
A quantum algorithm for approximating the influences

of Boolean functions and its applications

Hong-Wei Li1,2,3,4 , Li Yang1,3∗

1.State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2.School of Mathematics and Statistics, Henan Institute of Education,
Zhengzhou,450046,Henan, China

3.Data Assurance and Communication Security Research Center, Chinese Academy of
Sciences, Beijing 100093, China

4.University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

We investigate the influences of variables on a Boolean function f based on
the quantum Bernstein-Vazirani algorithm. A previous paper (Floess et al.
in Math. Struct. in Comp. Science 23: 386, 2013) has proved that if a n-
variable Boolean function f(x1, . . . , xn) does not depend on an input variable
xi, using the Bernstein-Vazirani circuit to f will always obtain an output y
that has a 0 in the ith position. We generalize this result and show that
after one time running the algorithm, the probability of getting a 1 in each
position i is equal to the dependence degree of f on the variable xi, i.e. the
influence of xi on f . On this foundation, we give an approximation algo-
rithm to evaluate the influence of any variable on a Boolean function. Next,
as an application, we use it to study the Boolean functions with juntas, and
construct probabilistic quantum algorithms to learn certain Boolean func-
tions. Compared with the deterministic algorithms given by Floess et al.,
our probabilistic algorithms are faster.

Keywords: Bernstein-Vazirani algorithm, quantum algorithm, influence of
Boolean function

∗Corresponding author email: yangli@iie.ac.cn

ar
X

iv
:1

40
9.

14
16

v2
 [

cs
.D

S]
 2

0
Ja

n
20

15

1. Introduction

In [1], Floess et al. studied the juntas using the quantum Bernstein-
Vazirani algorithm, and they proved that using the Bernstein-Vazirani circuit
to a Boolean function f(x1, . . . , xn) that has nothing to do with a variable
xi would always obtain the output y = (y1, . . . , yn) ∈ {0, 1}n with yi = 0. In
this paper, we will generalize it to the result that the number of ones in each
position i of the outputs relates to the influence of xi on f , and our result
will contain the one in [1].

During the last thirty years, there were a lot of researches about the
influences of variables on Boolean functions. In [2], the authors transformed
randomized algorithms to the processors of flipping the coin. In order that
a single processor does not control the global bit, it must have a Boolean
function that every variable has a little influence. Hatami [3] pointed out
that the influence of a variable on a Boolean function appears in various
contexts such as probability theory, computer science and statistical physics,
and Boolean functions with small total influences are in close touch with
threshold phenomenon. In [4], Kahn et al. introduced harmonic analysis
methods on Boolean functions for the first time, proved a so called KKL
inequality to give a lower bound on total influences. The KKL inequality
now is usually used to estimate some bounds [5, 6].

Similar to [1], our algorithms will be based on the Bernstein-Vazirani
algorithm [7], which has the same circuit as the Deutsch-Jozsa algorithm
[8]. And based on cavity QED, some schemes have been proposed to realize
Deutsch-Jozsa algorithm [9, 10].

In this paper, we begin with some preliminaries. Next, we give a theo-
rem about the influence of a variable of a Boolean function and the gains
after running the Bernstein-Vazirani algorithm. Based on this, we propose a
quantum approximation algorithm to evaluate the influence, and finally we
exploit the above result to the learning of juntas.

2. Preliminaries

2.1. Notations and definitions

Definition 1 Let f(x1, . . . , xn) : {0, 1}n → {0, 1} be a Boolean function,
i ∈ {1, 2, . . . , n} = [n], αi ∈ {0, 1}n, and all the coordinates of αi are 0 except
the ith one. For any event E, Pr(E) denotes the probability of E happening.

2

For any set A, |A| denotes the cardinality of A. The influence of a variable
xi on the function f is defined as

If (i) = Pr[f(x⊕ αi) 6= f(x)] =
|{x|f(x⊕ αi) 6= f(x)}|

2n
, (1)

where ⊕ denotes bitwise exclusive-or.

Definition 2 For any Boolean function f , we define the Walsh transform
of it by

Sf (y) =
1

2n

∑
x∈Fn2

(−1)f(x)+y·x, (2)

where y ∈ {0, 1}n.

2.2. The Bernstein-Vazirani algorithm[1, 7, 8, 11]

For any Boolean function f , define the Uf gate as

Uf |x〉|z〉 = |x〉|z + f(x)〉, (3)

where x ∈ {0, 1}n, z ∈ {0, 1}, and the addition is modulo 2.
Applying n Hadamard gates to |x〉 obtains

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉, (4)

Now, begin with the initial state |0〉⊗n|1〉, do the following

|0〉⊗n|1〉

H⊗(n+1)

−−−−−→
1√
2n

∑
x∈{0,1}n

|x〉 · |0〉 − |1〉√
2

Uf−→
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉 · |0〉 − |1〉√
2

H⊗(n+1)

−−−−−→
1

2n

∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)f(x)+y·x|y〉 · |1〉. (5)

Discarding the last qubit. If f(x) = a · x, a ∈ {0, 1}n, we just get |a〉, and if
we measure in the computational basis, we will get a. If f(x) is not a linear
function, from (2) and (5), the output is actually∑

y∈Fn2

Sf (y)|y〉. (6)

3

This time if we measure in the computational basis, we will get y with prob-
ability S2

f (y). We will always use y = (y1, . . . yn) to denote the result after
running the Bernstein-Vazirani algorithm in this paper.

2.3. The Hoeffding inequality [12]

If X1, X2, . . . , Xn are independent random variables and ai 6 Xi 6 bi(i =
1, 2, . . . , n), then for t > 0

Pr{| 1
n

n∑
i=1

Xi −
1

n
E(

n∑
i=1

Xi)| > t} 6 2e−2n
2t2/

∑n
i=1(bi−ai)2 , (7)

where EX is the expected value of the random variable X.

3. The main results about the influences of Boolean functions

Theorem 1 For any Boolean function f ,

If (i) =
∑
yi=1

S2
f (y). (8)

Kahn et al. and O’Donnell have given an expression between the influence
of a variable on a Boolean function f and the fourier transform of f in [4]

and [13], where the fourier transform of f is f̂(y) = 1
2n

∑
x∈Fn2

f(x)(−1)y·x.
We changed it a little so that we could use the Bernstein-Vazirani algorithm
to evaluate the influence.
Proof (We’ll use a method similar to [4] and [14] to complete the proof.)
First, let

Cf (γ) =
∑
x∈Fn2

(−1)f(x)+f(x⊕γ), (9)

S(Cf)(y) = 2−n
∑
γ∈Fn2

Cf (γ)(−1)γ·y. (10)

Eq. (9) is substituted in Eq. (10),

S(Cf)(y) =2−n
∑
γ∈Fn2

∑
x∈Fn2

(−1)f(x)+f(x⊕γ)(−1)(x⊕γ)·y(−1)x·y

=2nS2
f (y). (11)

4

Therefore,

Cf (γ) =
∑
y∈Fn2

S(Cf)(y)(−1)γ·y = 2n
∑
y∈Fn2

S2
f (y)(−1)γ·y. (12)

Thus, we can have

Cf (α
i) = 2n(

∑
yi=0

S2
f (y)−

∑
yi=1

S2
f (y)). (13)

On the other hand,

Cf (α
i) =|{x ∈ F n

2 |f(x⊕ αi) + f(x) = 0}| − |{x ∈ F n
2 |f(x⊕ αi) + f(x) = 1}|

=|V0| − |V1|,
(14)

and from (13) and (14), we have∑
yi=0

S2
f (y)−

∑
yi=1

S2
f (y) =

|V0|
2n
− |V1|

2n
. (15)

In addition, by Parseval’s relation, we have∑
yi=0

S2
f (y) +

∑
yi=1

S2
f (y) = 1 =

|V0|
2n

+
|V1|
2n

. (16)

Combining (15) and (16), we can obtain{∑
yi=0 S

2
f (y) = |V0|

2n
,∑

yi=1 S
2
f (y) = |V1|

2n
.

(17)

By Definition 1 we have If (i) = |V1|
2n

, henceforth

If (i) =
∑
yi=1

S2
f (y).

From Theorem 1, we immediately have the following.

Theorem 2 Using the Bernstein-Vazirani circuit once to a Boolean func-
tion f , the probability of find the one in a position i (i.e. yi = 1) is identical

5

to the influence of xi on f . Specially, if f is independent of xi, we will always
find yi = 0; if If (i) = 1, we will always find yi = 1.
Proof According to (6), if we measure in the computational basis, we will
get y with probability S2

f (y). So the probability we get yi = 1 is

Pr(yi = 1) =
∑
yi=1

S2
f (y) = If (i), (18)

where the second equal comes from (8). Meanwhile, the probability we get
yi = 0 is

Pr(yi = 0) =
∑
yi=0

S2
f (y) = 1− If (i). (19)

Specially, if f is independent of xi, i.e. If (i) = 0, then by (18) and (19),
Pr(yi = 1) = 0 and Pr(yi = 0) = 1. Consequently, we can not get y with
yi = 1, we will always find y with yi = 0. If If (i) = 1, by (18) and (19), the
probability we get yi = 1 is 1, we will always find y with yi = 1.

Remark Theorems 1 and 2 conclude Theorems 3.1 and 3.2 in [1] as a
special case. In other words, Theorems 1 and 2 generalize Theorems 3.1 and
3.2 in [1] separately.

4. The quantum algorithm for the influences of Boolean Functions

4.1. The quantum algorithm

Now, we will give our algorithm. Given an oracle to a Boolean function
f , our algorithm will run in polynomial times, and output the approximate
value of If (i) for every i ∈ [n].

Algorithm 1
1. Run the Bernstein-Vazirani circuit for the function f m (m is a positive

integer independent of n) times. Let y1, . . . , ym be the outputs.
2. For any fixed i ∈ [n], count the total number of ones in y1i , . . . , y

m
i , and

denote it by li.
3. Compute pi = pi(m) = li

m
and output it.

Then by Theorem 2 (18),

If (i) ≈ pi, (20)

6

where ≈ is an abbreviation for be approximately equal to. And the total
influence of all variables on f is

n∑
i=1

If (i) ≈
n∑
i=1

pi =

∑n
i=1 li
m

. (21)

From this we can know some properties about influence, such as which vari-
ables have influences more than 0, whether every variable has a little influence
or not, whether the total influence is small or not, and so on.

4.2. The analysis of Algorithm 1

What is the error scope of If (i) that we just compute through the above
method? In other words, what’s the distance of pi and If (i)?

Theorem 3 ∀ε > 0, we have

Pr(|If (i)− pi| < ε) > 1− 2e−2mε
2

. (22)

Proof For any i ∈ [n], let Yi be a random variables such that

Yi =

{
1 yi = 1,

0 yi = 0,
(23)

where yi is the ith coordinate of the y measured. Then by the Theorem 2,

Pr[Yi = 1] = If (i). (24)

Running the Bernstein-Vazirani algorithm m times corresponds to m inde-
pendent identical distributed random variables Y j

i , j ∈ [m]. By the Hoeffd-
ing’s inequality,

Pr(|If (i)−
1

m

m∑
j=1

Y j
i | < ε) > 1− 2e−2mε

2

. (25)

From the second step of the algorithm, we know
∑m

j=1 Y
j
i = li, i.e. (22)

holds.

Theorem 4 Running the Algorithm 1 can give a list of variables which
satisfies

1. any variable xi on the list has the influence If (i) > 0;

7

2. the probability of any variable xi with If (i) > c
m

appearing on the list
is at least 1− e−c (where c is a constant).
Proof Run the Algorithm 1, If li > 1, then output xi. This gives a list of
xi, we will show the list satisfies the conditions 1 and 2.

By Theorem 2, if If (i) = 0, we will find li = 0, xi can not be on the list.
So it must be If (i) > 0 for every xi on the list.

For If (i) > c
m

, when we run the Bernstein-Vazirani algorithm once, the
probability of getting yi = 1 is at least c

m
, so the probability of getting yi = 0

is at most 1− c
m

. Therefore, the probability of always getting yi = 0 in step
1 is at most

(1− c

m
)m 6 e−c, (26)

so the probability of getting li > 1 in step 2 is at least

1− (1− c

m
)m > 1− e−c. (27)

4.3. Compare with the classical algorithm

In the classical probabilistic Turing model, if we want to evaluate If (i)
for arbitrary i ∈ [n], we should randomly choose a set A ⊂ {0, 1}n, and then
compute

qi =
|{x ∈ A|f(x⊕ αi) 6= f(x)}|

|A|
(28)

to get a rough estimate, since by Definition 1, If (i) ≈ qi. We define a random
variable Zi,

Zi =

{
1 f(x) 6= f(x⊕ αi),
0 f(x) = f(x⊕ αi).

(29)

Suppose |A| = m, then similarly to Theorem 3, we can get

Pr(|If (i)− qi| < ε) > 1− 2e−2mε
2

. (30)

From the above, we can see that for any fixed i ∈ [n], the classical algorithm
can obtain the same accuracy degree as the quantum algorithm. However,
running the quantum Algorithm 1 can get the influences of all variables on
the function, while the classical algorithm can only get one of it. So our
quantum algorithm gains an O(n) times speedup over the classical one.

8

5. Applications in some special cases

Recall that a junta is a Boolean function that only depend on at most k
out of n variables, where k < n. From Theorem 2, the probability of finding
the one in the algorithm is only relevant to the influence of the variable, which
is entirely unrelated to k and n. So we can use the above quantum algorithm
to learn juntas. In [1], Floess et al. examined the quadratic and cubic
functions, and gave deterministic quantum algorithms for these functions.
They expected to devise probabilistic quantum algorithms. Now, we will
complete this work based on the above results of Theorems 2 and 3. Before
doing this, we need the following lemma.
Lemma 1 If f(x) is of the form

f(x1, x2, . . . xn) =
r∏
i=1

xi (r ∈ [n]), (31)

then

If (i) =

{
1

2r−1 i ∈ [r],

0 i ∈ [n]− [r].
(32)

Proof For i ∈ [n]− [r], from (31), the expression of f does not contain xi
for such i, so f(x) = f(x⊕ αi) for all x ∈ {0, 1}n, by Definition 1, If (i) = 0.

Obviously f(x) 6= f(x ⊕ αi) if and only if one of them is 0, the other is
1. From (31), we have f(x) = 1 if and only if xi = 1 for all i ∈ [r]. So
f(x) 6= f(x ⊕ αi) if and only if i ∈ [r] and xj = 1 for j ∈ [r] − {i}. The
number of x ∈ {0, 1}n with xj = 1, j ∈ [r]− {i} is 2n−r+1, the total number
of x ∈ {0, 1}n is 2n, so by Definition 1 the influence of xi on the function f
is

If (i) =
2n−r+1

2n
= 21−r.

From the proof we can see that the similar conclusion holds for any prod-
uct of r variables. Specially, if a variable xi only appears in linear term, then
If (i) = 1. If a variable xi only appears in quadratic term, then If (i) = 1

2
. If

a variable xi only appears in cubic term, then If (i) = 1
4
.

Now we give our probabilistic quantum algorithms.

5.1. Quadratic functions

Suppose f is a Boolean function that is composed of linear and quadratic
terms and each variable appears in at most one term. Our assignment is to
find the variables in linear terms and those in quadratic terms.

9

Algorithm 2
We apply the Bernstein-Vazirani circuit to f ρ (ρ is an integer, and ρ > 2)

times, if we always get 1 in a position i, then xi will be declared to be in
linear term. If we get some 1 and some 0 in a position j, then xj will be
declared to be in quadratic term. If we always get 0 in a position k, then xk
will be declared to be not in the expression of f .

Now let us see the success probability of Algorithm 2.
If xi is in linear term, from Lemma 1, If (i) = 1, so by Theorem 2, the

probability we get yi = 1 is 1, we will always find yi = 1.
When xi is in quadratic term, from Lemma 1, If (i) = 1

2
, running the

Bernstein-Vazirani algorithm once, the probability of getting yi = 1 (yi = 0)
is 1

2
, so in Algorithm 2, the probability of getting yi = 1 (yi = 0) ρ times is

(
1

2
)ρ =

1

2ρ
. (33)

From this we can see that when we declare xi to be in linear term, xi
may be in quadratic term with a probability 1

2ρ
, the error probability is

exponentially small.
If xk is declared to be not in the expression of f , but in fact xk will be

probably in quadratic term, the probability that this happens is 1
2ρ

.
If we declare xj to be in quadratic term, in fact it will be. But xj is in

fact in quadratic term, the probability that we make a mistake (i.e. we think
it is in linear term or not in the expression of f) is

(
1

2
)ρ + (

1

2
)ρ =

1

2ρ−1
. (34)

From the above, we can see that all of these error probabilities are expo-
nentially small.

5.2. Cubic functions

This time we still suppose f is a Boolean function and each variable
appears in at most one term. The difference is that there are cubic terms in
the expression of f besides some linear and quadratic terms. Our aim is to
determine the variables in linear, quadratic and cubic terms.

Algorithm 3
We still just apply the Bernstein-vazirani circuit to f λ(λ is a integer

independent of n and λ > 4) times. If we always get ones in a position i,

10

then xi will be declared to be in linear term. If we find µλ ones in a position
j (where µ ∈ (1

2
− ε, 1

2
+ ε), ε is a real number and 0 < ε < 1

8
, we may set

ε = 0.1), then xj will be declared to be in quadratic term. If we find νλ ones
in a position l (where ν ∈ (1

4
− ε, 1

4
+ ε), ε = 0.1), then xl will be declared to

be in cubic term. If we always get 0 in a position k, then xk will be declared
to be not in the expression of f .

The analysis of Algorithm 3 will be more complicated than that of Algo-
rithm 2. We give a less precise evaluation. If a variable xj (xl) is in quadratic
(cubic) term, from Lemma 1, If (j) = 1

2
(If (l) = 1

4
), similarly to (25), by

Hoeffding’s inequality, we have

Pr(|µ− 1

2
| < ε) > 1− 2e−2λε

2

, (35)

Pr(|ν − 1

4
| < ε) > 1− 2e−2λε

2

. (36)

Therefore, we will draw a conclusion that xj (xl) is in quadratic (cubic) term
with a probability no less than 1 − 2e−2λε

2
. The number approximate to 1

exponentially with the increase of λ. The analysis of linear terms is more
like that about Algorithm 2.

In conclusion, we can use the generalized Bernstein-vazirani quantum for
learning some simple functions, such as quadratic, cubic, quartic and maybe
higher degree functions. The running time of the algorithm is independent of
n, just relate to the influence of the variable. Compare with the deterministic
quantum algorithm for the cubic function proposed by Floess et al. in [1],
our probabilistic algorithm shows O(n) times speedup.

6. Conclusions

We have presented a quantum approximation algorithm to compute the
influence of every variable on the Boolean functions. In general, for n vari-
ables function, our algorithm is O(n) times faster than the classical one.
Moreover, based on this, we give probabilistic quantum algorithms for learn-
ing some special functions with simple forms. The running time of our algo-
rithms rely on the forms of the functions, but do not on the total variables
of them. So our probabilistic quantum algorithm for cubic functions gives
O(n) times speedup over the deterministic quantum algorithm presented in
[1]. To this end, we use a similar method to that in [14], but compare with

11

that, the problem investigated here is different from that one, the methods
in this paper are less complex than that one. We can also use the Grover-like
operator to amplify the amplitude such as [1, 11], but this can not bring
forth new ideas in the technique. We expect that the methods in this paper
will be helpful for some other questions.

Acknowledgement

This work was supported by the National Natural Science Foundation of
China under Grant No.61173157.

References

[1] D.Floess, E.Andersson, and M. Hillery, Quantum algorithms for testing
and learning Boolean functions, Math. Struct. Comp. Science (2013),
vol.23, pp.386-398.

[2] M.Ben-Or and N.Linial, Collective coin flipping, Randomness and Com-
putation(S.Micali ed.)Academic press, New York, 1989, pp.91-115.

[3] H.Hatami, A structure theorem for Boolean functions with small to-
tal influences, Annals of Mathematics, 176(1), pp.509-533,2012. also
ArXiv:1008.1021 v3 [math.CO] 12 Nov 2011.

[4] J.Kahn, G.Kalai and N. Linial, The influence of variables on Boolean
functions, Proc.29th FOCS,1988, pp.68-80.

[5] R.d.Wolf, A brief introduction to fourier analysis on the Boolean cube,
TCGS 1(2008), pp.1-20 Http:theoryofcomputing.org

[6] D.Gavinsky, J.Kempe, I.Kerenidis, R.Raz and R.d.Wolf, Exponen-
tial separation for one-way quantum communication complexity, with
applications to cryptograph, SIAM J.Comput. 38(5):1695-1708(2008).
arXiv:quant-ph/0611209 v3

[7] E.Bernstein and U.Vazirani, Quantum complexity theory. Proceedings
of the 25th Annual ACM Symposium on theory of computing, ACM
Press, New York, 1993, pp.11-20.

[8] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca, Quantum algorithms
revisited, Proc. R. Soc. Lond. A 1998 454, pp.339-354.

12

[9] S. Dasgupta, A. Biswas, and G. S. Agarwal. Implementing Deutsch-
Jozsa algorithm using light shifts and atomic ensembles, Phys. Rev. A
71 012333 (2005)

[10] H. F. Wang, S. Zhang. Implementation of n-qubit Deutsch-Jozsa algo-
rithm using resonant interaction in cavity QED. Chin. Phys. B. 2008,
17(4): 1165-1173

[11] M. Hillery and E. Anderson, Quantum tests for the linearity and permu-
tation invariance of Boolean functions, Phys. Rev. A 84, 062326 (2011).

[12] W.Hoeffding, Probability inequalities for sums of bounded random vari-
ables, American statistical association journal, March 1963, pp.13-30.

[13] R.O’Donnell, Some topics in analysis of Boolean functions, STOC’08,
May 17-20,2008, Victoria, British Columbia, Canada, invited paper.

[14] H.W.Li and L.Yang, Quantum algorithm for the finding of Boolean func-
tion’s linear structures, arXiv:1404.0611[quant-ph] 2 Apr 2014.

13

	1 Introduction
	2 Preliminaries
	2.1 Notations and definitions
	2.2 The Bernstein-Vazirani algorithmDEM13,BV93,CEMM98,ME11
	2.3 The Hoeffding inequality WH63

	3 The main results about the influences of Boolean functions
	4 The quantum algorithm for the influences of Boolean Functions
	4.1 The quantum algorithm
	4.2 The analysis of Algorithm 1
	4.3 Compare with the classical algorithm

	5 Applications in some special cases
	5.1 Quadratic functions
	5.2 Cubic functions

	6 Conclusions

