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Recently Bell-type inequalities were introduced in Phys. Rev. A 85, 032119 (2012) to analyze
the correlations emerging in an entanglement swapping scenario characterized by independence of
the two sources shared between three parties. The corresponding scenario was referred to as bilocal
scenario. Here, we derive Bell-type inequalities in n + 1 party scenario, i.e., in n-local scenario.
Considering the two different cases with several number of inputs and outputs, we derive local and
n-local bounds. The n-local inequality studied for two cases are proved to be tight. Replacing the
sources by maximally entangled states for two binary inputs and two binary outputs and also for the
fixed input and four outputs, we observe quantum violations of n-local bounds. But the resistance
offered to noise cannot be increased as compared to the bilocal scenario. Thus increasing the number
of parties in a linear fashion in source independent scenario does not contribute in lowering down
the requirements of revealing quantumness in a network in contrast to the star configuration (Phys.
Rev. A 90, 062109 (2014)) of n+ 1 parties.
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I. INTRODUCTION

Correlation is one of the most important word with the study of foundational aspects of quantum mechanics. By
correlations we basically focus on the relation between the outputs of the measurements performed on composite
quantum systems. Recently, the study of correlations is gaining importance to construct the theoretical background
of many computational tasks [1–5]. Specifically, in quantum key distributions nonlocal correlations play an important
role and it enables us to understand the behavior of nonlocal correlations in much more profound way. Apart from its
fundamental interest, the study of nonlocal correlations is important for several other aspects of quantum information
theory [6–9]. To detect the nonlocal nature of quantum systems, Bell inequalities (or, Bell-type inequalities) [10] play
a major role and also provide us with criteria suitable for categorizing correlations. In a system of three parties namely
Alice, Bob and Charlie the correlations compatible with a local causal model ([11]) can be written in the form:

P (a, b, c|x, y, z) =

∫
dλρ(λ)P (a|x, λ)× P (b|y, λ)× P (c|z, λ) (1)

where x, y and z represent the inputs of Alice(A), Bob(B) and Charlie(C) respectively and a, b and c are their outputs,
λ is the joint hidden state following the distribution ρ(λ) and satisfying the normalization condition:

∫
dλρ(λ)=1.

The correlations which cannot be written in this form (1) are said to be nonlocal.
The study of correlations between the results of measurements performed in quantum networks has recently gained
much interests. In some future quantum networks, like in [8] and [12], a process known as entanglement swapping [13]
is used. This is a process by which particles that never interacted directly can also become correlated nonlocally(see
FIG. 1.). To analyze and characterize nonlocal properties of correlations generated in a network it is interesting to
assume source independence in the network, i.e., to consider models where the independent systems are characterized
by uncorrelated hidden states(λi). In [14], a theoretical framework was introduced to address broadly the role of
nonlocality in entanglement swapping contexts and shown that this additional assumption of source independence
leads to stronger tests of nonlocality. They considered a three party scenario where the sources shared by the parties
are assumed to be independent of each other. Such a model was referred to as ‘Bilocal scenario’ and the corresponding
correlations as ‘bilocal correlations’. In a bilocal scenario(see FIG. 2.), there are two sources S1 and S2 shared between
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FIG. 1: Entanglement swapping scenario where each of 3 parties Alice, Bob and Charlie share sources S1 and S2 (each emit
independent pairs of particles in some quantum states ρ1 and ρ2 respectively). The intermediate party Bob will perform a joint
measurement on their particles that it receives from sources S1 and S2. The final state is an entangled state shared between
Alice and Charlie who then apply local measurements x and z on their particles and obtain outcomes a and c respectively. This
type of experiment is usually characterized by a joint probability distribution P (a, b, c|x, y, z).

three parties Alice(A), Bob(B) and Charlie(C) arranged in a linear way such that any two neighboring parties share
a common source. For the intermediate party B, who received two particles, the measurement will typically be a joint
measurement on both the particles received by him. Under this, joint probability distribution is defined as,

P (a, b, c|x, y, z) =

∫∫
dλ1dλ2ρ1(λ1)ρ2(λ2)P (a|x, λ1)P (b|y, λ1, λ2)P (c|z, λ2) (2)

where λ1 characterizes the joint hidden state of the system produced by the source S1 and λ2 is for the system S2.
The hidden states λ1, λ2 follow independent probability distributions ρ1(λ1) and ρ2(λ2) such that∫

ρ1(λ1)dλ1 =

∫
ρ2(λ2)dλ2 = 1. (3)

The definition (2) actually follows from the Bell’s locality assumption (1), just by considering one extra assumption

ρ(λ1, λ2) = ρ1(λ1)ρ2(λ2). (4)

In recent times, source independence has been explored to enrich study of correlations [15–19]. For instance, this
assumption of independence of sources is found to be important to study detection loophole in some local models
[20, 21]. Besides, in [19] source independence(bilocal) assumption was exploited to increase the resistance offered
to noise by states used in a bilocal network compared to the resistance offered by a state in a standard CHSH
scenario [22]. This in turn lowers the level of restrictions to be imposed on experiments demonstrating quantumness
in a network (e.g., entanglement swapping). Hence the study of bilocal correlations can be applied in various fields
of quantum computation such as device independent information processing ([1, 2]), private randomness generation
([3, 4]), device independent entanglement witnesses ([5]), etc. From this perspective, apart from linear arrangement
of parties and sources, in [15] various other ‘correlation scenarios’ characterized by source independence were studied
where each of the parties involved in the scenario was supposed to perform a single measurement. In particular in
[18] A. Tavakoli et. al. dealt with a star configuration of parties where they showed that the resistance to noise will
increase further if the number of parties is increased in a non-linear pattern. In this context, one may ask whether
resistance in a source independent scenario can be increased by increasing number of parties in a linear pattern. In
this paper, we focus on this question, however arriving to the intuition that unlike non-linear pattern, generalization
of the bilocal scenario to a linear n-local scenario is of no use in this regard. For that we have studied correlations
in n + 1 party system characterized by source independence and hence exploited the n-local scenario(which will be
discussed in Section II). In particular we have considered two scenarios differing on the basis of number of inputs and
outputs of intermediate parties compatible with various experiments. In course of work we have given n−local and
local Bell-type inequalities along with instances of non n−local but local quantum correlations which in turn exploits
the utility of source independence for demonstrating quantumness in a more natural way compared to standard
nonlocal(Bell-CHSH scenario) in a network involving n+ 1 parties.



3

FIG. 2: Bilocal scenario where three parties Alice, Bob and Charlie share two sources S1 and S2. The source S1 sends particles
to Alice and Bob and source S2 sends particles to Bob and Charlie. The sources S1 and S2 are characterized by the hidden
states λ1 and λ2 respectively. All parties can perform measurements on their systems, labeled by x, y and z for Alice, Bob
and Charlie and they obtain outcomes denoted by a, b and c respectively. Bob might perform a joint measurement on the two
particles that he receives from S1 and S2. The sources are assumed to be independent.

In short, the paper is organized as follows: in section II, we introduce the concept of n-locality. We derive non-linear
n-local and local Bell-type inequalities in two different scenarios in section(III). In section(IV) we check whether the
quantum correlations produced in entanglement swapping scenario (VA) and by partial Bell-state measurement (VB)
violate n-local inequality or not. Finally, we will present our conclusion in section (V).

Throughout this paper, we deal all the cases with finite number of possible inputs and outputs.

II. n-LOCAL SCENARIO

A. Basic Assumptions for n-local Scenario

FIG. 3: The general scenario where each of n+ 1 parties Ai share n sources Si(i = 1, ..., n). Si sends particles to Ai and Ai+1.
Each source is characterized by the hidden state λi. Each party Ai can perform measurement on their systems, labeled by xi
and the outcomes denoted by ai. Each of the n − 1 intermediate parties Ai(i = 2, ..., n) will perform a joint measurement on
their particles. The sources are assumed to be independent.

The n-local scenario is depicted in FIG. 3. There are n sources Si(i = 1, ..., n) and n+ 1 parties Ai(i = 1, ..., n+ 1)
arranged in a linear way such that any two neighboring parties share a common source. For each i(i = 1, ..., n + 1),
party Ai can perform two dichotomic measurements xi = xki (k = 1, 2) where xki ∈ {0, 1} on the system they have

received and obtain outcomes ai = aji (j = 1, 2) where aji ∈ {0, 1}. Excepting the extreme two parties A1 and An+1

each of the remaining n − 1 parties who receives two subsystems, the measurement will be a joint measurement
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operating on both subsystems simultaneously. In this scenario, Bell’s locality assumption takes the form:

P (a1, ...., an+1|x1, ..., xn+1) =

∫
dλρ(λ)Πn+1

i=1 P (ai|xi, λ). (5)

Here λ is the joint hidden state. For each party Ai(i = 1, ..., n + 1) the input is xi and the corresponding output
ai, is determined by the local distributions P (ai|xi, λ). The hidden state λ follows the distribution ρ(λ), satisfying
the normalization condition

∫
dλρ(λ) = 1. Here we also assume that the measurement choices of each party are

independent of λ.

Now let each source Si be characterized by hidden state λi. Moreover we assume that for each i ∈ {2, ..., n} the
outputs of party Ai depend on the states λi−1, λi and its input xi whereas for A1 and An+1 the outputs depend on
their corresponding inputs and also λ1 and λn respectively, i.e., for each party its output is dependent on the states
that it receives from the adjacent sources and on the type of measurements performed on those systems, but not on
the measurements performed on the distant systems, i.e., we can write,

P (a1, ..., an+1|x1, ..., xn+1) =

∫
dλ1...

∫
dλnρ(λ1, ..., λn)P (a1|x1, λ1)Πn

i=2P (ai|xi, λi−1, λi)P (an+1|xn+1, λn). (6)

Without any further assumption, Eq.(6) is equivalent to Eq.(5). In particular, ρ(λ1, ..., λn) is different from zero only
when the hidden states are the same, i.e., λi = λi+1(i = 1, ..., n − 1) to recover Eq.(5). Now we make the n-local
assumption: Under this assumption of source independence, the distribution of the hidden states λi(i = 1, n) will be
factorized as below,

ρ(λ1, ..., λn) = Πn
i=1ρi(λi). (7)

As n sources are supposed to be independent, we assume that the property characterized by the equation Eq.(7)
carries over to the local model(characterized by the equation Eq.(5)).
Eq.(6) and Eq.(7) together define the assumptions on n-locality. Each of the hidden states λi now follows an inde-
pendent distribution ρi(λi) such that

∫
dλiρi(λi) = 1 ∀i = 1, ..., n. Other than the fact that each λi is measurable, no

further restriction is made on the domain of these variables (as in the case of bilocality).
For n = 3 the scenario introduced here is different from that discussed in [19] where a four partite experiment under
restrictions of source independence and fixed joint measurement settings was compared with a standard Bell scenario.
The correlations obtained therein were thus similar to that one can obtain in a standard Bell experiment between two
parties. But the three-local scenario framed in this paper is a four party experiment performed under the assumption
of source independence and also that of free will, i.e., each of the four parties can choose freely between two dichotomic
measurement settings. This approach is also different from that of Fritz in [15] where he considers one measurement
setting per party. Our work is mainly motivated to extend the idea of source independence in a n party scenario
arranged in linear pattern keeping the assumption of free will intact and thereby develop the corresponding Bell-type
inequalities.

B. Topological features of the n-local set

The topology of the n-local set is the same as that of the bilocal one. Topological features of the n-local set are
thus summed up below:

1. n-local correlation being local (by construction), the set of n-local correlations L is a subset of the local set (T ):
L ⊆ T

2. L is not convex, as mixture of n-local correlations is not necessarily n-local (due to nonlinearity constraint (7)).

3. Being extremal points of the local set, deterministic correlations are also n-local, i.e., L is the convex hull of T .

C. Representation of the n-local correlation in terms of qᾱ1ᾱ2ᾱ3ᾱ4

If a local correlation is written in the form (5), then we know that each party’s (say A1) local response function
P (a1|x1, λ1) can be taken to be deterministic, i.e., for each input x1 exactly one output a1 would be obtained. In
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case of finite number of such deterministic strategies corresponding to an assignment of an output αx1
1 to each of A1’s

N possible inputs xk1(k = 1, ..., N), we denote each of these strategies of party A1 by the string ᾱ1 = α11α21...αN1

and also denote the corresponding response function by Pᾱ1(a1|x1) = δa1,α
x1
1

. The corresponding response function

for the remaining n parties can be defined in a similar pattern. Using this, n-local correlations can be alternatively
defined. We could write equation (6) in an equivalent form with qᾱ1..., ¯αn+1 as

P (a1, ..., an+1|x1, ..., xn+1) =
∑

ᾱ1,..., ¯αn+1

qᾱ1... ¯αn+1
Πn+1
i=1 Pᾱi(ai|xi) (8)

where

qᾱ1... ¯αn+1
=

∫∫∫
Λ1...n
ᾱ1... ¯αn+1

dλ1...dλnρ(λ1, ..., λn) ≥ 0

and
∑
ᾱ1,..., ¯αn+1

qᾱ1... ¯αn+1
= 1. For instance, we consider here a simple system of four parties Ai, (i = 1, ..., 4). Eq.(8)

gives

P (a1, a2, a3, a4|x1, x2, x3, x4) =
∑

ᾱ1,ᾱ2,ᾱ3,ᾱ4

qᾱ1ᾱ2ᾱ3ᾱ4Π4
i=1Pᾱi(ai|xi) (9)

where

qᾱ1ᾱ2ᾱ3ᾱ4
=

∫ ∫ ∫
Λ123
ᾱ1ᾱ2ᾱ3ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3) ≥ 0.

Equation (9) represents the convex combination of deterministic strategies, the decomposition of local correlations,
where the weights qᾱ1ᾱ2ᾱ3ᾱ4

represent the probability assigned by the sources to the strategies ᾱ1, ᾱ2, ᾱ3 and ᾱ4.
Λ123
ᾱ1ᾱ2ᾱ3ᾱ4

represents all pairs (λ1, λ2, λ3) that specify the strategies ᾱi for party Ai. Now if we now consider P as
trilocal, then the independence condition (7) implies (for proof see Appendix A),

qᾱ1ᾱ3ᾱ4
= qᾱ1

qᾱ3ᾱ4
∀ᾱ1, ᾱ3, ᾱ4. (10)

qᾱ1ᾱ2ᾱ4
= qᾱ1ᾱ2

qᾱ4
∀ᾱ1, ᾱ2, ᾱ4. (11)

Any of these two equations (A8) and (A9) in turn implies

qᾱ1ᾱ4 = qᾱ1qᾱ4 . (12)

III. NONLINEAR BELL-TYPE INEQUALITIES FOR N-LOCAL CORRELATIONS

To study whether a given correlation is n-local or not, we derive nonlinear Bell type inequalities which we refer
as n-local inequalities. If a correlation violates n-local inequalities then it is non-n-local in nature. In this context we
consider two particular scenarios which occur frequently in various practical purposes:

1. Scenario with binary inputs and outputs for each of the n+ 1 parties.

2. Scenario with binary inputs and outputs for each of the extreme two parties(A1 and An+1) and with one input
and four outputs for remaining n− 1 parties.

The second scenario is familiar with ideal entanglement swapping experiments where each of the intermediate parties
perform full Bell basis measurement(one input and four outputs for each of the intermediate parties) thereby swapping
entanglement from one extreme end of the network to another. But a complete Bell basis measurement is not always
trivial enough to be executed. For instance(as already pointed out in [19]) in quantum linear optics([23]) it is
impossible to perform such an ideal joint measurement for the intermediate party in a network of three parties. Under
such circumstances it will be interesting to consider the cases where each of the intermediate parties performs partial
Bell basis measurements as the latter type of measurements is more feasible to perform than the former. Hence from
that experimental perspective it is interesting to deal with the first scenario.
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A. First Scenario

Here we consider the case where each party Ai(i = 1, ..., n+1) has binary inputs and outputs xki and aji respectively

with xki , a
j
i ∈ {0, 1}. With P 22 denoting the conditional probability terms P 22(a1, ..., an+1|x1, ..., xn+1), we define the

n partite correlation terms,

〈A1,x1
, ...An+1,xn+1

〉P 22 =
∑

a1,...,an+1

(−1)
∑n+1
i=1 aiP 22(a1, ..., an+1|x1, ..., xn+1) (13)

together with the terms I22
A2,...An

and J22
A2,...An

([19]) as

I22
A2,...An =

1

4

∑
x1,xn+1=0,1

〈A1,x1
, A2,0, ..., An,0, An+1,xn+1

〉P 22 . (14)

J22
A2,...An =

1

4

∑
x1,xn+1=0,1

(−1)x1+xn+1〈A1,x1
, A2,1, ..., An,1, An+1,xn+1

〉P 22 . (15)

With the aid of these correlators we now frame the n−local inequality:
Theorem 1: If P 22 is n-local then the following nonlinear Bell-type inequality holds√

| I22
A2,...An

|+
√
| J22

A2,...An
| ≤ 1. (16)

For proof see Appendix(B). The above equations show that the n-local and the bilocal inequalities have the same
form in the binary inputs and outputs scenario.

1. Tightness of the n-local inequality

The n-local inequality (16) is tight. To prove it we give an explicit n-local decomposition of correlations which
satisfy Eq.(16). Let the correlation shared by n+ 1 parties be of the form:

P (a1|x1, λ1, η1) = 1, if a1 = λ1

⊕
η1 ∗ x1

= 0, elsewhere

P (an+1|xn+1, λn, η2) = 1, if an+1 = λn
⊕

η2 ∗ xn+1

= 0, elsewhere

P (ai|xi, λi−1, λi) = 1, if ai = λi−1

⊕
λi

= 0, elsewhere ∀i = 2, ..., n

ρi(λi = 0) =
1

2

ρi(λi = 1) =
1

2
, ∀i = 1, ..., n

κi(ηi = 0) = r

κi(ηi = 1) = 1− r, i = 1, 2

where each λi is a random variable shared between two adjacent parties Ai and Ai+1(i = 1, ..., n) whereas ηi is the
source of local randomness of party Ai(i = 1, n+ 1) and r ∈ [0, 1]. Clearly this form of correlation gives I22

A2,...An
= r2

and J22
A2,...An

= (1− r)2. Hence Eq.(16) is satisfied.
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2. Local bounds

Theorem 2: If P 22 is local then it satisfies the inequality:

| I22
A2,...An | + | J

22
A2,...An |≤ 1. (17)

This can be proved in a pattern similar to that of the previous theorem except that here in place of Holder’s inequality
the inequality ms+ nt ≤ (m+ n)(s+ t)(for any m, s, n and t > 0)is to be used.

FIG. 4: We take projection of the n + 1 partite correlation space in the (I, J) plane where I = I22
A2,...An(I14

A2,...An) and J =

J22
A2,...An(J14

A2,...An) as defined in equation (14)[(19)] and (15)[(20)]. n-local set L is bounded by the inequality
√
I +
√
J ≤ 1.

n-local set(T ) is surrounded by local set, where local set satisfies the inequality |I| + |J | = 1. The point P2(P1) representing
quantum correlation given by Eq.(27)[(31)] lie outside the n-local polytope but lies on the facet of local polytope. P1(P2) is the
convex combination of the two extreme points PI(−1, 0) and PJ(0,−1).

B. Second Scenario

In this case each party Ai(i = 2, ..., n) have one input and four outputs while the extreme two parties, i.e., A1 and
An+1 both have two inputs and two outputs. The notations used here are similar as those introduced in ([19]) for
P 14 case, i.e., outputs of Ai are denoted by a string of two bits ai = a0

i a
1
i with a0

i , a
1
i ∈ {0, 1}. It is different from the

previous case where each bit aji (j = 1, 2) was output of Ai for two different inputs (xi = 0 and xi = 1 respectively)
for all i ∈ {2, ..., n}.

〈A1,x1
Ax2

2 ....Axnn An+1,xn+1
〉P 14 =

∑
a1,an+1,a0

2,a
1
2,...,a

0
n,a

1
n

(−1)a1+an+1+
∑n
i=2 a

xi
i P 14(a1, a

0
2a

1
2, ...a

0
na

1
n, an+1|x1, xn+1) (18)

together with the linear combination terms I14
A2,...An

and J14
A2,...An

([19]) as follows:

I14
A2,...An =

1

4

∑
x1,xn+1=0,1

〈A1,x1A
0
2....A

0
nAn+1,xn+1〉P 14 . (19)

J14
A2,...An =

1

4

∑
x1,xn+1=0,1

(−1)x1+xn+1〈A1,x1
A1

2....A
1
nAn+1,xn+1

〉P 14 . (20)

The correlators 〈A1,x1
Ax2

2 ....Axnn An+1,xn+1
〉P 14 given by Eq.(18) differ from the correlators

〈A1,x1
, ...An+1,xn+1

〉P 22(Eq.13). The difference mainly lies in the notation for the intermediate parties: in P 22
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scenario Ai,xi (i = 2, ..., n) stands for different inputs(xi ∈ {0, 1}) but for P 14 case, Axii (i = 2, ..., n) mainly indicates
which of the two bits of the corresponding output string is to be chosen. As in the former case, P 14 correlations
satisfy similar type of nonlinear inequality.

Theorem 3: If P 14 is n-local then the following nonlinear inequality necessarily holds,

√
| I14
A2,...An

|+
√
| J14

A2,...An
| ≤ 1. (21)

Proof: This inequality (21) can be derived directly from the inequality (16).

P 22(a1, ..., an+1|x1, ..., xn+1) = P 14(a1,
−→a2 = ax2

2 , ...,−→an = axnn , an+1|x1, xn+1)

=
∑

a0
2,a

1
2,...a

0
n,a

1
n

δ−→a2,a
x2
2
....δ−→an,axn2

P 14(a1, a
0
2a

1
2, ..., a

0
na

1
n, an+1|x1, xn+1). (22)

This shows that from the correlation P 14, n+ 1 parties can obtain a correlation P 22. Now from Eq.(13),

〈A1,x1
, ...An+1,xn+1

〉P 22 =
∑

a1,...,an+1

(−1)
∑n+1
i=1 aiP 22(a1, ..., an+1|x1, xn+1)

=
∑

a1,...,an+1

(−1)
∑n+1
i=1 ai

∑
a0

2,a
1
2,...a

0
n,a

1
n

δ−→a2,a
x2
2
....δ−→an,axn2

P 14(a1, a
0
2a

1
2, ..., a

0
na

1
n, an+1|x1, xn+1)

=
∑

a1,a0
2,a

1
2,...a

0
n,a

1
n,an+1

(−1)a1+an+1+
∑n
i=2 a

xi
i P 14(a1, a

0
2a

1
2, ..., a

0
na

1
n, an+1|x1, xn+1)

= 〈A1,x1A
x2
2 ....Axnn An+1,xn+1〉P 14 .

(23)

Hence the values of I22
A2,...An

and J22
A2,...An

coincide with the values of I14
A2,...An

and J14
A2,...An

as defined by the equations

(19) and (20) respectively. Let P 14 be n-local. As the process from P 14 to P 22 is made by A2, ..., An locally,
therefore, P 22is also n-local and hence it satisfies equation (16). Thus, I22

A2,...An
= I14

A2,...An
and J22

A2,...An
= J14

A2,...An

jointly imply the relation (21) is satisfied. �

1. Tightness of the n-local inequality

To prove tightness of n-local inequality Eq.(21) we proceed by considering the following correlation:

P (a1|x1, λ1, η1) = 1, if a1 = λ1

⊕
η1 ∗ x1

= 0 elsewhere

P (an+1|xn+1, λn, η2) = 1, if an+1 = λn
⊕

η2 ∗ xn+1

= 0 elsewhere

P (a0
i a

1
i |xi, λi−1, λi) = 1, if a0

i ∗ a1
i = λi−1

⊕
λi

= 0 elsewhere ∀i = 2, ..., n

ρi(λi = 0) =
1

2

ρi(λi = 1) =
1

2
, ∀i = 1, ..., n
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κi(ηi = 0) = r

κi(ηi = 1) = 1− r, ∀i = 1, 2

where η1, η2, λi(i = 1, ..., n) and r have the same terminology as in the previous scenario. Clearly this form of
correlation gives I14

A2,...An
= r2 and J14

A2,...An
= (1− r)2. Hence Eq.(21) is satisfied.

2. Local Bounds

As P 22 can be obtained from P 14 by changing the number of inputs and outputs for Ai(i = 2, ..., n) locally, therefore,
if P 14 is local, then it satisfies the non-linear inequality of the same form as in the P 22 case;

| I14
A2,...An | + | J

14
A2,...An |≤ 1. (24)

IV. QUANTUM CORRELATIONS IN n-LOCAL SCENARIO

Here we discuss about the quantum correlations in P 22 and P 14 scenarios. While P 14 scenario is familiar with ideal
entanglement swapping experiment, P 22 scenario is associated with the experiment where each of the n intermediate
parties can partially distinguish between the Bell states. In both the scenarios quantum correlations violate n-local
bounds (Eqs.(16,21)).

• In P 14, entanglement swapping experiment with full Bell state measurement.

• In P 22, we perform partial Bell-state measurement.

In general, for both the cases we consider a model where each of n independent quantum sources Si(i = 1, ..., n) sends
a particle to parties Ai and Ai+1 in the state %i so that the overall quantum state is

%A1,...An = ⊗ni=1%i. (25)

A. Entanglement Swapping with a complete Bell-State measurement

In this case, A1 and An+1 are supposed to have binary inputs and binary outputs whereas remaining n− 1 parties
Ai(i = 2, ..., n) will perform a full Bell basis measurement (each of them have one input and four outputs). Besides
we assume that each source Si produces the same Bell state |ψ−〉. In this scenario, party Ai(i = 2, ..., n) receives part
of the state %i−1 from Si−1 and part of the state %i+1 from Si+1. It then performs complete Bell-state measurement
on its two particles; the four possible outcomes ai = a0

i a
1
i = 00, 01, 10, 11 that can be obtained correspond to the

four Bell states (with standard notations) |φ+〉, |φ−〉, |ψ+〉 and |ψ−〉 respectively. The resulting state is a bipartite
entangled state shared by Ai−1 and Ai+1. Let it be denoted by %i−1,i+1. Ultimately parties A1 and An+1 share an
entangled state %1,n+1. Now, A1 and An+1 perform the following measurements([19]):

Â0
1 = Â0

n+1 =
σz + σx√

2
(forx1 = xn+1 = 0) or

Â1
1 = Â1

n+1 =
σz − σx√

2
(forx1 = xn+1 = 1).

(26)

The correlations are of the form:

P 14(a1, a
0
2a

1
2, ...a

0
na

1
n, an+1|x1, xn+1)Q =

1 + (−1)a1+an+1+1( (−1)
∑n
i=2 a

0
i +(−1)

∑n
i=2 a

1
i+x1+xn+1

2 )

22n
. (27)

From the definitions (19) and (20) it can be checked that :

I14
A2,...An(P 14

Q ) = −1

2
; J14

A2,...An(P 14
Q ) = −1

2
(28)
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Hence the above correlation shows quantum violation of n-locality (Eq.(21)) but satisfies the locality constraint

(Eq.(24)). However, P 14
Q can be obtained as a convex combination two correlations: P 14

Q =
P 14
I +P 14

J

2 where:

P 14
I (a1, a

0
2a

1
2, ..., a

0
na

1
n, an+1|x1, xn+1)Q =

[1 + (−1)a1+an+1+1( (−1)
∑n
i=2 a

0
i

2 )]

22n−1

P 14
J (a1, a

0
2a

1
2, ..., a

0
na

1
n, an+1|x1, xn+1)Q =

(1 + (−1)a1+an+1+1( (−1)
∑n
i=2 a

1
i+x1+xn+1

2 ))

22n−1
.

(29)

For the correlation P 14
I , I14

A2,...An
= −1, J14

A2,...An
= 0 whereas for P 14

J , we get I14
A2,...An

= 0 and J14
A2,...An

= −1. Hence

P 14
Q represents a point (P2) on the facet of local polytope but lies outside the n-local polytope (FIG.4).

B. Partial Bell-state measurement

As in the previous case here each of the n sources Si(i = 1, ..., n) sends Bell state |ψ−〉. A1 and An+1 are supposed
to have binary inputs and binary outputs, the measurements being the same as in the previous scenario, (Eq.26) and
remaining n − 1 parties Ai(i = 2, ..., n) will perform partial Bell-state measurement, i.e., Ai(i = 2, ..., n) measures
either:

Â0
i = |φ+〉〈φ+|+ |φ−〉〈φ−| − |ψ+〉〈ψ+| − |ψ−〉〈ψ−| = σz ⊗ σz or

Â1
i = |φ+〉〈φ+| − |φ−〉〈φ−|+ |ψ+〉〈ψ+| − |ψ−〉〈ψ−| = σx ⊗ σx.

(30)

Each of the n− 1 intermediate parties Ai(i = 2, ..., n) receives part of the state %i−1 from Si−1 and part of %i+1 from
Si+1 which then applies any one of the separable measurements (Eq.(30)) on its two particles. The post measurement
state is a mixed bipartite entangled state shared by Ai−1 and Ai+1. Let it be denoted by %i−1,i+1. Ultimately parties
A1 and An+1 shares an mixed entangled state %1,n+1. Finally, A1 and An+1 perform local measurements Eq.(26) on
their respective part of states. The correlations take the form:

P 22(a1, ..., an+1|x1, ..., xn+1) =
1 + (−1)(

∑n
i=2 ai+1) Πni=2δ(xi,0)+(−1)x1+xn+1Πni=2δ(xi,1)

2

2n+1
(31)

From the definitions (14) and (15) it can be checked that :

I22
A2,...An(P 22

Q ) = −1

2
; J22

A2,...An(P 22
Q ) = −1

2
(32)

Hence quantum violation of n-locality (Eq.(16)) is obtained, but the correlation is local in nature as it satisfies Eq.(17).

As in the previous scenario, P 22
Q can be obtained from P 22

Q =
P 22
I +P 22

J

2 where:

P 22
I (a1, ..., an+1|x1, ..., xn+1) =

1 + (−1)(
∑n
i=2 ai+1) Πni=2δ(xi,0)

2

2n

P 22
J (a1, ..., an+1|x1, ..., xn+1) =

1 + (−1)(
∑n
i=2 ai+1) (−1)x1+xn+1Πni=2δ(xi,1)

2

2n

(33)

For P 22
I , I22

A2,...An
= −1, J22

A2,...An
= 0 and for P 22

J , we get I22
A2,...An

= 0 and J22
A2,...An

= −1. Hence P 22
Q represents a

point(P1) on the facet of local polytope (FIG.4) lying outside the n-local polytope.

1. Advantage of n-locality assumption in a network

Resistance to noise: As already pointed out by Branciard et.al. [19], quantifying resistance to noise of the nonbilocal
correlations is one way to realize the advantage of n-locality assumption in a network. For that let us consider an
entanglement swapping scenario where each of n independent sources Si(i = 1, ..., n) produces a noisy two qubit state:

χi = αi|ψ−〉〈ψ−|+ (1− αi)
1

4
, (whereαi ∈ [0, 1](i = 1, ..., n)). (34)
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Here αi is the visibility of χi(i = 1, , ..., n) which is a measure of the resistance to noise given by the state and is
referred to as local visibility threshold (V [19]), i.e., the largest visibility ( αi) for which χi is local in usual CHSH
sense [22]. Analogously the largest visibility for which the correlation generated is n-local is called the n-local visibility
threshold (Vnloc =

∏n
i=1 αi [19]). Clearly, quantum advantage (i.e., demonstration of nonlocality apart from standard

CHSH sense ) is obtained if Vnloc < V . With the measurement settings considered here for the n+ 1 partite system,
for both P 14 and P 22 scenarios, Vnloc = 1

2 which is same as in bilocal scenario [19]. For different measurement

settings (which gives maximal violation of Bell-CHSH operator [22]), V = 1√
2
. Thus, Vnloc < V and hence advantage

is obtained when nlocality condition is assumed in a network but the resistance to noise and hence the advantage
cannot be further increased compared to bilocal scenario if number of parties is increased in a linear pattern unlike
that in a star configuration ([18]) where Vnloc = 1

2
n
2

. which increases as number of parties increases. This in turn

gives rise to the intuition that mere increase in the number of intermediate parties cannot be useful in this context.

V. CONCLUSION

In recent times, models having independent systems (characterized by uncorrelated hidden states) are used to have
a better insight regarding the nonlocal correlations simulated in many experiments based on entanglement swapping
(which creates correlation between initially uncorrelated parties). In this respect bilocal models (source independence
in three party scenario) and other related topics were discussed in ([19]). Motivated by the bilocal scenario,
emphasizing on the significance of source independence for practical demonstrations, we have tried to enhance the
study of correlations characterized by independent sources thereby reviewing the topic of source independence in
generalized n + 1 party scenario. Clearly the nonlinear inequalities obtained in the n-local scenario maintains the
same structure as that in bilocal scenario. However the measurements considered here do not suffice to decrease the
n-local visibility threshold(Vnloc) compared to Vbiloc([19]). Even the possible change of measurement bases of the
parties is of no use in this regard which in turn give rise to the intuition that increase in number of parties arranged
in a linear pattern in a source independent network reduces to trivial party extension where one may assume the
intermediate n− 1 parties to behave like a single party. Perhaps more generalized measurements settings specifically
positive operator valued measurements (POVM([24],[25])) may help to increase the resistance to noise in this type of
linear network. One may try to modify and hence develop new Bell-type inequalities compatible with n-local scenario.
It may also be interesting to investigate further to develop any other pattern of arrangement of the parties which in
turn may ensure increase of resistance to noise in the corresponding network characterized by source independence.
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the topic while visiting Kolkata. The authors also thank Ajoy Sen for interesting and helpful discussions relating to
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Note Added: While the present work was under review we became aware of the work related to this topic[18].
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Appendix A: Representation of the 4-local correlation in terms of qᾱ1ᾱ2ᾱ3ᾱ4

We note here that ᾱ1 is specified by λ1; ᾱ2 is specified by λ1, λ2; ᾱ3 is specified by λ2, λ3; and ᾱ4 is specified by
λ3. Then

⋃
ᾱ2

Λ123
ᾱ1ᾱ2ᾱ3ᾱ4

= Λ123
ᾱ1ᾱ3ᾱ4

= Λ1
ᾱ1
× Λ23

ᾱ3ᾱ4
,
⋃
ᾱ3

Λ123
ᾱ1ᾱ2ᾱ3ᾱ4

= Λ123
ᾱ1ᾱ2ᾱ4

= Λ12
ᾱ1ᾱ2

× Λ3
ᾱ4

and

qᾱ1ᾱ3ᾱ4
=

∑
ᾱ2

qᾱ1ᾱ2ᾱ3ᾱ4
=

∫∫∫
Λ1
ᾱ1
×Λ23

ᾱ3ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A1)

qᾱ1ᾱ2ᾱ4
=

∑
ᾱ3

qᾱ1ᾱ2ᾱ3ᾱ4
=

∫∫∫
Λ12
ᾱ1ᾱ2

×Λ3
ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A2)

qᾱ1ᾱ4 =
∑
ᾱ3

qᾱ1ᾱ3ᾱ4 =

∫∫∫
Λ1
ᾱ1
×Λ2×Λ3

ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A3)

qᾱ1ᾱ2 =
∑
ᾱ4

qᾱ1ᾱ2ᾱ4 =

∫∫∫
Λ12
ᾱ1ᾱ2

×Λ3

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A4)

qᾱ3ᾱ4
=

∑
ᾱ1

qᾱ1ᾱ3ᾱ4
=

∫∫∫
Λ1×Λ23

ᾱ3ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A5)

qᾱ1
=

∑
ᾱ4

qᾱ1ᾱ4
=

∫∫∫
Λ1
ᾱ1
×Λ2×Λ3

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A6)

qᾱ4
=

∑
ᾱ1

qᾱ1ᾱ4
=

∫∫∫
Λ1×Λ2×Λ3

ᾱ4

dλ1dλ2dλ3ρ(λ1, λ2, λ3). (A7)

where Λ1 =
⋃
ᾱ1

Λ1
ᾱ1

, Λ2 =
⋃
ᾱ2ᾱ3

Λ2
ᾱ2ᾱ3

and Λ3 =
⋃
ᾱ4

Λ3
ᾱ4

are the corresponding state spaces of the variables λ1, λ2

and λ3 respectively.
Now if we now consider P as 4-local, then the independence condition (7) implies (equation (A8) is obtained from
(A1), (A5), (A6) and equation (A9) is obtained from (A2), (A4), (A7)) for all ᾱ1, ᾱ3 and ᾱ4,

qᾱ1ᾱ3ᾱ4
= qᾱ1

qᾱ3ᾱ4
∀ᾱ1, ᾱ3, ᾱ4. (A8)
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qᾱ1ᾱ2ᾱ4
= qᾱ1ᾱ2

qᾱ4
∀ᾱ1, ᾱ2, ᾱ4. (A9)

The above result can be easily extended to n-local scenario.

Appendix B: Proof of Eq.(16)

We define,

〈A1,x1〉λ1 =
∑
a1

(−1)a1P 22(a1|x1, λ1) (B1)

〈Ai,xi〉λi =
∑
ai

(−1)aiP 22(ai|xi, λi, λi+1), i = 2, ..., n (B2)

〈An+1,xn+1
〉λn =

∑
an+1

(−1)an+1P 22(an+1|xn+1, λn). (B3)

Since by assumption P 22 is n-local, it has a n-local decomposition of the form (6) and (7). So we get,

I22
A2,...An =

1

4

∫ ∫
...

∫
dλ1, ...dλnΠn

i=1ρi(λi)(〈A1,0 +A1,1〉λ1)(〈An+1,0 +An+1,1〉λn)(〈A2,0....An−1,0〉)λ1....λn .

Now,

| 〈A2,0....An−1,0〉λ1....λn |≤ 1. (B4)

Using the above relation, we have,

| I22
A2,...An | ≤

1

4

∫ ∫
dλ1dλnρ1(λ1)ρn(λn)(〈A1,0 +A1,1〉λ1

)(〈An+1,0 +An+1,1〉λn)

∫
....

∫
Πn−1
i=2 ρi(λi)

=

∫
dλ1ρ1(λ1)

| (〈A1,0 +A1,1〉)λ1 |
2

×
∫
dλnρn(λn)

| (〈An+1,0 +An+1,1〉)λn |
2

.

Similarly for J22
A2,...An

it can be shown that,

| J22
A2,...An |≤

∫
dλ1ρ1(λ1)

| (〈A1,0 −A1,1〉)λ1
|

2
×

∫
dλnρn(λn)

| (〈An+1,0 −An+1,1〉)λn |
2

.

Now, by using Holder’s inequality for 4 positive quantities | (〈A1,0 + A1,1〉)λ1 |, | (〈A1,0 − A1,1〉)λ1 |, | (〈An+1,0 +
An+1,1〉)λn |, | (〈An+1,0 −An+1,1〉)λn | we get,

√
| I22
A2,...An

|+
√
| J22

A2,...An
| ≤

√∫
dλ1ρ1(λ1)(

| (〈A1,0 +A1,1〉)λ1 |
2

+
| (〈A1,0 −A1,1〉)λ1 |

2
)

≤

√∫
dλnρn(λn)(

| (〈An+1,0 +An+1,1〉)λn |
2

+
| (〈An+1,0 −An+1,1〉)λn |

2
).

Again,
|(〈A1,0+A1,1〉)λ1

|
2 +

|(〈A1,0−A1,1〉)λ1
|

2 = max(| 〈A1,0〉λ1
|, | 〈A1,1〉λ1

|) ≤ 1 and similarly max(| 〈An+1,0〉λ1
|, |

〈An+1,1〉λ1
|) ≤ 1. Using these we get,

√
| I22
A2,...An

|+
√
| J22

A2,...An
| ≤

∫
dλ1ρ1(λ1).

∫
dλnρn(λn)

= 1.

(B5)

Hence the inequality (16) is satisfied. �


	I Introduction
	II n-local Scenario
	A Basic Assumptions for n-local Scenario
	B Topological features of the n-local set
	C Representation of the n-local correlation in terms of q 

	III Nonlinear Bell-type inequalities for n-local correlations
	A First Scenario
	1 Tightness of the n-local inequality
	2 Local bounds

	B Second Scenario
	1 Tightness of the n-local inequality
	2 Local Bounds


	IV Quantum Correlations in n-local Scenario
	A Entanglement Swapping with a complete Bell-State measurement
	B Partial Bell-state measurement
	1 Advantage of n-locality assumption in a network


	V Conclusion
	 References
	A Representation of the 4-local correlation in terms of q 
	B Proof of Eq.(16)

