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Abstract Quantum teleportation is studied in noninertial frame, for fermionic
case, when Alice and Bob share a general nonclassical correlated state. In
noninertial frames two fidelities of teleportation are given. It is found that
the average fidelity of teleportation from a separable and nonclassical corre-
lated state is increasing with the amount of nonclassical correlation of the
state. However, for any particular nonclassical correlated state, the fidelity of
teleportation decreases by increasing the acceleration.
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1 Introduction

Quantum teleportation, initially proposed by Bennett et. al. [1], is one of
the important quantum protocols because of its several theoretical features
and interesting applications. Quantum teleportation is the reliable transfer
of quantum state by using a shared source of entanglement, in addition to a
classical communication channel.
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The original teleportation assumes Alice and Bob are sharing a perfect
bipartite entangled pair of particles. An unknown quantum state is supposed
to be teleported from Alice to Bob. Alice measures the unknown state and
the part of the shared entanglement in her disposal, in Bell basis, and sends
off the outcome of the measurement, in the form of two bits of classical infor-
mation, to Bob. Consequently, Bob, upon receiving the classical information,
applies appropriate unitary operations and transforms the quantum state to
the original one that Alice had.

Since its original proposal, quantum teleportation has been relying on the
concept of quantum entanglement. Quantum entanglement initially appeared
as a source of paradoxical features of quantum mechanics [2]. There are several
measures for quantum entanglement. Logarithmic Negativity [3] is a measure
of entanglement of bipartite states, and is defined as

N(ρ) := log2
∑

i

|λi(ρpt)|, (1)

where, λi(ρ
pt) denotes the eigenvalues of the partial transpose, ρpt, of the

density matrix ρ of a bipartite quantum system AB.
In the lack of a mathematical proof for the distinct and unique role of

entanglement for quantum information processing and quantum computing,
in general, existence of any nonclassical correlation has been candidated for
the expected super-power source for quantum processors [4]. Deterministic
Quantum Computation with One Quantum Bit (DQC1) [5] that contains very
little or no bipartite entanglement, performs a computation that has no known
efficient classical algorithm.

According to Oppenheim-Horodecki paradigm [6], a nonclassical correlated
state is a state that cannot be represented in the form of a “properly classically
correlated state”, ρpcc, with the following definition

ρpcc =

dA

∑

i=1

dB

∑

j=1

eij |viA〉〈viA| ⊗ |vjB〉〈v
j
B |, (2)

where, dA and dB are the dimensions of the Hilbert spaces of A and B, re-
spectively, and eij is the eigenvalue of ρpcc corresponding to an eigenvector

|viA〉 ⊗ |vjB〉. Quantum Discord, D, is one of the most studied measures for
nonclassical correlation [7]. It is defined [8] as the discrepancy between the
quantum mutual information, I, and the locally accessible mutual informa-
tion, C,

D(A : B) = I(A : B)− C(A : B), (3)

with the following definitions

I(A : B) = S(ρA) + S(ρB)− S(ρ), (4)

and

C(A : B) = max
{Πk}

[

J{Πk}(A : B)
]

, (5)
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where, ρA and ρB are the reduced density operators of A and B, respectively.
S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy. {Πk}’s are von Neumann
operators acting on subsystem B and corresponding to the outcome k. J is
locally accessible mutual information defined as

J{Πk}(A : B) = S(ρA)− S{Πk}(A|B), (6)

S{Πk}(A|B) is the quantum conditional entropy, defined as

S{Πk}(A|B) =
∑

k

pkS(ρA|k), (7)

where, ρA|k = TrB(ΠkρΠk)/pk, with pk = Tr(ΠkρΠk).
Quantum teleportation by using not completely entangled state has been

studied [9]. Also, it has been shown that a separable state which involves
nonclassical correlation can be used for quantum information transmission [10].
Extension of quantum teleportation to noninertial frames has been perviously
studied in an approach different than in our paper [11]. In fact, the previously
studied process should be regarded as a “noninertial frame observation” of
quantum teleportation since the involved entangled state in the teleportation
is not appropriately affected by changing to a noninertial frame. In this work,
we keep the original teleportation but apply the appropriate changes on every
steps, accordingly.

Suppose that Alice, A, is resting and Rob, R, is the uniformly accelerating
Bob, with the acceleration a. The corresponding Minkowski spinor basis states
[11,12] are as follows

|0〉M = cos r|0〉I|0〉II + sin r|1〉I|1〉II, (8)

|1〉M = |1〉I|0〉II, (9)

where, cos r = 1/
√
1 + e−2πωc/a and ω =

√

|k|2 +m2 denotes the energy
of any mode with momentum k and mass m. Here, the subscripts I and II
represent Rindler regions I and II Fock states, respectively.

Quantum teleportation has been demonstrated in different physical sys-
tems, including NMR [13]. In NMR and other similar bulk ensemble quantum
computation such as electron nuclear double resonance (ENDOR) [14], prac-
tically a pseudo-entanglement of the following form is generated

ρpe =
1− p

4
I + p|Φ+〉〈Φ+|, (10)

when intentionally the entangled state |Φ+〉 = 1√
2
(|00〉 + |11〉) is the desired

state. Here ρpe is entangled if the purity p > 1/3. Generally, experimental
conditions bring down the state to a region where entanglement is absent and
the workable state is just a nonclassical correlated state, Eq. (10). Detecting
the status of entanglement or nonclassical correlation of the involved states
for these physical systems has been practically of importance [15]. It should
be noted also that the quantum teleportation implemented with such physical
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systems may not absolutely be relying on a pure entangled state. In this work,
we study quantum teleportation with a general nonclassical correlated state,
Eq. (10), so the results will be applicable to the above mentioned physical
systems.

This paper is organized as follows. In next section, the conventional quan-
tum teleportation with maximal entanglement is described when an observer
in noninertial frame is detecting the resultant teleported state. In section 3,
quantum teleportation is generalized for the case that a nonclassically corre-
lated state is used, and Rob, the accelerated Bob, is in a noninertial frame,
so his preshared nonclassical correlated state is also affected, accordingly. The
paper will be concluded by bringing discussions in the last section.

2 A noninertial frame observation of quantum teleportation with

maximally entangled state

Consider an arbitrary one-qubit state |ψ〉 = α|0〉+β|1〉, which Alice wishes to
teleport to Bob. If Alice and Bob have preliminarily shared the bipartite state
|Φ+〉, the total initial state is given by |Ψin〉 = |ψ〉|Φ+〉. The first two qubits are
in Alice’s possession and the third one belongs to Bob. Alice starts quantum
teleportation by applying CNot and Hadamard (H) gates, thus changes the
total state to |Ψ ′〉 = (H ⊗ 1 ⊗ 1)(CNot ⊗ 1)|Ψin〉. Alice measures the state
in her possession, in Z-basis, and extracts the state |ij〉, i, j = {0, 1}. The
total state is then |ij〉|φij〉 with probability of pij = Tr(〈ij|Ψ ′〉〈Ψ ′|ij〉), where
|φij〉 = XjZi|ψ〉. Alice sends the results of the measurement, i and j, to Bob
using classical information channels. Bob retrieves the state, supposed to be
teleported, by performing the quantum gate (XjZi)−1 = ZiXj on the qubit
in his possession. The result is given by |ψ̃〉 = ZiXj |φij〉 = |ψ〉, and the

corresponding teleportation fidelity is F = |〈ψ̃|ψ〉|2 = 1.

In [11], Alice finds the values i, j, and sends them to Bob. Bob rewrites the
state |φij〉 in Rindler frame by using Eqs. (8-9) to find the Rob and anti-Rob

states, |φijI,II〉. By tracing out the anti-Rob, II, modes, he finds the Rob density

matrix, ρijI . Finally, by applying the operator ZiXj on the density matrix, he

finds ρ̃ijI = ZiXjρijI (Z
iXj)−1.

It is clear from the above notation that, in general, the state ρ̃ijI depends on
Alice’s measurement results, i and j. This fact comes from the non-symmetric
property of transformations, Eqs. (8-9), for |0〉 and |1〉. In order to make the
result ρ̃ijI independent of the values i and j, the symmetric dual-rail basis set is

used. The indexes are omitted and the teleported state is written as ρ̃I = ρ̃ijI .
The fidelity of teleportation is given by F = 〈ψ|ρ̃I|ψ〉 = cos2 r, for fermionic
case [11].

There are objections to this study. Quantum teleportation is studied in
noninertial frame with a cost that the original teleportation protocol is mod-
ified. Recalling the original teleportation, Bob is not only an observer but
he is the party who receives the classical information and applies accordingly
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changes to the entangled part in his disposal to extract the desired teleporta-
tion state. This implies that if Bob is assumed in the accelerated frame, so is
called Rob, then his belonging pre-shared entanglement also should be mod-
ified according to the acceleration. Also, the original teleportation protocol
is not restricted to any basis set, and is universal. Therefore, even extend-
ing quantum teleportation to noninertial frame should be practically possible
without any restriction such as dual-rail basis set.

In following, we extend the original quantum teleportation to noninertial
frame, in addition, we generalize our study by using a nonclassical channel of
the form Eq. (10) instead of a pure entangled state.

3 Teleportation with nonclassical correlated state in noninertial

frames

Alice wants to teleport the state |ψ〉 to Bob, by using the shared state ρpe.
The initial state is given by ̺in = |ψ〉〈ψ| ⊗ ρpe, where the first two qubits
of ̺in are the Alice’s ones and the third one is the Bob’s qubit. Substituting
p = 1 gives the special case of teleportation with maximally entangled state
|Φ+〉. Here, we shall recall Rob, the uniformly accelerated Bob, following the
general convention.

If Rob’s state starts to degrade with constant acceleration a then the bipar-
tite state, ρpe, transforms to a tripartite state ρA,I,II, using Eqs. (8-9). ρA,I,II

is the quantum state of Alice (A), Rob (I), and anti-Rob (II). Tracing out the
anti-Rob modes results the Alice-Rob density matrix, ρA,I = TrII(ρA,I,II) as
follows [12]

ρA,I =
1

4









(1 + p) cos2 r 0 0 2p cos r
0 1 + sin2 r − p cos2 r 0 0
0 0 (1− p) cos2 r 0

2p cos r 0 0 1 + sin2 r + p cos2 r









.

We have used the basis |0〉A|0〉I, |0〉A|1〉I, |1〉A|0〉I, and |1〉A|1〉I to write the
above matrix. Therefore, we should use ̺A,I = |ψ〉〈ψ| ⊗ ρA,I instead of the
initial state ̺in, for teleportation with uniformly accelerated partner, Rob.

Alice starts the teleportation procedure by performing CNot and Hadamard
gates on the particles in her possession. Then, she measures the state in
Z-basis. The total state collapses to |ij〉〈ij| ⊗ ρijI , with probability pij =

Tr(〈ij|̺′A,I|ij〉) = 1/4, where ρijI are given by

ρi0I =
1

2

(

[1 + p(|α|2 − |β|2)]cos2 r 2(−1)ipαβ∗ cos r
2(−1)ipα∗β cos r 1 + sin2 r − p(|α|2 − |β|2) cos2 r

)

, (11)

ρi1I =
1

2

(

[1− p(|α|2 − |β|2)]cos2 r 2(−1)ipα∗β cos r
2(−1)ipαβ∗ cos r 1 + sin2 r + p(|α|2 − |β|2) cos2 r

)

. (12)

Alice sends the results of the measurement, i and j, to Rob by using clas-
sical information channels. Consequently, Rob extracts information by per-
forming the quantum gate (XjZi)−1 = ZiXj on the state in his hand, ρ̃ijI =
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ZiXjρijI (Z
iXj)−1, as follows

ρ̃i0I = ρ00I , (13)

ρ̃i1I =
1

2

(

1 + sin2 r + p(|α|2 − |β|2) cos2 r 2pαβ∗ cos r
2pα∗β cos r [1− p(|α|2 − |β|2)] cos2 r

)

,

(14)

where ρ00I , is given by Eq. (11).
For p = 1, r 6= 0, we have quantum teleportation with maximally entangled

state in noninertial frame. The result is different than [11] because we use a
general non-symmetric basis set instead of the symmetric dual-rail basis. Also,
if r = 0, for a general p, the quantum teleportation is same as to the one in
inertial frame using a general nonclassical correlated state. The resultant state
extracted by Rob is independent of the results of the Alice’s measurement, i
and j, as it is expected.

For a general case the fidelities, Fij = 〈ψ|ρ̃ijI |ψ〉, are given as follows

Fi0 =
1

2

{

|β|4[2− (1− p) cos2 r] + |α|4(1 + p) cos2 r

+2|α|2|β|2[p(2− cos r) cos r + 1]
}

, (15)

Fi1 = Fi0 + (|α|4 − |β|4) sin2 r. (16)

We evaluate the average fidelity by using the Bloch sphere representation of
the initial state, namely |ψ〉 = α|0〉+ β|1〉 := cos θ

2
|0〉+ eiφ sin θ

2
|1〉. Thus, the

average fidelity is given by,

< Fij >=
1

4π

∫ 2π

0

∫ π

0

Fij(θ, φ) sin θdθdφ. (17)

Using equations (15-16) the average fidelity is obtained as follows,

< F >=< Fij >=
1

6

(

3 + p cos2 r + 2p cos r
)

. (18)

Logarithmic negativity and discord for ρA,I should be calculated in order to
evaluate the contributions from entanglement and nonclassical correlation to
the above fidelity of teleportation. We employ the corresponding calculation
results from our previous work [12], where we have studied the logarithmic
negativity and discord for ρpe in noninertial frames. In addition, here, the
eigenvalues of the partial transpose of ρA,I are given in order to study the
contribution into the fidelity of teleportation from a state with a purity of
threshold, pth. The quantum state ρA,I with pth involves maximum nonclas-
sical correlation for a separable state. Hence, the corresponding fidelity of
teleportation can be regarded as the maximum attainable fidelity of telepor-
tation if the pre-shared state in teleportation is not entangled but involves
nonclassical correlation.

λ1,2(ρ
pt
A,I) =

1

4

{

1− p cos2 r ±
√

sin4 r + 4p2 cos2 r

}

,

λ3,4(ρ
pt
A,I) =

1

4

{

1 + p cos2 r ± sin2 r
}

. (19)
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Fig. 1 The fidelity of teleportation for a nonclassical correlated state, with the threshold
purity, Eq. (20), in noninertial frame with acceleration corresponding to r.

The entanglement threshold for ρA,I is corresponding to the purity threshold
given as

pth =
3− cos 2r

7− cos 2r
. (20)

As an example pth = 1/3 for r = 0. Then by substituting pth as function of
r in Eq. (18), we find the attainable fidelity of teleportation for a state with
pth, as plotted in Fig. 1. In this figure, the given fidelity for any r should
be also regarded as the maximum attainable fidelity of teleportation from
a sperable but nonclassically correlated state. It is clear that the achievable
fidelity of teleportation from a separable but nonclassically correlated state
is a decreasing function of r. It has the maximum value 2/3 for r = 0, in
accordance with Ref. [16]. Also, teleportation with a separable and classical
correlated state gives fidelity of 1/2 that is same as the success probability from
a random guess. Then we conclude that fidelity of teleportation for a separable
and nonclassical correlated state < Fncc > satisfies 1

2
≤< Fncc >≤ 2

3
, in any

noninertial frame, and the maximum value is achieved for r = 0, an inertial
frame.

4 Discussions and conclusion

In this work, we studied quantum teleportation with nonclassical correlated
state in noninertial frame. Fidelity of teleportation, discord, and logarithmic
negativity are evaluated as functions of r, corresponding to the acceleration a,
and the purity, p, of the state.

Fig. 2 shows the fidelity of teleportation, discord, and the logarithmic nega-
tivity for two extreme accelerations, corresponding to r = 0 and r = π/4, in ad-
dition to an intermediate case, r = π/8. The logarithmic negativity for r = 0 is
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Logarithmic
Negativity

<F>

Discord

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

Fig. 2 For the extreme cases r = 0 (the solid lines), and r = π/4 (the dotted lines),
in addition to an intermediate case r = π/8 (the dashed lines), the average fidelity of
teleportation, < F >, discord, and logarithmic negativity are plotted as functions of the
purity, p.

nonzero for p > pth = 1/3 and increases to reach the maximum 1, that is when
the state, Eq. (10), is a Bell state. For r = π/8, pth is 0.364, and for r = π/4,
pth is 3/7, and the logarithmic negativity is an increasing function with the
maximum values N(p = 1, r = π/8) = 0.890, N(p = 1, r = π/4) = 0.585.
In Fig. 2, discord is nonzero for any nonzero purity, p, and it has maximum
value same as the values for the corresponding logarithmic negativity. In this
figure, the fidelity of teleportation is an increasing function with the purity.
It is 1/2 only for a separable and a classical correlated state. Any nonclassi-
cal correlation is sufficient for extracting fidelity of teleportation greater than
1/2. Specifically, for r = 0, the fidelity of teleportation from a separable and
nonclassical correlated state calculated from this work is in a good agreement
with the original work by Horecki et al. [16], in which the optimal fidelity of
teleportation in an inertial frame, r = 0, is given as a function of the maxi-
mally attainable singlet function. To be more precise in this circumstance, the
optimal fidelity is calculated to be 2/3 for a noisy singlet Eq. (13) of [16], as a
generalization of the 2× 2 Werner state. This fact is generally studied for any
r and the results are illustrated in Fig. 3.

The special cases, p = 1/3 and p = 1 are shown in Fig. 3. Logarithmic
negativity is zero for p = 1/3, regardless of the acceleration. However, D(p =
1/3, r = 0) = 0.126,< F (p = 1/3, r = 0) >= 2/3, and these functions decrease
by increasing r, and reach the minimum values D(p = 1/3, r = π/4) = 0.063,
< F (p = 1/3, r = π/4) >= 0.606. For p = 1, all the three functions start from
the maximum value one, and decrease to different minimum values, N(p =
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Fig. 3 The average fidelity, < F >, discord and logarithmic negativity, as functions of r.
The upper-full curves are plotted for the maximally entangled states, p = 1, and lower-
dashed curves are plotted for p = 1/3.

1, r = π/4) = 0.585, D(p = 1, r = π/4) = 0.601, and < F (p = 1, r = π/4) >=
0.819.

Any nonzero nonclassical correlation gives fidelity of teleportation larger
than the achievable fidelity from a purely classical state, and the fidelity of
teleportation is generally decreasing with increasing acceleration in noninertial
frame.
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