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Realization of quantum gates with multiple control qubits or multiple target qubits in
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We propose a scheme to realize a three-qubit controlled phase-gate and a multi-qubit controlled-
NOT gate of one qubit simultaneously controlling n target qubits with a four-level quantum system
in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of number
of qubit. Three-qubit phase-gate is generalized to n-qubit phase-gate with multiple control qubits.
The number of steps reduces linearly as compared to conventional gate decomposition method.
Our scheme can be applied to various types of physical systems such as superconducting qubits
coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of
level spacing during the gate implementation. We also show the implementation of Deutsch-Joza
algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical
implementation of our scheme.
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I. INTRODUCTION

Quantum computing has the potential ability to carry
out certain computational task much faster than clas-
sical computing. For example factorization of a large
number via Shor’s algorithm [1] and the search of an
item in an unsorted database containing N elements [2].
Two-qubit gates and one-qubit gates are the building
blocks for quantum computing networks [3]. Many phys-
ical systems have been proposed as candidates for imple-
mentation of quantum information processing like atoms
in cavity quantum electrodynamics (QED) and nuclear
magnetic resonance (NMR). Among them cavity QED
analogs with superconducting qubit systems are getting
favorable attention [4]. A two-qubit gate was experimen-
tally realized using superconducting qubit systems cou-
pled through capacitors [5, 6], mutual inductance [7], or
cavities [8].

Multi-qubit gates constructed by the conventional gate
decomposition method [9], usually makes the procedure
complicated for the case of a large number of qubits.
Typically, the number of single-qubit gate and two-qubit
gates required for the implementation depends on the
number of qubits. In this regard, multi-qubit quantum
gates play a significance role in quantum information pro-
cessing system which involves a large number of qubits.
Experimentally, a three-qubit controlled NOT gate has
been demonstrated with trapped ions [10] and supercon-
ducting circuits [11]. The purpose of this work is to re-
alize three-qubit controlled phase-gate and multi-qubit
controlled NOT-gate of one qubit simultaneously con-
trolling n qubits (which we denote as NTCNOT-gate) in

∗Electronic address: m.irfanphy@gmail.com

cavity QED using a four-level system. We have gener-
alized the scheme to realize an n-qubit-phase gate with
multiple control qubits. Our scheme does not require
adjustment of level spacing during the gate implementa-
tion. Interestingly, the implementation time for multi-
qubit controlled-Not gate is independent of number of
qubits. We first introduce these gate below before their
implementation.

A. Two kind of multi-qubit quantum gates

In three-qubit quantum controlled phase-gates when
two control qubits |q1〉 and |q2〉 are in state |1〉, phase
shift eiη induces to the state |1〉 of the target qubit |q3〉.
When control qubits are in state |0〉 nothing happens to
the target qubit . This transformation can be written as
[12]

U3
η |q1, q2, q3〉 = e(iηδq1 ,1δq2,1,δq3,1) |q1, q2, q3〉 . (1)

Here, δq1,1, δq2,1, and δq3,1 are the standard Kronecker
delta functions and |q1〉 , |q2〉 and |q3〉 stand for basis
states |0〉 or |1〉 for qubits 1, 2 and 3. Circuit for three-
qubit controlled phase-gate is the same as shown in Fig.
1(a). Thus three-qubit quantum phase-gate introduces a
phase η only when the input state of all three qubits is
|1〉 . In this proposal, we discuss the implementation of a
three-qubit quantum phase-gate with η = π. It may be
mentioned that three-qubit controlled-NOT gate (known
as a Toffoli gate) can also be achieved using present pro-
posal. Toffoli gate is equivalent to a three-qubit con-
trolled phase-gate plus two Hadamard gates on target
qubit as shown in Fig. 1(b).
Next, we consider NTCNOT-gate which consists of

control qubit 1 and n target qubits labeled as 2,3, ..., n
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FIG. 1: (a) Three-qubit controlled phase-gate. Z represents
Pauli rotation σz. If control qubits 1 and 2 (shown by filled
circle) are in state |1〉 then phase of π is induced only on
state |1〉 at Z. When control qubits are in state |0〉 noth-
ing happens to the target qubit. (b) Relationship between
a three-qubit CNOT-gate (known as a Toffoli gate) and a
three-qubit controlled phase-gate. The circuits on left side
and right side of (b) are equivalent to each other. The sym-
bol ⊕ on left side of (b) represents NOT gate on target
qubit. If control qubits 1 and 2 are in state |1〉 then the
state at ⊕ is flipped such that |1〉 → |0〉 and |0〉 → |1〉. How-
ever, when control qubits 1 and 2 are in state |0〉 then the
state at ⊕ remains unchanged. For right side of (b), por-
tion enclosed in dashed box represents a three-qubit controlled
phase-gate. The element H is called a Hadamard gate and
leads to the transformation |0〉 → |+〉 = (1/

√
2)(|0〉+ |1〉) and

|1〉 → |−〉 = (1/
√
2)(|0〉 − |1〉).

shown in Fig. 2(a). We define control qubit in |0〉, |1〉
basis and each target qubit in |+〉, |−〉 basis. Thus, the
input state can be written as

|ψ〉i = |0〉
n
∏

k=2

(|+〉k + |−〉k) + |1〉
n
∏

k=2

(|+〉k + |−〉k). (2)

When the NTCNOT-gate is applied to the state given by
Eq. (2), we obtain

|ψ〉f = |0〉
n
∏

k=2

(|+〉k + |−〉k) + |1〉
n
∏

k=2

(|−〉k + |+〉k). (3)

It is clear from Eqs. 2 and 3 that when control qubit is
in state |1〉 then the state at each target qubit is flipped
as |+〉 → |−〉 and |−〉 → |+〉 . If control qubit is in
state |0〉 nothing happens to each target qubit. It may
be mentioned that the NTCNOT-gate can be defined in
|+〉, |−〉 basis. However, two Hadamard gates on con-
trol qubit before and after the phase-gate with one qubit

simultaneously controlling n target qubits would be re-
quired as shown in Fig. 2 (b). The NTCNOT-gate can
also be defined in |0〉, |1〉 basis. However, in this case
Hadamard gate on each target qubit before and after the
n target controlled phase-gate (i.e., 2(n − 1) Hadamard
gate) would be required as shown in Fig. 2 (c). In con-
trast, defining the control qubit in |0〉, |1〉 basis and each
target qubit in |+〉, |−〉 basis do not require Hadamard
gate (as shown in Sec. III B) which makes the procedure
for the implementation of NTCNOT-gate quite simple.

B. Motivation and advantages

Multi-qubit quantum controlled phase-gate as shown
in Fig. 1 plays a key role in the realization of quantum
error correction [13] and implementation of Grover’s al-
gorithm for eight objects [14, 15]. Quantum gate with
multiple target qubits shown in Fig. 2 are of great im-
portance for the realization of entanglement preparation
[16], error correction [17], discrete cosine transform [18],
and quantum cloning [19]. Some interesting scheme for
the realization of multi-qubit quantum gates have been
proposed. For example, Chang et al. [20] presented a
three-qubit quantum phase-gate with a four-level atom in
a cascade configuration initially prepared in their ground
state interacting with a three-mode optical cavity. Yang
et al, [21] presented an n-qubit controlled phase gate with
superconducting quantum-interference devices (SQUIDs)
by coupling them to a superconducting resonator. Re-
cently, some interesting schemes are also proposed for the
realization of a multi-qubit phase-gate with a fixed phase-
shift of π on each target qubit and multi-qubit phase-gate
with a random phase-shift on each target qubit [22–24].
Our goal here is to realize a three-qubit controlled

phase-gate shown in Fig. 1(a) and a NTCNOT-gate
shown in Fig. 2(a) with a four level quantum system in
a cavity or coupled to a superconducting resonator. Our
proposal has several advantages, for example (i) Decoher-
ence due to spontaneous decay of level |3〉 is suppressed
because the excited level |3〉 is unpopulated during the
gate operation. (ii) The adjustment of level spacing of
the qubit system during the gate operations is not needed
which may cause decoherence. (iii) Operation time for
the realization of the NTCNOT-gate is independent of
the number of qubits. (iv) In case of a flux (SQUID)
qubit system each qubit can have much longer storage
time. (v) We do not require identical coupling constants
for each qubit system with cavity mode. Similarly, detun-
ing of the cavity mode with the transition of the relevant
levels in every target qubit system is not identical, there-
fore our scheme is tolerable to inevitable non-uniformity
in device parameters. (vi) Finite second-order detuning
δ = ∆c − ∆µ is not required which improves the gate
speed by one order. (vii) Three-qubit controlled phase-
gate shown in Fig. 1 is generalized to n-qubit quantum
gate with multiple control qubits. Interestingly, complex-
ity (number of operations) reduces linearly as compared
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FIG. 2: (a) Schematic circuit of the NTCNOT-gate with qubit
1 simultaneously, controlling n target qubits. The NTCNOT-
gate is equivalent to n two-qubit CNOT-gates each having a
shared control qubit 1 with different target qubits 2, 3, ...,n.
In this case qubit 1 is defined in |0〉, |1〉 basis while the target
qubits 2, 3, ...,n are defined in |+〉, |−〉 basis. (b) Equivalent
circuit of NTCNOT-gate in |+〉, |−〉 basis. The symbol Z
represents a phase shift of π on each target qubit. If control
qubit 1 is in state |−〉 then the state |−〉 at each Z is phase
shifted as |−〉 → − |−〉 while state |+〉 remains unchanged.
However, if control qubit 1 is in state |+〉 , then states |+〉
or |−〉 at each Z remain unchanged. (c) Equivalent circuit
of NTCNOT-gate in |0〉, |1〉 basis. The symbol Z represents
phase shift of π on each target qubit. If control qubit 1 is in
state |1〉 then state |1〉 at each Z is phase shifted as |1〉 → − |1〉
while state |0〉 remains unchanged. However, if control qubit
1 is in state |0〉 , then states |0〉 or |1〉 at each Z remain
unchanged. It may be noted that 2(n − 1) Hadamard gates
are required in this case.

to the conventional gate decomposition method. In addi-
tion, our proposal is quite general and can be applied to
various kind of four level physical systems like supercon-
ducting devices coupled to a superconducting resonator
and trapped atoms in a cavity.

II. SYSTEM DYNAMICS

We consider here a four level qubit system which could
be either natural atoms or artificial atoms as shown in
Fig. 3. It may be mentioned that Fig. 3 applies to (a)
a superconducting charged qubit [25], (b) a phase qubit
system [26, 27], (c) a flux qubit system [25, 28] and (d) a
superconducting quantum interference devices (SQUIDs)
[29]. The four-level energy diagram shown in Fig. 3 (b)
could also be applied to atoms [23].

A. System-cavity-pulse resonance Raman

Interaction

We consider a four- level qubit system 1 and 2 cou-
pled to a single-mode cavity field and driven by a clas-
sical microwave pulse as shown in Figs. 4 (a) and (b).
Consider qubit system 1 for which cavity mode is cou-
pled to |2〉1 ↔ |3〉1 transition, however, highly decoupled
from the transition between any other two-levels. In ad-
dition, microwave pulse is also applied which is coupled
to |1〉1 ↔ |3〉1 transition however, highly decoupled from
the transition between any other two-levels as shown in
Fig. 4 (a). The Hamiltonian of the system can be written
as

H = ~ωca
†a +

3
∑

n=1

En |n〉1 〈n|+ ~g1(a
† |2〉1 〈3|+H.c.)

+~Ω13(e
iωµt |1〉1 〈3|+H.c), (4)

where a† (a) is the photon creation (annihilation) oper-
ator for the cavity mode with frequency ωc and g1 is the
coupling constant between the cavity mode and |2〉1 ↔
|3〉1 transition of qubit system 1. The Rabi frequency of
pulse is Ω13 having frequency ωµ. We assume that the
cavity mode is off-resonant with |2〉1 ↔ |3〉1 transition of
the qubit system 1 (i.e., ∆c = ω32−ωc >> g1). Here, ∆c

is the detuning between |2〉1 ↔ |3〉1 transition frequency
ω32 of the qubit system 1 and cavity field frequency ωc.
Microwave pulse is off-resonant with |1〉1 ↔ |3〉1 transi-
tion of the qubit system 1 (i.e., ∆µ = ω13 −ωµ >> Ω13).
Here, ∆µ is the detuning between |1〉1 ↔ |3〉1 transition
frequency ω13 of the qubit system 1 and pulse frequency
ωµ. The level |3〉1 can be eliminated adiabatically as dis-
cussed in Ref.[30]. Thus, for the case when ∆µ = ∆c, the
effective Hamiltonian in the interaction picture (assum-
ing ~ = 1) can be written as [29]

HI = −[
Ω2

13

∆c
|1〉1 〈1|+

g21
∆c

a†a |2〉1 〈2|+

Ω13g1
∆c

(a† |2〉1 〈1|+H.c.) (5)

The last two terms describe resonance Raman coupling
between levels |1〉1 and |2〉1 . For Ω13 = g1, initial state
|2〉1 |1〉c and |1〉1 |0〉c of the qubit system 1, under the
Hamiltonian given by Eq.(5) can be written as

|1〉1 |0〉c → eiθ[cos(θ) |1〉1 |0〉c − isin(θ) |2〉1 |1〉c], (6)

|2〉1 |1〉c → eiθ[cos(θ) |2〉1 |1〉c − isin(θ) |1〉1 |0〉c]. (7)

Here, θ = g21t/∆c and |0〉c (|1〉c) is the vacuum state
(single-photon state) of the cavity field. The state
|0〉1 |0〉c remains unchanged under the Hamiltonian given
by Eq.(5). For pulse duration t1 = π∆c/(2g

2
1) (i.e.,

θ = π
2 ), we obtain the transformation |1〉1 |0〉c → |2〉1 |1〉c



4

| 3 | 3 | 3

| 2
| 2 | 2

| 3

| 2

| 2

|1

|

|1 |1

| 0 | 0 | 0

|1
| 0

|1

(c)

| 0 | 0 | 0

(a) (b) (d)

FIG. 3: Desired four-level qubit systems with four energy
levels |0〉 , |1〉 , |2〉 , and |3〉, respectively. (a) Represents a
charged qubit system: the transition frequencies between the
levels satisfy the conditions ν21 > ν10, ν32 and ν32 < ν10.(b)
Represents a phase qubit system: the transition frequencies
between the levels satisfy the conditions ν10 > ν21 > ν32.
(c) Represents a flux qubit system: the transition frequen-
cies between the levels satisfy the conditions ν21 > ν10, ν32
and ν32 > ν10. (d) Represents a SQUIDs qubit system: the
transition frequencies between the levels satisfy the conditions
ν32 < ν21 < ν20 < ν31 < ν30. The levels |0〉 and |2〉 lie in
right well of SQUID while level |1〉 lies in left well of SQUID
(see Fig. 7), such that their is potential barrier between these
two wells.

and |2〉1 |1〉c → |1〉1 |0〉c for qubit system 1 and cavity
field. We denote this transformation as G1. In case
of qubit system 2, for notation convenience we denote
ground state (first excited state) as level |1〉2 (|0〉2) as
shown in Fig. 4 (b). The cavity mode is coupled to
|2〉2 ↔ |3〉2 transition while microwave pulse is cou-
pled to |0〉2 ↔ |3〉2 transition of qubit system 2 as
shown in Fig. 4 (b). In a similar fashion, for pulse
duration t2 = π∆c/(2g

2
2), we obtain the transformation

|0〉2 |0〉c → |2〉2 |1〉c and |2〉2 |1〉c → |0〉2 |0〉c for qubit sys-
tem 2 and the cavity field. We denote this transformation
as G2. The states |1〉2 |0〉c and |1〉2 |1〉c of qubit system
remain unchanged under the transformation G2.

B. System-cavity off-resonant interaction

Next we, consider qubit system k, for which cavity field
interacts off-resonantly with |2〉k ↔ |3〉k transition (i.e.,
∆c,k = ωc − ω32 >> gk) while remains decoupled from
any transition between the other levels as shown in Fig.
4 (c). Here, ∆c,k is the detuning between |2〉k ↔ |3〉k
transition frequency ω32 of qubit system k and ωc is the
cavity field frequency while gk is the coupling constant
between the resonator mode and |2〉k ↔ |3〉k transition.

| 3 | 3 | 3

,c kc c

1
g

2
g

k
g

| 2 | 2 | 2

13 03

|1 | 0 |1

| 0 | 0|1

(c)

| 0 | 0|1

(a) (b)

FIG. 4: (a) System-cavity-pulse resonance Raman coupling
for qubit system 1. Here, ∆c = ω32 − ωc is the detuning be-
tween |2〉

1
↔ |3〉

1
transition frequency ω32 of the qubit system

1 and frequency of cavity field ωc, while ∆µ = ω13−ωµ is the
detuning between |1〉

1
↔ |3〉

1
transition frequency ω13 of the

qubit system 1 and frequency of pulse ωµ. Both detunings
are set to be equal (i.e, ∆µ = ∆c) to establish resonance Ra-
man coupling between level |1〉

1
and |2〉

1
. Rabi frequency of

pulse applied is Ω13 and g1 is the coupling constant between
the cavity mode and |2〉

1
↔ |3〉

1
transition of qubit system 1.

(b) System-cavity-pulse resonance Raman coupling between
level |0〉

2
and |2〉

2
for qubit system 2. Rabi frequency of pulse

applied is Ω03 and g2 is the coupling constant between the
cavity mode and |2〉

2
↔ |3〉

2
transition of qubit system 2.

(c) System cavity off-resonant interaction for qubit system
k = 2, 3, ..., n. Cavity mode is off-resonant with |2〉

k
↔ |3〉

k

transition of qubit system k with detuning ∆c,k and coupling
constant gk.

The effective Hamiltonian for the system in the interac-
tion picture can be written as [31]

H1 =
~g2k
∆c,k

(|3〉k 〈3| − |2〉k 〈2|)a†a. (8)

In the presence of a single photon in the cavity, the evo-
lution of the initial state |2〉 |1〉c and |3〉 |1〉c is given by

|2〉k |1〉c → eig
2

kt/∆c,k |2〉k |1〉c ,
|3〉k |1〉c → e−ig2

kt/∆c,k |3〉k |1〉c . (9)

It is clear that the phase shift of eig
2

kt/∆c,k (e−ig2

kt/∆c,k)
is induced to the state |2〉k |1〉c (|3〉 |k1〉c) for qubit sys-
tem k. However, states |2〉k |0〉c and |3〉k |0〉c remain un-
changed.

C. System-pulse resonant interaction

Let’s assume that we apply a microwave pulse which
is resonant to |j〉 → |2〉 transition of each qubit system.
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Here, j = 1 for qubit system 1 and k, while j = 0 for
qubit system 2. Then, the evolution of state is given by
[32]

|j〉 → cos(Ωj2τ) |j〉 − ie−iϕsin(Ωj2τ) |2〉 ,
|2〉 → cos(Ωj2τ) |2〉 − ieiϕsin(Ωj2τ) |j〉 , (10)

where Ωj2 is the Rabi frequency between the two levels |j〉
and |2〉. Here τ represents interaction time of qubit sys-
tem with microwave pulse and ϕ is the associated phase.
For pulse duration τ = π/(2Ωj2) and phase ϕ = π/2,
transformation |2〉 (|j〉) → |j〉 (− |2〉) is obtained which
is denoted by R. For phase ϕ = −π/2, we obtain the
transformation |2〉 (|j〉) → −|j〉 (|2〉) denoted by R†. It
may be mentioned that the resonant interaction of mi-
crowave pulse with qubit system can be carried out in a
very short time by increasing the Rabi frequency of the
pulse.

III. IMPLEMENTATION OF MULTI-QUBIT

GATES

The goal of this section is to demonstrate how a three-
qubit quantum phase-gate and an NTCNOT-gate can be
realized based on system dynamics described in Sec. II.

A. Three-qubit controlled phase-gate

We consider a qubit system 1, 2 and k (with k = 3)
as shown in Fig. 4 for the implementation of a three-
qubit controlled phase-gate. For each qubit system, two
lowest energy levels |0〉 and |1〉 represent logical state of
each qubit while other higher energy levels |2〉 and |3〉 are
utilized for gate realization. We assume that the cavity is
initially prepared in a vacuum state |0〉c . The three-qubit
controlled phase-gate can be realized using the following
steps:
Step (i): Apply transformation G1 to qubit system 1

for time t1. When qubit 1 is initially in state |1〉1, a pho-
ton is emitted inside cavity. However, the state |0〉1 |0〉c
remains unchanged under the transformation G1.
Step (ii): Apply transformation R to qubit system 1

andR† to qubit system 2, simultaneously. In this step, we
set τ = π/(2Ω02) = π/(2Ω12) by adjusting the intensities
of the two microwave pulses.
Step (iii): After the above operations, level |2〉1 of

qubit system 1 is unpopulated. While the level |0〉2 of
qubit system 2 transforms to level |2〉2 . Apply transfor-
mation G2 (for time duration t2) to qubit system 2 which
absorbs a single photon from the cavity. However, if qubit
system 2 is in state |1〉 the single photon remains there.
Step (iv): Apply transformation R† (for time duration

τ) to qubit system k = 3. After this operation, when
cavity is in a single-photon state, level |2〉 of both qubit
system 1 and 2 are unpopulated. Under this condition,

cavity field interacts off-resonantly to |2〉3 → |3〉3 transi-
tion of qubit system 3. It is clear from Eq. (9) that for
t3 = (π∆c,3)/g

2
3 , state |2〉3 |1〉c of qubit system 3 changes

to − |2〉3 |1〉c. In Fig. 5, Gπ represents this transforma-
tion. However, states |0〉3 |0〉c, |0〉3 |1〉c and |2〉3 |0〉c of
qubit system 3 remain unchanged. Finally, apply trans-
formation R (for time duration τ) to qubit system 3.
Step (v): Apply transformation G2 (for time duration

t2) to qubit system 2.
Step (vi): Apply transformation R† to qubit system 1

and R to qubit system 2, simultaneously, for time dura-
tion τ .
Step (vii): Apply transformation G1 to qubit system

1 for time t1. As a result, qubit 1 is transformed back
to state |1〉1 while the cavity field returns to its original
vacuum state.
All these operations are schematically presented in Fig.

5. The states of the whole system after these operations
are summarized as

|100〉 |0〉c
|101〉 |0〉c
|110〉 |0〉c
|111〉 |0〉c

1→
|200〉 |1〉c
|201〉 |1〉c
|210〉 |1〉c
|211〉 |1〉c

2→
|120〉 |1〉c
|121〉 |1〉c
|110〉 |1〉c
|111〉 |1〉c

3→

|100〉 |0〉c
|101〉 |0〉c
|110〉 |1〉c
|111〉 |1〉c

4→
|100〉 |0〉c
|101〉 |0〉c
|110〉 |1〉c

- |111〉 |1〉c

5→
|120〉 |1〉c
|121〉 |1〉c
|110〉 |1〉c

- |111〉 |1〉c

6→
|200〉 |1〉c
|201〉 |1〉c
|210〉 |1〉c
- |211〉 |1〉c

7→
|100〉 |1〉c
|101〉 |1〉c
|110〉 |1〉c
- |111〉 |1〉c .

(11)

Here, state |abc〉 is the abbreviation for the states |a〉1,
|b〉2 and |c〉k for qubit (1, 2, and 3) with a, b, c ∈ [0, 1, 2].
On the other hand, states |000〉 |0〉c, |001〉 |0〉c, |010〉 |0〉c ,
and |011〉 |0〉c remain unchanged. It is due to the fact
that the state |0〉1 of the qubit system 1 is not effected
by the application of transformation G1 i.e., no photon
is emitted inside cavity when qubit 1 is in state |0〉1 .
Hence, it is clear from Eq. (11) that a three-qubit con-
trolled phase-gate can be achieved with three qubits (i.e.,
control qubit 1, 2, and target qubit 3). Present proposal
provides a simple way to realize the Toffoli gate shown
in Fig. 1(b). It is well known that at least six two-
qubit controlled-NOT-gates and ten single-qubit gates
(i.e., two Hadamard, one phase , and seven π/8 gates) are
required to construct a Toffoli gate by conventional gates
decomposition methods [33]. The two qubit CNOT-gate
is equivalent to two Hadamard gate and a single two-
qubit phase gate. If we assume that the realization of
single-qubit gate and two-qubit phase-gate require only
one step operation then using conventional gate decom-
position method, at least 28 steps will be required to real-
ize Toffoli gate. However, present proposal requires only
9 steps i.e., 7 steps for three-qubit phase-gate plus two
steps operations for two Hadamard gate which is quite
interesting.
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FIG. 5: Schematic diagram for the implementation of three-
qubit controlled phase-gate. Here G1 represents the system-
cavity-pulse resonance Raman coupling between level |1〉

1
and

|2〉
1
for qubit system 1 while G2 represents system-cavity-

pulse resonance Raman coupling between level |0〉
2
and |2〉

2

for qubit system 2. Gπ is system cavity off-resonant inter-
action where as R and R† represents system pulse resonant
interaction.

Our scheme can easily be generalized to n-qubit con-
trolled phase-gate with multiple control qubits. For this
purpose, we need to apply transformation (i) G1 and R
to qubit 1. (ii) R† and G2 to qubit system 2, 3, ..., n− 1.
(iii) R†, Gπ , and R to last qubit. (iv) G2 and R to qubit
system 2, 3, ..., n− 1. (v) R† and G1 to qubit 1. Hence,
n-qubit controlled phase-gate can be achieved by a se-
quence of operations which are summarized as

Un
η = G1 ⊗R† ⊗

i=2
∏

n−1

[
i

R⊗
i

G2] ⊗(R⊗Gπ

⊗R†)⊗
n−1
∏

i=2

[
i

G2 ⊗
i

R†] ⊗R⊗G1, (12)

where
∏i=2

n−1

i

G =
2

G ⊗
3

G ⊗ ... ⊗
n−1

G while
∏n−1

i=2

i

G =
n−1

G ⊗ ... ⊗
3

G ⊗
2

G. Realization of n-qubit CNOT-gate
with multiple control qubit can be implemented through
H ⊗ Un

η ⊗H transformations.
The total number of steps, required for n-qubit quan-

tum phase-gate with multiple control qubits and n-qubit
CNOT-gate are 4n− 5 and 4n− 3, respectively. Accord-
ing to conventional gate decomposition method, 2n − 5
Toffoli-gates are required for n-qubit CNOT-gate [33]. As
mentioned above single Toffoli-gate required at least 28
steps of operations. Thus, total number of steps for n-
qubit CNOT-gate are (2n − 5) × 28 = 56n − 140, and
for n-qubit controlled phase-gate are 56n − 142. In or-
der to make a quantitative comparison of the two ap-

362385

306
315

350 Multiqubit gates

Decomposition

250

245

280
Decomposition

method

p
s

194

175

210

e
r
o
f
st
e
p

138

140

175

N
u
m
b
e

82

70

105

7
11 15 19 23 27 31 3526

0

35

0

3 4 5 6 7 8 9 10
Number of qubit

FIG. 6: Plot of the gate implementation steps against the
number of qubits.

proaches, we show the plot of the number of steps for
the gate operation as a function of number of qubits n in
Fig. 6. It can be seen that the number of steps for gate
decomposition method increases rapidly with n as com-
pared to multi-qubit gate. The reduction in the number
of steps is 52n−137. It is clear that , our scheme reduces
the number of steps (complexity) linearly as compared to
conventional gate decomposition method.

B. NTCNOT-gate

In order to implement NTCNOT-gate, we consider
qubit system 1 (as shown in Fig. 4 (a)) initially pre-

pared in state (|0〉1+ |1〉1) /
√
2. In this case, we consider

n− 1 qubit system of type k as shown in Fig. 4 (c) with
k = 2, 3, ...n . Each qubit system k is initially prepared
in state |0〉k. In the new rotated basis for qubit system
k, the state of the whole system can be written as

|ψ〉 = 1

2
(|0〉1 + |1〉1)⊗

n
∏

k=2

(|+〉k + |−〉k), (13)

where, |±〉k = 1/
√
2(|0〉k±|1〉k). The operations required

for realizing NTCNOT-gate are described as follow:
Step (i): Apply transformation G1 to qubit system 1

for time t1. Namely, when qubit 1 is initially in state |1〉1,
a photon is emitted in cavity. However, the state |0〉1 |0〉c
remain unchanged under transformation G1.
Step (ii): Apply transformation R to qubit system 1

and R† to each qubit system k for time duration τ , si-
multaneously. As a result transformation |+〉k (|−〉k) →
|a〉k (|b〉k) is obtained for each qubit system k. Here,

|a〉k = 1/
√
2(|0〉k + |2〉k) and |b〉k = 1/

√
2(|0〉k − |2〉k).

Step (iii): After above operations, when cavity is in
single photon state, level |2〉1 and level |3〉1 of qubit
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system 1 is unpopulated. Under this condition cavity
field interacts off-resonantly to |2〉k → |3〉k transition of
each qubit system k. It is clear from Eq. (9) that for
tk = (π∆c,k)/g

2
k, the state |2〉k |1〉c of each qubit system

k changes to − |2〉k |1〉c. In the presence of single pho-
ton in cavity, the state |a〉k |1〉c of each qubit system k
changes to |b〉k |1〉c while |b〉k |1〉c of each qubit system k
changes to |a〉k |1〉c. However, states |a〉2 |0〉c and |b〉2 |0〉c
remain unchanged.
Step (iv): Apply transformation R† to qubit system

1 and R to each qubit system k for time duration τ ,
simultaneously.
Step (v): Apply transformation G1 to qubit system 1

for time t1. As a result, qubit 1 is transformed back to
state |1〉1 while cavity field returns to its original vacuum
state.
After the above operations, one can easily see that

controlled-NOT gate of one-qubit simultaneously control-
ling n qubits described by Eq. (2) and Eq. (3) is achieved
with n qubit system (i.e., control qubit 1 and target qubit
systems k = 2, 3, ...n ).
In order to get an insight, here we consider an exam-

ple of three-qubit case. In this case, states of the whole
system after the above operations can be summarized as
follows:

|1 + +〉 |0〉c
|1 + −〉 |0〉c
|1− +〉 |0〉c
|1− −〉 |0〉c

1→
|2 + +〉 |1〉c
|2 +−〉 |1〉c
|2−+〉 |1〉c
|2−−〉 |1〉c

2→
|1aa〉 |1〉c
|1ab〉 |1〉c
|1ba〉 |1〉c
|1bb〉 |1〉c

3→

|1bb〉 |1〉c
|1ba〉 |1〉c
|1ab〉 |1〉c
|1aa〉 |1〉c

4→
|2−−〉 |1〉c
|2−+〉 |1〉c
|2 +−〉 |1〉c
|2 + +〉 |1〉c

5→
|1−−〉 |0〉c
|1−+〉 |0〉c
|1 +−〉 |0〉c
|1 + +〉 |0〉c .

(14)

Hence, it can be concluded from Eq. (14) that three-
qubit controlled-NOT gate of one qubit simultaneously
controlling 2 qubits with k = 2, 3 is achieved with 3 qubit
system (i.e., control qubit 1 and two target qubit systems
2 and 3). It is clear from the above steps of operations
that Hadamard-gate is neither required before step 1 nor
after step 6. For k = 2 in Eq. (2) and Eq. (3) our scheme
reduces to two-qubit controlled-NOT gate which can be
used to implement two-qubit Deutsch-Jozsa algorithm as
described below. It may be pointed out that as compared
to earlier proposal Ref. [23] which requires 8 steps of op-
erations to implement NTCNOT-gate, present proposal
accomplishes the task in just five steps.

1. DEUTSCH-JOZSA ALGORITHM

Deutsch-Jozsa algorithm is designed to distinguish be-
tween the constant and balanced functions on 2n inputs
[34]. For constant function, the function f(x) = constant
for all 2n inputs. For the balanced function, the function
f(x) = 0 for half of all possible inputs, and f(x) = 1 for

other half. A classical algorithm needs 2n/2 + 1 queries
to determine whether function is constant or balanced
since there may be 2n/2 zero’s before finally a one ap-
pears, showing that function is balanced. In contrast, the
Deutsch-Jozsa algorithm requires only one query.
Here, we discuss the scheme to implement two-qubit

Deutsch-Jozsa algorithm using four-level qubit system
shown in Fig. 3 coupled to a cavity or a resonator. The
qubit system 1 shown in Fig. 4(a) represents query qubit
while qubit system k = 2 shown in Fig. 4(c) represents
auxiliary qubit. We prepare the two-qubit system in the
state |ψ〉 = 1/

√
2(|0〉1+ |1〉1)⊗|1〉2 which can be written

in rotating basis for qubit system k = 2 such that

|ψ〉 = 1

2
(|0〉1 + |1〉1)⊗ (|+〉2 − |−〉2). (15)

The function f(x) is characterized by the unitary map-
ping transformationUf , and |x, y〉 → |x, y ⊕ f(x)〉, where
⊕ represents addition modulo 2. After unitary transfor-
mation Uf , initial state of the system changes to

1

2
[(−1)f(0) |0〉1 + (−1)f(1) |1〉1]⊗ (|+〉2 − |−〉2). (16)

There are four possible transformations: (i) Uf,1 corre-
sponding to f(0) = f(1) = 0; (ii) Uf,2 corresponding to
f(0) = f(1) = 1; (iii) Uf,3 corresponding to f(0) = 0 and
f(1) = 1; and (iv) Uf,4 corresponding to f(0) = 1 and
f(1) = 0. Then Hadamard gate is applied on query qubit.
As a result, state of query qubit becomes |f(0)⊕ f(1)〉.
If f(x) is constant then, the state of query qubit becomes
|0〉1. On other hand, if f(x) is balanced, the state of the
query qubit becomes |1〉1. Therefore, a measurement on
query qubit provides the desired information whether the
function f(x) is constant or balanced. The Uf,n opera-
tions are applied to the state |ψ〉 as follow:
Uf,1 operation: This is an identity operation. Both

qubit system are kept far off with the cavity field and
microwave pulse. As a result system remains in the state
|ψ〉.
Uf,2 operation: We first apply two-qubit controlled

NOT-gate as described earlier. Next, we apply single-
qubit rotations |0〉 → |1〉 and |1〉 → − |0〉 on qubit system
1. Then we repeat two-qubit controlled-NOT operation
and perform the single-qubit rotations |0〉 → − |1〉 and
|1〉 → |0〉 on qubit system 1. Finally, we obtain

|ψ〉2 =
1

2
(− |0〉1 − |1〉1)⊗ (|+〉2 − |−〉2). (17)

Uf,3 operation: Next, we apply two-qubit controlled-
NOT operation, as a result, state of the system evolves
to

|ψ〉3 =
1

2
(|0〉1 − |1〉1)⊗ (|+〉2 − |−〉2). (18)

Uf,4 operation: We then apply single-qubit rotations
|0〉 → |1〉 and |1〉 → − |0〉 on qubit system 1. Then
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we perform controlled-NOT operation. Finally, we again
apply single-qubit rotations |0〉 → − |1〉 and |1〉 → |0〉 on
qubit system 1. The resultant state becomes

|ψ〉4 =
1

2
(− |0〉1 + |1〉1)⊗ (|+〉2 − |−〉2). (19)

In this way, we obtain the unitary mapping transfor-
mation Uf . After Hadamard transformation on qubit
system 1, if the state of qubit system 1 becomes |0〉1,
then the function f(x) is constant. On other hand, if the
state of qubit system 1 becomes |1〉1, then the function
f(x) is balanced.

IV. POSSIBLE EXPERIMENTAL

IMPLEMENTATION

In this section, we give a detailed discussion on exper-
imental possibilities of three-qubit controlled phase-gate
and NTCNOT-gate. The total operation time for three-
qubit controlled phase-gate is given by

τ3cp = 2t1 + 2t2 + t3 + 4τ

= 2(
π∆c

2g21
) + 2(

π∆c

2g22
) + (

π∆c,3

g23
) + 4(

π

2Ω12
).(20)

Similarly, the total operation time for NTCNOT-gate is
given by

τntcnot = 2t1 + 2τ + tk = 2(
π∆c

2g21
) + 2(

π

2Ω12
) + (

π∆c,k

g2k
).

(21)
The operation time τcp and τntcnot should be shorter

than (i) energy relaxation time γ−1
2 of level |2〉 (it may

be mentioned that level |3〉 is unpopulated during the en-
tire operations), and (ii) the life time of the cavity mode
κ−1 = Q/2πνc, where, Q is quality factor of the cavity
and νc is the resonator frequency. In principle, these re-
quirements can be achieved using the following: (i) reduc-
ing operation time by increasing the coupling constant
and Rabi frequencies, (ii) increasing κ−1 by employing
high-Q cavity or resonator, and (iii) choosing qubit sys-
tem (e.g., atoms) or designing qubits (e.g., superconduct-
ing devices) such that the energy relaxation time γ−1

2 of
level |2〉 is sufficiently long.
Here, we consider without loss of generality g1 ∼ g2 ∼

gk ∼ g. On choosing ∆c ∼ ∆c,3 ∼ ∆c,k ∼ 10g, and
Ω12 ∼ 10g, the total operation time required for the gates
implementation would be τ3cp ∼ 30.2π/g and τntcnot ∼

20π/g. Here, we assume g/π ∼ 440MHz, which could
be achieved for superconducting qubits coupled to a one-
dimensional standing-wave coplanar wave guide (CPW)
transmission resonator [35]. As a result, we have
τ3cp ∼ 0.068µs and τntcnot ∼ 0.045µs, which is much

shorter than γ−1
2 ∼ 1µs, and κ−1

∼ 5.3µs for resonator
with frequency νc ∼ 3GHz and Q ∼ 105 [8]. It may
be mentioned that superconducting coplanar wave guide

| 3

| 2

| 1

| 0

|

FIG. 7: An rf SQUID with first four energy levels. Magnetic
dipole coupling between two ground levels |0〉 and |1〉 is much
smaller than that between any other levels due to potential
barrier between two wells. Transition frequencies between the
excited levels and ground levels are ν30 ∼ 24.4GHz, ν31 ∼

21.4GHz, ν12 ∼ 16.5GHz, ν20 ∼ 19.5GHz, which are much
larger than transition frequency ν32 ∼ 4.9GHz.

resonator with a quality factor Q ∼ 106 has been exper-
imentally demonstrated [36].
The schemes proposed here are quite general which

can be implemented using different physical systems as
pointed out earlier. However, here we consider a spe-
cific example of superconducting quantum interference
devices (SQUIDs) as a potential qubit system for the
implementation of our scheme. For SQUID, the de-
sired level structure can easily be obtained by chang-
ing external control parameters e.g., magnetic flux φx
[29]. For example, consider rf SQUID shown in Fig. 7
with junction capacitance C = 90fF , loop inductance
L = 100pH , junction’s damping resistance R ∼ 1GΩ,
potential shape parameter βL = 1.12, and external flux
φx = 0.4995φ0. Here, φ0 = h/2e is flux quantum.
It may be mentioned that SQUIDs with these param-
eters are available currently [29]. With these choices,
decay time of level |2〉 would be γ−1

2 ∼ 100µs, the
|2〉 → |3〉 coupling matrix element is φ32 ∼ 7.8 × 10−2,
and |2〉 → |3〉 transition frequency is ν32 ∼ 4.9GHz. We
choose cavity mode frequency νc = ωc/(2π) = 3.6GHz,
Q ∼ 105, and κ−1

∼ 4.42µs. The SQUID-cavity cou-
pling constant for |2〉 → |3〉 transition is given by g =

(1/L)
√

ωc/2µ0~φ32φ0
∫

S Bc(r).dS. Here, S is the surface
bounded by the SQUID ring and Bc(r) is the magnetic
component of cavity mode in the SQUID loop. For stand-
ing wave cavity, Bc(z) = µ0

√

2/V cos kz, where k, V ,
and z are wave number, cavity volume, and cavity axis,
respectively. For g ∼ 4.3 × 108s−1 the time required for
(i) three-qubit phase-gate would be τ3cp ∼ 0.219µs and
(ii) for NTCNOT-gate would be τntcnot ∼ 0.146µs.
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These implementation times are much shorter than γ−1
2

and κ−1. Moreover, we have an additional advantage in
case of flux-qubit system that is tunneling between the
levels |1〉 and |0〉 is not needed during the gates opera-
tion. Therefore, potential barrier between levels |1〉 and
|0〉 can be adjusted a priory such that decay from level
|1〉 becomes negligibly small [26, 27]. As a result, each
qubit can have much longer storage time.
Although, in our scheme, both gates can be carried

out faster than γ−1
2 and κ−1, we should study the im-

perfection induced due to cavity decay. In ideal case,
emission and absorption of a single-photon take place
with unit probability due to transformation G1 and G2.
As a result occupation probability of levels |1〉 , |2〉 of
qubit 1, and levels |0〉, |2〉 of qubit 2 should be exactly
one. However, these occupation probabilities are likely
to decay exponentially due to cavity decay. Assuming
that no photon actually leaks out during implementation,
corresponding conditional Hamiltonian can be written as
Hc = HI−iκa†a [15]. Suppose each qubit is initially pre-
pared in generic state cos ν |0〉 + sin ν |1〉 for three-qubit
controlled phase-gate, and each target qubit is initially
prepared in state cos ν |+〉+sin ν |−〉 for NTCNOT-gate.
In ideal case, when κ = 0, state of system after steps
of operations (as described in Sec. III) becomes |ψid(τ)〉
which is given by Eq. 11 and 14. However, when cavity
decay is incorporated under the assumption of weak cav-
ity decay, time evolution of the system becomes rather
complex which is not presented here. Average fidelity
over all possible initial states can be computed using
Fave = 1

2

∫ π

0
F sin νdν, where F = |〈ψid(τ) |ψdecay(τ)〉 |2.

Next, we show the plot of average fidelity for three-qubit
phase-gate (dots) and NTCNOT-gate (dots) as a func-
tion of κ/g in Fig. 8. It can be seen that fidelity de-
creases as cavity decay rate increase. For the choice of
κ/g = 0.000145 [35] we have Fave ≈ 99%. It is clear
from Fig. 8 that both gates are of high fidelity as long as
the cavity decay is small enough. However performance
of these gates in the light of further experimental errors
like effect of γ−1

2 , delay in pulse durations along with cav-
ity decay requires a rather lengthy and complex analysis
which should be further investigated.
Here, we discuss some other issues related to gate op-

erations. During the operation of step (ii) or (iv) or
(vi) for three-qubit phase-gate and of step (ii) or (iv) for
NTCNOT-gate, a single-photon is populated in the cav-
ity mode while state |2〉 of each qubit system is occupied.
The unwanted system-cavity-pulse resonance Raman in-
teraction and system-cavity off-resonant interaction be-
tween resonator mode and |2〉 → |3〉 transition of qubit
system induces an accumulated phase shift to state |2〉 of
each qubit system, which can effect the desire gate per-
formance. However, when τ << t1, t2, tk this unwanted
phase shift is sufficiently small and can be neglected.
Note that for Ω12 = Ω02, we have τ = π/(2Ω12), t1 =

π∆c/(2g
2
1), t2 = π∆c/(2g

2
2), and tk = π∆c,k/g

2
k. Thus

condition turns into Ω12 >> 2g21/∆c, 2g
2
2/∆c, g

2
k/∆c,k

which can be achieved by increasing the Rabi frequency

Three qubit NTCNOT-gate

Three qubit phase gate

0.000 0.001 0.002 0.003 0.004
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FIG. 8: Average fidelity of multi-qubit quantum gates as a
function of κ/g. Red (black) dots indicates the fidelity of three
qubit controlled phase-gate (three-qubit NTCNOT-gate)

of pulse (i.e, by increasing the intensity of resonant
pulse). For ∆c,k = 10gk, the occupation probability of
level |3〉 for target qubits is approximately 0.04 which
reduces the gate error [29].

V. CONCLUSION

We have proposed a scheme for realizing a three-qubit
controlled phase-gate and an NTCNOT-gate with three
types of interactions. These interactions are system-
cavity-pulse resonance Raman coupling, system-cavity
off-resonant interaction, and system-pulse resonant in-
teraction. The proposal can be applied to various kind
of physical system with four-level configuration. For dif-
ferent systems, frequency regimes of cavity-mode could
be different, e.g., optical cavities in case of atoms and
microwave cavities in case of superconducting qubits.

We have shown that our proposal has following advan-
tages: (i) Decoherence due to spontaneous decay of level
|3〉 is suppressed because the excited level |3〉 is unpopu-
lated during the gates operation. (ii) The adjustment of
level spacing of the qubit system during the gate oper-
ations is not needed which may cause decoherence. (iii)
Finite second-order detuning is not required which im-
proves the gate speed. (iv) For the quantum gate with
multiple control qubit, the number of steps (complexity)
reduces linearly for number n of the qubit, as compared
to conventional gate decomposition method. (v) The op-
eration time for the realization of NTCNOT-gate is in-
dependent of the number of qubits.
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