their neighbors are similar. This principle
can be used to express the similarity matrix (a matrix whose (i, j)th element
corresponds to the similarity of node i in the first graph with node j in the
second) in an iterative form.

An alternate formulation of the same method operates on the Kronecker
product of input graphs. Given two graphs G1 with r vertices and G2 with s
vertices, with corresponding adjacency matrices A1 of dimension r× r and A2

of dimension s× s, the Kronecker product of the graphs G1 ⊗G2 is computed
through the adjacency matrix K12 = A1 ⊗ A2. One may view this Kronecker
product matrix as the adjacency matrix of the product graph. This graph has
r × s vertices, labeled ij. Vertex ij has an edge to vertex i′j′ in the product
graph iff there exists an edge between vertices i and i′ in the first graph and
j and j′ in the second graph. In other words, the alignment of vertex i in the
first graph to vertex i′ in the second graph and j in the first graph to j′ in
the second graph is supported by the existence of an edge between the pair
of aligned vertices in both graphs. Now, consider powers of the matrix K12. In
particular, the ijth element of the matrix K12 ×K12 contains the number of
length two paths between vertices i and j. This corresponds to the number of
neighbor alignments that support the ijth alignment. The argument can be
extended to higher powers of the matrix K12. Stated alternately, the largest
entries in the higher powers of the matrix are the best aligned nodes. If the
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2 PRINCIPAL EIGENVECTORS AND RANKING NODES IN
NETWORKS

matrix is suitably normalized (row-stochastic), then the principal eigenvector
reveals the strong alignments between the graphs G1 and G2. The argument
can be generalized beyond two input graphs to an arbitrary number of input
graphs, G = {G1, . . . , Gn}. Note that the size of the Kronecker product graph
grows exponentially in the number of input graphs n. The principal eigenvector
of this graph reveals the strong complete vertex alignments by computing the
alignment score of each n-tuple [21,22,23,24].

It is important to note that real-world graphs in bioinformatics and chemoin-
formatics are typically large (104 vertices, 105 edges and beyond, and 10 graphs
and beyond). The Kronecker product of these graphs can be viewed as combin-
ing local operators to represent them as a global operator in quantum circuits.
Furthermore, the sparsity of these graphs renders then well-suited to efficient
simulation on quantum computers [25]. Motivated by these considerations, we
focus on the problem of multiple graph alignment using the principal eigenvec-
tor formulation of the implicit Kronecker product matrix. We show that for
the types of the problems where the dominant eigenvalue is known (1 in our
case) and the corresponding eigenvector is the solution to the problem, one can
efficiently produce the solution as a quantum state using the quantum phase
estimation procedure. We show that in the case of stochastic matrices, one can
generate the solution as a quantum state with the success probability 1. We
present the quantum simulation algorithm, quantify its cost, and show that
in some cases, we can achieve exponential improvement w.r.t. corresponding
non-quantum methods.

In the following sections, we first briefly discuss the classical network align-
ment method based on the PageRank and HITS ranking algorithms. We then
describe the phase estimation algorithm, and show how it can be adapted to
the network alignment problem. Finally, we discuss the representation of net-
works on quantum computers and the complexity of our method to find the
eigenvector (and consequently the node alignments).

2 Principal Eigenvectors and Ranking Nodes in Networks

Consider the problem of computing the principal eigenvector of a matrix using
a random walk on a suitably specified transition matrix. Assume, for gener-
ality that the graph is directed; the case for undirected graphs is a special
(symmetric) case of the directed case.

Given a graph (in our case, the Kronecker product graph), the transition
matrix P is constructed by setting value pij = 1/deg(i), where deg(i) is the
out-degree of node i, for each j that node i is connected to, and 0 otherwise.
Note that this matrix is not stochastic, since there may be nodes with no
out-edges; i.e., their transition probabilities sum to 0. A number of solutions
have been proposed to deal with this. Perhaps, the most commonly used is
the PageRank formulation [26], used in web ranking. Pagerank deals with the
problem by specifying a vector of a-priori probabilities to which a walker jumps
to if there are no out edges from a node. In this case, the new transition matrix
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2.1 Example: PageRank inspired Protein-Protein Interaction (PPI)
Network Similarity

2 PRINCIPAL EIGENVECTORS AND RANKING NODES IN
NETWORKS

is defined as P̂ = P + dwT , where w is the a-priori probability vector, and
elements of d are defined to be 1 if deg(i) = 0, and 0 otherwise. Although this
matrix is stochastic, it is reducible; i.e., there may be multiple eigenvectors on
the unit circle. To address this, P̂ is replaced by the matrix P̃ given by [27]:

P̃ = αP̂ + (1− α)E. (1)

Here, α ∈ [0, 1] and E = evT : e = [1, . . . , 1]T , and the vector v is called the
personalization vector. It adds to all nodes a new set of outgoing transitions
with small probabilities. The power iterations for matrix P̃ , r = P̃T r, converge
to a unique vector, which is the eigenvector corresponding to the dominant
eigenvalue of P̃ , which is 1.

2.1 Example: PageRank inspired Protein-Protein Interaction (PPI) Network
Similarity

Advances in high-throughput methodologies, supplemented with computa-
tional approaches have resulted in large amounts of protein interaction data.
This data is typically represented as a protein-protein interaction (PPI) net-
work – an undirected graph, G(V,E), in which V represents the set of pro-
teins and edge (vi, vj) ∈ E represents observed interaction between proteins
vi and vj ∈ V . Comparative analyses of PPI networks of different species
help in identifying conserved functional components across species. The most
common comparative analysis technique is based on the alignment of PPI net-
works, where correspondences between nodes in different networks are used to
maximize an objective function. [21,22,23,24]

Singh et al.[24] proposed an iterative global algorithm called IsoRank, in
which the similarity measure between two nodes is determined by the similarity
of their neighbors. For two graphs, the iterative relation for pairwise similarity
of nodes follows:

Rij =
∑

u∈N(i)

∑

v∈N(j)

1

|N(u)||N(v)|Ruv. (2)

Here, N(w) is the set of neighbors of node w; |N(w)| is the size of this set; V1

and V2 are the set of nodes for networks G1 and G2; and i ∈ V1 and j ∈ V2. R
defines the functional similarity matrix whose stationary state is used to find
the solution for the alignment problem. Eq.(2) can be written in matrix form
as:

R = ÃR, (3)

where Ã is a stochastic matrix constructed from the Kronecker product of the
input graphs with principal eigenvalue of one, and is defined as Ã = Ã1 ⊗ Ã2.
Ãi represents the modified adjacency matrix for the graph Gi. The matrix
R is the stationary distribution of the random walk on the Kronecker prod-
uct graph. Since Ã has all positive entries, the infinite product of the matrix

4



2 PRINCIPAL EIGENVECTORS AND RANKING NODES IN
NETWORKS 2.2 Example: PageRank based Molecular Similarity

will have a limit. The limiting matrix R is the matrix with every row equal-
ing the left eigenvector associated with eigenvalue one. Therefore, it can be
solved using the power method [30]. A-priori information regarding similarity
of nodes (for example, what proteins in one species are functionally related to
proteins in other species) can also be integrated into the iterative form. This a-
priori information may be derived from the Bit-Score of the BLAST (sequence)
alignments [31]. The following equation integrates this a-priori information in
matrix H as:

R = αÃR+ (1− α)H. (4)

Here, entries of matrix H define the Bit-Score between two nodes (proteins)
and α is a parameter that controls the weight of the network data relative to
the a-priori node-similarity data. This procedure can be written in an iterative
form as:

R(k + 1) = αÃR(k) + (1− α)h. (5)

This equation, in the limit, simplifies to the following [22]:

R(∞) = (1 − α)

∞
∑

k=0

αkÃk
h. (6)

The R matrix can then be used in conjunction with a bipartite matching
process to identify a set of maximally aligned nodes across the networks. While
our discussion has been in the context of two networks, the procedure can be
generalized to the multiple network alignment problem [21,32,33].

2.2 Example: PageRank based Molecular Similarity

Structurally similar chemical compounds generally exhibit similar properties.
Analyses of similarity of molecules plays an important role in infering prop-
erties of compounds, and in designing new materials with desired characteris-
tics [34]. Graph kernels can be used to compute similarity of molecules. In this
approach, molecules are represented as undirected graphs, also called molecu-
lar graphs. Vertices in these graphs correspond to atoms and edges correspond
to covalent bonds. In molecular graphs, vertices and edges are annotated with
element and bond types. These graphs can be large – for instance, a muscle
protein titin has 4.23×105 atoms. Different graph-based approaches have been
proposed for molecular similarity.

Rupp et al.[35] describe a technique based on iterative graph similarity.
Given molecular graphs G1 and G2 represented by their adjacency matrices
A1 and A2, the following update equation is used for computing the pairwise
similarity vector x:

xi+1 = (A1 ⊗A2)xi. (7)

In order to include more molecular graph properties (e.g. number of bonds),
this formula is subsequently modified as:

xi+1 = (1 − α)kv + α×maxPPxi, (8)
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2.3 Ranking Nodes in a Graph: The HITS Algorithm
2 PRINCIPAL EIGENVECTORS AND RANKING NODES IN

NETWORKS

where kv is the vector of kernel functions between vertices (similarity functions
measuring the similarity of pairs of atoms in graphs by including information
on their certain substructures), and P is a square matrix, compliant with the
neighborhood structure, whose rows represent the possible neighbor assign-
ments. For detailed explanation, refer to Rupp et al. [35].

2.3 Ranking Nodes in a Graph: The HITS Algorithm

Consider a directed graph G(V,E) with m vertices. Each node now has two
parameters – an authority weight and a hub weight. These weights are deter-
mined by the inherent quality of the node and the number of edges to other
authoritative nodes, respectively. The HITS (Hypertext Induced Topic Selec-
tion) algorithm of Kleinberg [36] associates a non-negative authority weight
ai and a non-negative hub weight hi with node i. Since the algorithm was
originally proposed for ranking web pages, nodes correspond to web pages and
edges to hyperlinks. HITS computes numerical estimates of hub and authority
scores using an iterative procedure: if a node is pointed to by many good hubs,
its authority is increased in the next iteration. For a node i, the value of ai is
updated to be the sum of hi over all nodes that point to i:

ai =
∑

j:j→p

hj. (9)

The hub weight of the page is also increased in a similar way:

hi =
∑

j:p→j

aj. (10)

As a result, the update rules for the vectors of the authority weights and the
hub weights of the pages, respectively a and h, can be written as:

a = AT
h = ATAa = (ATA)a

h = Aa = AAT
h = (AAT )h.

(11)

Vectors a and h converge to the principal eigenvectors of ATA and AAT ,
respectively.

Lempel and Moran [37] modified the HITS algorithm to a random walk on
a graph: for the adjacency matrix A, a stochastic matrix Wr is constructed by
dividing each entry of A by its row sum. Similarly, another stochastic matrix
Wc is generated by dividing each entry of A by its column sum. Then, the
iterations for the vectors of the authority and hub weights are computed as
defined [38]:

a = WT
c Wra

h = WT
r Wch.

(12)

Initially, a and h are unit vectors. Since (WT
c Wr) and (WcW

T
r ) are stochas-

tic matrices, a and h converge to the principal eigenvectors of, respectively,
(WT

c Wr) and (WcW
T
r ) associated with the eigenvalue 1.
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3 PHASE ESTIMATION PROCESS AND EIGENVECTOR
GENERATION 2.4 Network Similarity using the HITS Algorithm

2.4 Network Similarity using the HITS Algorithm

Blondel et al. [39] propose an iterative network similarity algorithm based on
the HITS method. For directed graphs G1 and G2 with adjacency matrices A1

and A2, the iterative equation for the algorithm is given by:

Xk+1 = A2XkA
T
1 +A1XkA

T
2 , (13)

where X0 is the matrix of all ones. This equation is converted to the vector
form:

xk+1 = (A1 ⊗ A2 + AT
1 ⊗AT

2 )xk, (14)

where xk is the vector form of Xk.

Having established the network similarity computation problem as one of
computing the principal eigenvector of a suitably defined matrix (with dom-
inant eigenvalue 1), we now focus on finding the steady state – the principal
eigenvector, of the iterations defined in Sec.II and Sec.III on quantum com-
puters.

3 Phase Estimation Process and Eigenvector Generation

The phase estimation algorithm [1,20] is a quantum algorithm for estimating
the eigenphase corresponding to a given approximate eigenvector of a unitary
matrix. For the eigenvalue equation: U |µj〉 = ei2πφj |µj〉, it finds the value of
φj for a given approximate eigenvector |µj〉. The algorithm uses two quantum
registers: |reg1〉 and |reg2〉. While |reg1〉 is initially on zero state, |reg2〉 holds
the eigenvector of the unitary matrix. After putting |reg1〉 into the superpo-

sition, we apply a sequence of operators, U2j , controlled by the jth qubit of
|reg1〉, to |reg2〉. This generates the Fourier transform of the phase on |reg1〉.
The application of the inverse quantum Fourier transform makes |reg1〉 hold
the binary value of the phase.

Assume that we have the operator U = ei2πÃ, where Ã is the Kronecker
product matrix for which we are trying to compute ranks. The eigenvalues of
the ranking matrix Ã are known to be λ1 ≤ λ2 ≤ · · · ≤ λN−1 < λN = 1,
associated with eigenvectors |µ1〉 , . . . , |µN 〉, where N is the size of Ã. Conse-
quently, in the ranking problem, we need to find the eigenvector associated
with the eigenvalue λN = 1.

The above problem is, in some sense, the inverse of the standard phase
estimation algorithm. In the phase estimation process, instead of a particular
eigenvector, if the initial state of |reg2〉 is set to a superposition of the eigen-
vectors (not necessarily uniform), as in Shor’s factoring algorithm[8], |reg1〉
holds the superposition of the eigenvalues of Ã in the final state. Since the
principal eigenvalue λN is known, in the sate where we have λN on |reg1〉
(for the eigenvalue 1, the state where |reg1〉 = |0〉), we have the corresponding
eigenvector on |reg2〉, which is the solution to the network alignment problem.
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GENERATION

3.1 Steps of the Algorithm

Here, we give the states in each step of the algorithm applied to the ranking
matrix Ã with the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN−1 < λN = 1, associated
with eigenvectors |µ1〉 , . . . , |µN 〉:

1. Find the unitary operator U = ei2πÃ, which can be found easily if Ã is
sparse (see Section 3.4).

2. Initialize the quantum registers |reg1〉 and |reg2〉 as |reg1〉 = |0〉 and
|reg2〉 = |µ〉, which is the superpostion of the eigenvectors (choosing |µ〉 =
H⊗ |0〉 makes the success probability of the algorithm equal to 1, see Sec-
tion 3.2.)

3. Apply the quantum Fourier transform to |reg1〉, which produces the state:

1√
κ

κ−1
∑

j=0

|j〉 |µ〉 . (15)

4. Apply U2j controlled by the jth qubit of |reg1〉 to |reg2〉. If we only con-
sider the jth qubit of |reg1〉, then the following quantum state is obtained:

1√
κ
(|0〉 |µ〉+ |1〉U2j |µ〉). (16)

U2j |µ〉 generates a superposition of the eigenvectors with the coefficients

determined by the eigenvalues. If we assume |µ〉 = 1√
N

∑N
i |µi〉, then for

the eigenvector |µi〉, we have the coefficient λ2j

i /
√
N in the state U2j |µ〉:

1√
κ
(|0〉 |µ〉+ |1〉 1√

N

N
∑

i

U2j |µi〉) =
1√
κ
(|0〉 |µ〉+ |1〉 1√

N

N
∑

i

λ2j

i |µi〉).

(17)
Note that since the principal eigenvalue is 1, the largest coefficient is
λ2j

N /
√
N = 1/

√
N and so the dominant term in U2j |µ〉 is the principal

eigenvector |µN 〉.
5. Apply the inverse Fourier transform to obtain the superposition of the

binary form of the phases in |reg1〉.
6. Finally, apply conditional measurement to |reg1〉 to produce the eigenvec-

tor |µN 〉 on |reg2〉 corresponding the principal eigenvalue λN = 1: i.e., if
|reg1〉 = |0〉, |reg2〉 = |µN 〉. However, as discussed in Section 3.2 and Sec-
tion 3.3, the success probability for the stochastic matrices is 1. Therefore,
there is no need for conditional measurement. After Step 5 (the applica-
tion of the inverse Fourier transform), |reg1〉 = |0〉. Thus, |reg2〉 holds the
principal eigenvector.

8
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3.2 Success Probability

The success probability of the algorithm is the probability of observing the
principal eigenvalue on |reg1〉, which is related to the closeness of the input
to the principal eigenvector. If we have |µ〉 = H⊗n |0〉 as the initial input on
|reg2〉, the amplitudes of the eigenvalues on |reg1〉 change depending on the
closeness of the eigenvectors to this input. We measure the closeness between
an eigenvector and the input vector by using the dot product of these vectors:
i.e., the cosine of the angle between these vectors:











〈µ1|µ〉
〈µ2|µ〉

...
〈µN |µ〉











=













1√
N

∑

j µ1j
1√
N

∑

j µ2j

...
1√
N

∑

j µNj













=











β1

β2

...
βN











(18)

When the angle between two vectors is small, βis get larger. The squares of
the amplitudes in the above vector give us the success probability for find-
ing an eigenvector on |reg2〉 and the corresponding eigenvalue on |reg1〉. For
instance, the probability of observing the eigenvector |µN 〉 on |reg2〉 is β2

N .
Fig.1 and Fig.2 show the comparison of the expected probabilities computed
from Eq.(18) with the probabilities found in the phase estimation algorithm
for random matrices with the dominant eigenvalue 1. The following Perron-
Frobenius theorem [40] provides the basis for comparing the probability for
the principal eigenvalue, β2

N , with the others:

Theorem 1 For an irreducible non-negative square matrix, the dominant eigen-
value is positive and has multiplicity one. The eigenvector (unique up to scal-
ing) corresponding to this eigenvalue is also positive, and there are no other
non-negative eigenvectors for this matrix.

Based on the above theorem, the vector |µN 〉 must be positive. Therefore,
the cosine of the angle between the input and the principal eigenvector, βN =
〈µN |µ〉 = 1√

N

∑

j µNj , can be bounded by:

1 ≥ βN >
1√
N

. (19)

Here βN is 1√
N

only when an element of the eigenvector is one and the rest of

the elements are zero. Since the principal eigenvector is positive, and all the
other eigenvectors include negative elements; βN > |βj |, 1 ≤ j ≤ N − 1. Fig.1
shows the success probabilities for a collection of 32 × 32 random matrices,
while Fig.2 shows success probabilities for random matrices of various dimen-
sions. Random matrices used in these experiments are symmetric positive and
generated using the Wishard method [41,42]. Here, one creates a random ma-
trix X and uses the product XXT to generate a symmetric matrix. We also
scale the matrices so that the largest eigenvalue is one. We observe, in these
experiments, that success probability is very high and grows sharply with the
size of the system.
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Fig. 1: The success probabilities for 32x32 random symmetric positive matri-
ces.
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Fig. 2: The success probabilities for random symmetric positive matrices of
different sizes.

3.3 Success Probability in the Case of Stochastic Matrices

For a row stochastic matrix A with the eigenvalue λk, and the associated
eigenvector |µk〉, the eigenvalue equation can be written as:

A |µk〉 − λk |µk〉 = 0, (20)

or more explicitly,







a11 . . . a1M
... . . .

...
aM1 . . . aMM













µk1

...
µkM






− λk







µk1

...
µkM






=







0
...
0







(

µk1a1+ . . . +µk1aM

)

− λk







µk1

...
µkM






=







0
...
0







(21)
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Here, ajs are the column vectors. If we sum the rows on either side of the
equality, since

∑

j akj = 1, we get the following:

∑

j

µkj − λk

∑

j

µkj = 0

(1 − λk)
∑

j

µkj = 0
(22)

Hence, for k 6= N ; since λk 6= 1, βk =
∑

j µkj = 0. Since there is only one
nonzero value in the amplitude vector |β〉 defined in Eq.(18), βN =

∑

j µNj

has to be 1. Thus, the success probability of the algorithm is 1 for stochastic
matrices, which is the case for the network alignment problem.

3.4 Representation of Networks

A network ofM1 nodes can be represented using an M1×M1 adjacency matrix
A1. In this case, log(M1) = m1 qubits are needed to represent this network on
a quantum computer. If there are k such networks, the total number of qubits
for |reg2〉 is

∑k

j=1 mj.

For each Uj = e−iAjt, one can find a quantum circuit design with O(M2
j )

number of operations. In network alignment, the Kronecker product of the
adjacency matrices is used: A = A1 ⊗ · · · ⊗ Ak. Hence, U = e−iAt can be
defined as U = U1 ⊗ · · · ⊗Uk. Therefore, the total number of operations is the
sum of operations needed for each Uj , which is

∑k
j=1 O(M2

j ). If the networks
are of the same size (in terms of number of vertices)M , then this sum becomes
equal to O(kM2).

However, these matrices are typically sparse and so can be simulated
on quantum computers with an exponential speed-up [44,45]. The operator
Uj = e−iAjt is the same as the operator used in the continuous time quantum
walk on a graph defined by the adjacency matrix Aj . It has been shown that
continuous time random walks can be performed on quantum computers effi-
ciently [25]. The efficiency of the quantum walk has been studied for different
types of the graphs, and for a class of graphs it has been shown that traversing
is exponentially faster[46]. The exponential efficiency, in general, can be ob-
served when the circuit design for the adjacency matrix or the Laplacian opera-
tor of a graph onmj qubits requiresO(poly(mj)) number of one- and two-qubit
operations. Lemma 1 in Ref.[25] states that if Aj is a row-sparse (the number
of nonzero entries is bounded by poly(mj)) and ||Aj || ≤ poly(mj), then Aj is
efficiently simulatable. A Hamiltonian acting on mj number of qubits is said
to be efficiently simulatable if there is a quantum circuit using poly(mj, t, 1/ǫ)
one- and two-qubit gates that approximates the evolution of Aj for time t
with error at most ǫ [45]. Berry et al.[44] present an algorithm that can simu-
late Aj with computational complexity bounded by O((d4 ×m∗

j ||Ajt||)1+o(1)),
where d is the maximum degree of a vertex in the graph represented by Aj .
This complexity bound is further improved to O(d2(d +m∗

j )||Ajt||)1+o(1) by
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3.5 Algorithmic Complexity 4 CONCLUSION

Childs and Kothari [45]. Therefore, when Ajs are row-sparse, the implementa-
tion of the operator Uj = e−iAjt requires O(poly(mj)) number of operations.
Thus, the number of operations for U = e−iAt is bounded by O(k× poly(m)),
where the networks are assumed to have the same sizes. For dense matrices,
although exponential efficiency has not been demonstrated, polynomial effi-
ciency is achievable.

Please note that ranking algorithms operate on a modified matrix Ã, in-
stead of A. These modifications can be mapped to the local and global rotation
matrices, which eases the difficulty of finding a circuit design.

3.5 Algorithmic Complexity

The complexity of the algorithm is dominated by the complexity of the phase
estimation algorithm, which depends on the number of operations needed to
implement the adjacency matrices. Assuming all networks have the same size
M , as shown before, the total number of gates in the circuit implementing the
evolution of the product of the adjacency matrices A is bounded by O(kM2).
If there are κ qubits in the first register, then the phase estimation algorithm
requires O(κkM2) operations excluding the quantum Fourier transform. For
a general case, this is more efficient than the number of operations required
by the classical algorithms that are based on the power iterations [30]. How-
ever, as shown in the previous section, when Ajs are row-sparse, they can be
efficiently simulatable. In this case, the computational complexity is bounded
by O(poly(m)κk), which gives us an exponential efficiency over the classical
case. Here, the eigenvector is produced as a quantum state.

3.6 Precision and Eigenvalue Gap

In our test cases, using six qubits in |reg1〉 gave us enough precision to get
accurate results. However, when there are other eigenvalues close to one or
zero (ei2π0 = ei2π1), then one must make the size of |reg1〉 sufficiently large
to distinguish the principal eigenvalue from the rest. When the eigenvalue
gap between the first and the second eigenvalues is small, the algorithm may
generate a vector combination of the eigenvectors corresponding to the second
and the first eigenvalues.

4 Conclusion

In this paper, we consider the problem of multiple network alignment. We for-
mulate the problem as one of ranking nodes of the Kronecker product graph
of the input networks. We use conventional PageRank [26] and HITS [36] al-
gorithms for computing the node rankings. We solve this problem on quantum
computers by modifying the well-known quantum phase estimation algorithm

12
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to generate the principal eigenvector of a given operator. We discuss the com-
putational complexity and show that our algorithm has significantly lower
computational complexity than classical algorithms. We also show that if the
adjacency matrices for the networks are sparse, exponential efficiency is possi-
ble. Our proposed framework provides a roadmap for solving numerous other
problems that can be formulated as Markovian processes or ranking problems,
on quantum computers.
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