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Contributions of different parts of spin-spin interactions to quantum correlations in a

spin ring model in an external magnetic field

S.I. Doronin,1, ∗ E.B. Fel’dman,1 and E.I. Kuznetsova1

1Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia

We study quantum correlations in a bipartite heteronuclear (N − 1) × 1 system in an external
magnetic field. The system consists of a spin ring with an arbitrary number N − 1 of spins on
the ring and one spin in its center. The spins on the ring are connected by secular dipole-dipole
interactions and interact with the central spin through the Heisenberg zz-interaction. We show that
the quantum discord, describing quantum correlations between the ring and the central spin, can
be obtained analytically for this model in the high temperature approximation. The model allows
us to find contributions of different parts of the spin-spin interactions to quantum correlations. We
also investigate the evolution of quantum and classical correlations at different numbers of spins.

PACS numbers: 03.67.-a, 76.60.-k

INTRODUCTION

Quantum correlations in many-qubit systems are responsible for the effective work of quantum devices (in particular,
quantum computers) and give them significant advantages over their classical counterparts [1]. In order to create
quantum devices we have to study quantum correlations and to control them. Spin systems are very suitable for the
study of quantum correlations due to the developed theoretical methods [2] and the experimental methods of nuclear
magnetic resonance (NMR) [3, 4] for the excitation, detection and coherent control of the individual spin states.
Until recently it has been accepted that entanglement is responsible for quantum correlations, and quantum devices

can be created only on the basis of using materials with entangled states [5]. However, it has turned out that
quantum algorithms [6] which significantly outperform the classical counterparts can work using mixed separable
(non-entangled) states. Furthermore, it turned out that quantum non-locality can be observed in systems without
entanglement [7]. From this we can conclude that entanglement describes only a part of quantum correlations but not
all of them. According to the current understanding [5], total (quantum and classical) correlations in a system are
defined by the mutual information. The problem is how to separate the classical correlations from the quantum ones.
This problem was solved independently by Henderson and Vedral [8] as well as Ollivier and Zurek [9]. The classical
correlations in a two-partite system are determined by a complete set of projective measurements carried out only
over one of the subsystems [8]. Then a measure of quantum correlations (the quantum discord) is determined as the
difference between the mutual information and its classical part, maximized over all possible projective measurements
[8, 9]. The quantum discord is determined completely by quantum properties of the system and equals zero for
classical systems.
Computing the quantum discord is a rather tedious problem because we must optimize the quantum conditional

entropy over all possible complete sets of measurements in any subsystem of the system under study [8, 9]. It
was shown [10] that computing quantum discord is NP-complete. The already developed methods [11−13] permit
computing the discord only in two-qubit systems [14−17] and in the simplest three-qubit systems [18, 19]. At the
same time, it is very important to calculate the quantum discord in many-qubit systems. For example, the many-qubit
quantum discord is significant for solving problems of NMR quantum information processing [4]. It is well known that
NMR is used to obtain an experimental implementation of quantum algorithms in few-qubit systems. The quantum
entanglement vanishes at room temperatures in highly mixed states that occur in liquid-phase NMR experiments
[20]. This raised doubts that NMR can be used to demonstrate the advantages of quantum algorithms over their
classical counterparts in multiqubit systems [3]. The quantum discord does not vanish [21] in mixed states in NMR
experiments in contrast to the entanglement and indicates that quantum correlations exist in many-qubit systems.
Experimental studies [21] using NMR-tomography methods [4] support this conclusion. The development of methods
for computing the quantum discord in many-qubit systems is therefore very relevant.
There are a lot of different NMR methods in solids which can be used for experimental investigations of quantum

correlations. First of all, notice the methods of spin echo and free induction decay [2, 22]. The time evolution of
signals of spin echo and free induction decay in the system of an electron (or a hetero-nucleus) surrounded by a cloud
of other nuclei can give very important information about quantum discord and its evolution [22]. We notice also
multiple quantum NMR methods [23] which allow us to obtain the time and temperature dependencies of quantum
correlations [24].

http://arxiv.org/abs/1505.03748v1
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FIG. 1: Many-spin systems for the investigation of the quantum discord. Subsystem A is a ring of spins, coupled by the DDI.
The impurity spin (in the center of the ring), connected by the zz-interactions with the ring spins, represents subsystem B.

We have suggested [19, 25] a spin model for the calculation of the quantum discord. In our model, a linear chain
of spins, coupled by the dipole-dipole interactions (DDI) in a strong external magnetic field, is connected with an
impurity spin by the Heisenberg zz-interaction. This model can be used for the analysis of NMR experiments in solids,
both at low and high temperatures. The developed approach [19, 25] allows us to study quantum correlations and
their unitary evolution in the conditions of NMR experiments. Unfortunately, in that model the quantum discord can
only be calculated numerically with the random mutation algorithm [26]. The analytical calculation of the quantum
discord for the model [19] is possible only for three-qubit systems [25]. Later we understood [27] that it is possible to
find the quantum discord analytically for many-qubit systems if one considers a spin ring instead of a spin chain used
in [19, 25]. We note that this model can be applied not only to heteronuclear systems, but also to electron-nuclear
ones. If we consider a central electron spin surrounded by a ring of nuclear spins then the model is close to the model
of deterministic quantum calculations with one qubit (DQC1) [6].
It is necessary to emphasize that the multiqubit spin ring model can be investigated by standard tools [11−13]

for two-part binary systems. However, we simplify those methods with an optimization of the quantum conditional
entropy over the parameters of the projectors. As a result, this approach allows us to investigate contributions of
different interactions to quantum correlations.
The main goal of the article is the investigation of the quantum correlations in a spin ring system and the deter-

mination of the contributions of different parts of spin-spin interactions to quantum correlations at different relation
between the Larmor frequencies of the ring spins and the impurity one.
The paper is organized as follows. A spin ring system, coupled with a central spin, in the external magnetic field

is presented in Sect. 2. The optimization of the quantum conditional entropy in the high temperature approximation
is considered in Sect. 3. Calculations of the quantum discord are given in Sect. 4 at different relations between the
Larmor frequencies of the spin subsystems. A comparison of quantum and classical correlations in the course of the
system evolution is given in Sect. 5. We briefly summarize our results in Sect. 6.

A BIPARTITE MANY-QUBIT SYSTEM IN AN EXTERNAL MAGNETIC FIELD

We consider a ring of nuclear spins (I = 1/2), coupled by the DDI in a strong external magnetic field. We will call
it subsystem A. The distances between spins of subsystem A are not necessarily the same. Subsystem A interacts
with an impurity spin S, which is in the center of the ring (subsystem B, Fig. 1). The strong external magnetic field
is perpendicular to the plane of Fig. 1.
We will consider the problem in the high temperature approximation [2]. Thes approximation is widely used in

different problems of spin dynamics and magnetic resonance [2]. For example, the high temperature approximation
in systems of spins coupled by DDI is valid [2, 28] at

βωA < 1, βωB < 1, (1)

where β is proportional to the inverse temperature [2] of the system; ωA and ωB are the Larmor frequencies.
The proof is given in Ref. [28] and it is based an the fact that the DDI is inversely proportional to the cube of the

distances between spins. However, it is not so in the considered case. For example, N − 1 spins interact with the
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central spin and all coupling constants are equal to each other. The dependence of the DDI coupling constants of the
ring spins on the distances between spins is very weak and the conditions (1) are insufficiently. It is evident that the
conditions should be modified. We expect that the high temperature approximation holds when

(N − 1)βωA < 1, (N − 1)βωB < 1. (2)

The conditions of Eq.(2) are valid for small spin clusters. Decoherence (in particular, external noise) is determined
by the relaxation times T1 and T2 [2] which are sufficiently long for such clusters in NMR experiments [29, 30]. Thus,
we can neglect noise in our spin systems in the calculation of quantum correlations.
In the initial moment of time, the system is in the thermodynamic equilibrium state. In the high temperature

approximation [2], the density matrix ρ(0) is

ρ(0) =
1

2N
(1 + βωAIz + βωBSz), (3)

where z points in the direction of the external magnetic field; N is the total number of the spins (N − 1 is the
number of the ring spins); Iz =

∑

i Izi, and Izi, Sz are the z-projections of the i-th spin on the ring and the impurity
spin. Applying resonance (for spins I and S) 90◦-radiofrequency pulses of the magnetic field around the axis y in the
rotating reference frames (for spins Ii, i = 1, 2, ..., N−1 and S) [2], we create conditions for the emergence of quantum
correlations during the evolution of the spin system. Formally, such initiating pulses lead to the replacement of the
operators Iiz , Sz with Iix and Sx, where Iiα and Sα (α = x, y, z) are projections of the i-th ring spin and the impurity
spin on the axis α. The subsequent evolution of the system is described by the Hamiltonian H̃ = Hdz +Hzz. Here
the Hamiltonian Hdz describes the secular DDI in the strong external magnetic field in the spin ring (subsystem A).
This secular part of the DDI can be written as [2]

Hdz =
∑

i<j

dij

(

3IizIjz − ~Ii ~Ij

)

, (4)

where dij is the DDI coupling constant of ring spins i, j; and ~Ii ~Ij = IixIjx + IiyIjy + IizIjz . The Hamiltonian Hzz

characterizes the interaction between subsystems A, and B and equals

Hzz =
∑

i

gIizSz, (5)

where g is the coupling constant of the ring spins with the impurity spin, which has a different gyromagnetic ratio from
the ring spins. We took into account that the coupling constants of the zz-interactions in the considered case (see Fig.
1) are the same for all ring spins (see Eq. (5)). It means that the Hamiltonians Hdz and Hzz commute at an arbitrary
number of the ring spins. This property holds in the model with a linear spin chain instead of a spin ring only for a
chain with two spins [19]. Thus, subsystem A is only subject to the dipole evolution in the considered case. Since a
unitary local transformation does not change the discord, we can ignore the dipolar evolution of subsystem A in our
calculations. Taking into account that the evolution of the system is determined by the Heisenberg zz-interactions
only, one can write the density matrix of the system as

ρ(τ) = e−iHzztρ(0)eiHzzt = 1
2N

{

1 + βωA[Ix cos(τ) + 2IySz sin(τ)]

+βωB[Sx cos(2τIz) + Sy sin(2τIz)]
}

,
(6)

where τ = gt/2 is the dimensionless time.
The reduced density matrices ρA(τ), ρB(τ) are necessary for the calculation of the quantum discord. They can be

represented as

ρA(τ) =
1

2N−1
[1 + βωAIx cos(τ)], (7)

ρB(τ) =
1
2

{

1 + 1
2N−1βωB

[

SxTr[cos(2τIz)] + SyTr[sin(2τIz)]
]}

= 1
2 [1 + βωBSx cos

N−1(τ)].
(8)

We used in Eq.(8) the relationships

Tr[cos(2τIz)] = 2N−1 cosN−1(τ), Tr[sin(2τIz)] = 0. (9)
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These relationships (9) are proved in Appendix A.
We will also use the expression for the entropy S(ρ) of the system

S(ρ) = N − 1

8 ln 2
[(N − 1)β2ω2

A + β2ω2
B] (10)

and the expressions for the entropies S(ρA) and S(ρB) of subsystems A and B are

S(ρA) = N − 1− N − 1

8 ln 2
β2ω2

A cos2(τ), (11)

S(ρB) = 1− 1

8 ln 2
β2ω2

B cos2(N−1)(τ). (12)

THE OPTIMIZATION OF THE QUANTUM CONDITIONAL ENTROPY IN THE HIGH

TEMPERATURE APPROXIMATION

According to the standard approach [11, 12] for the optimization of the quantum conditional entropy one performs
a total set of projective measurements over one-qubit subsystem B, {Bk = VΠkV

†, k = 0, 1}, where the matrix
V ∈ SU(2) and Πk(k = 0, 1) are projectors. For our aims, it is better to write the projectors through the spin
operators

Π0 =
1

2
+ nxSx + nySy + nzSz , Π1 =

1

2
− nxSx − nySy − nzSz, (13)

where nx, ny, nz are the coordinates of the unit vector in the spin space (n2
x+n2

y+n2
z = 1). It is evident that Π2

k = Πk

(k = 0, 1). Using the projectors (13) we can replace an arbitrary unitary matrix V ∈ SU(2). At the same time, such
projectors are more convenient for finding contributions of different parts of the DDI to quantum correlations.
The following relation is very useful at further calculations

ΠkSαΠk =
(−1)k

2
nαΠk, α = x, y, z; k = 0, 1. (14)

The density matrix ρ(t) of Eq. (6) can be transformed after performing measurements with Eq. (14) as

Πkρ(t)Πk = 1
2N

{

IA + βωA[Ix cos(τ) + (−1)knzIy sin(τ)]

+(−1)k 1
2βωB [nx cos(2τIz) + ny sin(2τIz)]

}

⊗Πk, k = 0, 1,
(15)

where IA is a unit operator in the spin space of subsystem A. Thus, one can find that the whole system is described
by the ensemble of the states {pk, ρk}(k = 0, 1) after the measurements, where

p0 = Tr{Π0ρ(t)Π0} = 1
2 + 1

4nxβωB cosN−1(τ),
p1 = Tr{Π1ρ(t)Π1} = 1

2 − 1
4nxβωB cosN−1(τ),

(16)

and the matrices ρ0, ρ1 are

ρ0 = 1
2Np0

{

1 + βωA[Ix cos(τ) + nzIy sin(τ)]

+ 1
2βωB[nx cos(2τIz) + ny sin(2τIz)]

}

,

ρ1 = 1
2Np1

{

1 + βωA[Ix cos(τ) − nzIy sin(τ)]

− 1
2βωB[nx cos(2τIz) + ny sin(2τIz)]

}

.

(17)

The results of Appendix A are used again at calculations of p0 and p1 in Eqs. (16). Then the conditional quantum
entropy Scond after the measurements over subsystem B can be written [11, 12] as

Scond = p0S(ρ0) + p1S(ρ1), (18)
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where S(ρk) = −Tr[ρk log2 ρk]. It is convenient to introduce the parameters u and v, describing the high temperature
approximation (see Eq. (2))

u =
1

2
(N − 1)βωB < 1, v =

1

2
(N − 1)βωA < 1. (19)

The calculation of the quantum conditional entropy (18) with equations (16),(17), (19) up to the terms of the orders
u2 and v2 leads to the formula

Scond = − 1
2 ln 2(N−1)2

{

n2
x

[

u2 1+cosN−1(2τ)−2 cos2(N−1)(τ)
2 − (N − 1)v2 sin2(τ)

]

+n2
y

[

u2 1−cosN−1(2τ)
2 − (N − 1)v2 sin2(τ)

]

+ a(u, v)
}

,
(20)

where the function a(u, v) = (N − 1)v2 − 2(N − 1)3 ln 2 does not depend on nα(α = x, y, z).

THE QUANTUM DISCORD AT DIFFERENT RELATIONS BETWEEN THE LARMOR FREQUENCIES

OF THE SPIN SUBSYSTEMS

In this section we demonstrate that quantum correlations depend on relations between the Larmor frequencies of
the ring spins and the central one. First, we consider the case of v > u, i.e., the Larmor frequency of the ring spins
exceeds those of the central spin. We show in Appendix B that the coefficients of equation (20) at nx and ny are
positive in this case. It means that the quantum conditional entropy of equation (18) achieves the minimal value at

nx = ny = 0, |nz | = 1. (21)

In this case (see Eq. (15)) only IySz-interactions can give a contribution to quantum correlations due to the term
which is proportional to nzIy .
Using Eqs.(10), (12), (20) and (21), one can obtain an expression for the quantum discord D [8, 9], which is the

entropic measure of the quantum correlations

D =
u2

2 ln 2(N − 1)2

[

1− cos2(N−1)(τ)
]

. (22)

Naturally, the quantum discord here is determined by the lower Larmor frequency u of the impurity spin. We notice
also that formula (22) is valid for such numbers of the ring spins when the conditions (2) of the high temperature
approximation [2, 28] hold.
The dependence of the quantum discord on the dimensionless evolution time τ at the different numbers of the spins

with u/(N − 1) = 1
2βωB = 0.015 is shown in figure 2.

The case u > v is very difficult for an analytical investigation. However, it is possible to perform the optimization
of the quantum conditional entropy at some additional conditions. Let

u2 > (N − 1)v2, 0 < τ < π/4, N − 1 ≥ 2. (23)

Then we prove in Appendix C that the quantum conditional entropy of equation (18) achieves the minimal value at

nx = nz = 0, |ny| = 1. (24)

We can conclude again from equation (15) that IzSy-interactions are responsible for quantum correlations at the
conditions (23). Using Eqs.(10), (12), (20) and (24), one can calculate the corresponding quantum discord:

D = 1
2 ln 2(N−1)2

{

(N − 1)v2 sin2(τ) + u2

2

[

cosN−1(2τ) + 1− 2 cos2(N−1)(τ)
]}

. (25)

It is worth to notice that IzSy- interactions are also responsible for quantum correlations not only at the conditions
(23) but also when

u2 >
4

3

N − 1

1− 3−(N−1)
v2, π/4 ≤ τ < arctan(

√
2), (26)

Then again the quantum conditional entropy achieves its minimal value when Eq. (24) holds, and the quantum
discord is determined by formula (25).
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FIG. 2: The dependence of the quantum discord on the evolution time at different numbers of the spins (N = 3, 7, 11) with
u = 0.015. The minimal value of the conditional entropy is realized at nx = ny = 0 and |nz | = 1.

FIG. 3: The regions of the parameters γ = ωA/ωB and the dimensionless evolution time τ , where IySz-, IzSy-, IzSx- spin-spin
interactions are responsible for quantum correlations at N = 5.

Finally, we show in Appendix C that at the conditions

u2 > 2(N − 1)v2, N ≥ 3 is odd, arctan(
√
2) < τ < π/2, (27)

the quantum conditional entropy of equation (18) achieves its minimal value at

ny = nz = 0, |nx| = 1. (28)

We find with equation (15) that IzSx-interactions are responsible for quantum correlations in this case and the
quantum discord is

D = 1
2 ln 2(N−1)2

{

(N − 1)v2 sin2(τ) + u2

2

[

1− cosN−1(2τ)
]}

. (29)

In Fig. 3 we demonstrate the regions, where IySz-, IzSy- and IzSx-interactions are responsible for quantum
correlations at different γ = ωA/ωB and the evolution time τ for N = 5.
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FIG. 4: A comparison of quantum and classical correlations in the course of the evolution of the spin system at N = 9; a) an
initial period of the evolution 0 < τ < π/4; b) the evolution on the time interval arctan (

√
2) < τ < π/2.

A COMPARISON OF QUANTUM AND CLASSICAL CORRELATIONS IN THE COURSE OF SPIN

EVOLUTION

Classical correlations can be obtained from the maximal information about subsystem A after measurements on
subsystem B [5, 8]. The total correlations I(ρ) are determined by

I(ρ) = S(ρA) + S(ρB)− S(ρ), (30)

where the entropies S(ρA), S(ρB), S(ρ) are determined by the expressions (10), (11), (12). Taking into account
formulas (22), (25), (29) for the quantum discord, one can obtain the expressions for classical correlations C at the
different conditions for the minimal value of the quantum conditional entropy:

C =
1

2 ln 2(N − 1)
v2 sin2(τ), for |nz| = 1, nx = ny = 0; (31)

C = u2

4 ln 2(N−1)2

[

1 + cosN−1(2τ)− 2 cos2(N−1)(τ)
]

,

for |nx| = 1, ny = nz = 0;
(32)

C =
u2

4 ln 2(N − 1)2

[

1− cosN−1(2τ)
]

, for |ny| = 1, nx = nz = 0. (33)

We can compare quantum and classical correlations in the course of the evolution at different numbers of spins.
Such comparison is presented for the system, consisting of N = 9 spins, in Fig. 4. Fig. 4a demonstrates that classical
correlations exceed quantum ones at the initial period of the evolution. However, the quantum correlations increase
with time and exceed classical at 0.521 < τ < π/4. The evolution of quantum and classical correlations on the time
interval [arctan (

√
2), π/2] is given in Fig.4b. Quantum correlations exceed classical ones on the main part of this

interval. However, quantum correlations rapidly decrease and classical correlations increase at the end of the interval
[arctan (

√
2), π/2].

CONCLUSIONS

Our work is aimed at the analytical computation of the quantum discord in a system of interacting spins in a strong
external magnetic field. The spin dynamics of this system can be investigated experimentally by NMR methods.
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Our results demonstrate that there is a non-zero quantum discord at room temperature in the considered spin
system. It is relevant for NMR in liquids where entanglement is absent at room temperature. Our results mean that
there are quantum correlations in the considered system at room temperature and possibilities of NMR methods for
creating quantum devices and performing quantum calculations are not exhausted.
We modified the standard methods [11, 12] for the calculation of the quantum discord in bipartite systems. Our

idea is to use projectors for quantum measurements instead of arbitrary unitary transformations in order to optimize
the quantum conditional entropy over parameters of those projectors.
We showed that different parts of the spin-spin interactions are responsible for quantum correlations at different

relations between the Larmor frequencies of the ring and impurity spins. It is very important that the model considered
in this paper allows us to calculate the quantum discord analytically and we obtained the analytical formulas for the
quantum discord at arbitrary relations between the Larmor frequencies of the ring spins and the impurity one. We
have also investigated the time evolution of the quantum discord in the spin ring system with a central spin in the
external magnetic field. The quantum and classical correlations were compared in the course of the spin system
evolution.
Our model is also likely to be useful in the investigation of quantum and classical correlations at low temperatures

where the quantum discord is significantly larger than at room temperature.
The work is supported by the Russian Foundation for Basic Research (Grants No. 13-03-00017, No. 13-03-12418

and No. 15-07-07928) and the Program of the Presidium of RAS No. 32 “Electron spin resonance, spin-dependent
electron effects and spin technologies”.

Appendix A

The ring contains N − 1 spins and one can write that

Tr{cos(2τIz)} =

N−1
∑

k=0

Ck
N−1 cos

[

2τ

(

N − 1

2
− k

)]

, (A34)

where Ck
N−1 =

(

N−1
k

)

= (N−1)!
k!(N−1−k)! . It is suitable to use the complex values:

∑N−1
k=0 Ck

N−1 cos
[

2τ
(

N−1
2 − k

)]

= Re
{

∑N−1
k=0 Ck

N−1e
i[2τ(N−1

2 −k)]
}

= Re
{

eiτ(N−1)
∑N−1

k=0 Ck
N−1e

−2iτk
} (A35)

Applying the binomial theorem one obtains

Re
{

eiτ(N−1)
∑N−1

k=0 Ck
N−1e

−2iτk
}

= Re
{

eiτ(N−1)(1 + e−2iτ )N−1
}

= Re
{

(eiτ + e−iτ )N−1
}

= 2N−1 cosN−1(τ).
(A36)

Now consider Tr{sin(2τIz)} and perform the rotation eiπIx of the operator sin(2τIz):

Tr{sin(2τIz)} = Tr{eiπIx sin(2τIz)e−iπIx}
= −Tr{sin(2τIz)}. (A37)

It means that Tr{sin(2τIz)} = 0. The relations (9) are proved.

Appendix B

We need to prove (see Eq.(20)) that

1 + cosN−1(2τ)− 2 cos2(N−1)(τ) ≤ 2(N − 1) sin2(τ). (B38)
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The left hand side of Eq.(B38) can be rewritten as

1 + cosN−1(2τ)− 2 cos2(N−1)(τ)
= 1− cos2(N−1)(τ) + cosN−1(2τ)− cos2(N−1)(τ)

= sin2(τ)
(

1 + cos2(τ) + cos4(τ) + ...+ cos2(N−2)(τ)
)

+
(

cos(2τ) − cos2(τ)
)(

cosN−2(2τ) + cosN−3(2τ) cos2(τ)

+...+ cos2(N−2)(τ)
)

≤ sin2(τ)(N − 1) + sin2(τ)(N − 1)

(B39)

The statement follows from the inequality (B39).
Further we need to prove (see Eq. 20) that

1− cosN−1(2τ) ≤ 2(N − 1) sin2(τ). (B40)

We can transform the left hand side of Eq. (B40) in the following way

1− cosN−1(2τ) =
(

1− cos(2τ)
)(

1 + cos(2τ) + cos2(2τ)

+...+ cosN−2(2τ)
)

≤ 2 sin2(τ)(N − 1)
(B41)

The statement (B40) follows from the inequality (B41). The inequalities (B38) and (B40) lead to the conditions (21)
for the minimal value of the conditional entropy of Eq. (20).

Appendix C

We will show that the coefficient of n2
y in the curly brackets of Eq. (20) exceeds the one of n2

x at the conditions
(23). One obtains from Eq. (20) that we need to prove that

u2 1−cosN−1(2τ)
2 − (N − 1)v2 sin2(τ) > u2 1+cosN−1(2τ)−2 cos2(N−1)(τ)

2

−(N − 1)v2 sin2(τ).
(C42)

It is evident that Eq. (C42) can be transformed to

1 > [1− tan2(τ)]N−1. (C43)

Eq. (C43) is valid at the conditions (23). Now we prove that the coefficient of n2
y in the curly brackets of Eq. (20) is

non-negative at the conditions (23). In fact, we should prove that

1− cosN−1(2τ)

2
> sin2(τ). (C44)

Eq. (C44) is equivalent to

cos(2τ) > cosN−1(2τ) (C45)

and Eq. (C45) holds due to the conditions (23). One can conclude from Eq. (20) that the minimal value of the
quantum conditional entropy is achieved at the parameters (24).
Next, we will show that the coefficient of n2

x in the figure bracket of Eq. (20) exceeds the one of n2
y at the conditions

(27). In this case we can obtain that this statement is valid, if

[1− tan2(τ)]2 > 1. (C46)

However, it is really valid at the conditions (27). We show now that the coefficient of n2
x in the curly bracket of (20)

is non-negative. We would like to prove that

u2 1 + cosN−1(2τ) − 2 cos2(N−1)(2τ)

2
− (N − 1)v2 sin2(τ) > 0. (C47)
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Using the conditions (27), one can obtain from Eq. (C47) that

[cos2(τ) − cos(N−1)(τ)] + [cosN−1(2τ)− cos2(N−1)(τ)] > 0. (C48)

The expression in the first square bracket is non-negative at N ≥ 3. The second square bracket can be transformed
as

cosN−1(2τ)− cos2(N−1)(τ) = cos2(N−1)(τ)
[(

1− tan2(τ)
)N−1

− 1
]

> 0. (C49)

This term is positive because N − 1 is even and arctan (
√
2) < τ < π/2 due to the conditions (27). In fact, we proved

that the quantum conditional entropy of (18) achieves its minimal value at the conditions (28).
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