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Efficient Bit Sifting Scheme of Post-processing in
Quantum Key Distribution
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Abstract—Bit sifting is an important step in the post-processing of the first procedure is to sift out the undetected original
of Quantum Key Distribution (QKD) whose function is to sift  keys and the original keys whose preparation and measutemen
out the undetected original keys. The communication traffic basis are incompatible, which is also named bit sifting and
of bit sifting has essential impact on the net secure key rate S o .
of a practical QKD system, and it is facing unprecedented basis sifting respec_twely. The loss due to basis siftingetels
challenges with the fast increase of the repetition frequery of ON the protocol gain of the QKD system. For example, the
quantum channel. In this paper, we present an efficient bit sting  protocol gain for BB84 protoco] is 0.5, which is introduced
scheme whose core is a lossless source coding algorithm. IBot by Bennett and Brassard in 1984 and still the most widely
theoretical analysis and experimental results demonstratthat the used QKD protocol at present. The loss due to bit sifting is
performance of our scheme is approaching the Shannon limit. .

Our scheme can greatly decrease the communication traffic ahe deter.mlned by the count.rate of the_ QKD system. The C,OU”t
post-processing of a QKD system, which means it can decrease’ate is also called detection probability in some publmasi

the secure key consumption for classical channel authenition The loss caused by the private amplification is the cost to
and increase the net secure key rate of the QKD system. pay for decreasing Eve’s knowledge about the secure key to
Meanwhile, it can relieve the storage pressure of the system gimqst zero. Most of Eve’s knowledge is obtained from the

greatly, especially the device at Alice side. Some recomméations . e

on the application of our scheme to some representative précal exchange_d messages d“””g the error rgconcm.atlon. So far
QKD systems are also provided. most studies on post-processing focus on improving thersecu

. . key rate via increasing the reconciliation efficiency, whic
Index Terms—Quantum cryptography, post-processing, bit . . o -
sifting, source coding, unconditionally secure authentiation. means decreasw_l_g t_he amo‘_mt of interactive 'nform"’_‘t'omgur
the error reconciliation. While the huge amount of inteikesct
messages during sifting has not drawn enough attentions.
The reason that we should study the method to decrease the
HE quantum key distribution (QKD) is the most develcommunication traffic of sifting is mainly related to the key
oped branch of quantum cryptography, whose securiggnsumption due to the authentication of classical channel
is based on the principles of quantum mechanics. It can ke of the basic assumptions of the security analysis for QKD
only enhance the security of traditional symmetric/asymnime protocols is that there is an authenticated classical adann
cryptographic systems, but also construct an informatiopetween Alice and Boko]-[ 7]. However, the classical channel
theoretic secure cryptographic system by combing with Veiir a QKD system cannot be authenticated by itself unless
nam one-time pad ciphei]. QKD comprises two phases: thewe authenticate all interactive messages between Alice and
transmission of the photons over the quantum channel aBdb by employing an unconditionally secure authentication
the post-processing over the authenticated classicalnehanalgorithm, i.e. the family of almost strongly universal has
In the first phase, by transmitting the modulated photonginctions based algorithm at the cost of some key consump-
Alice and Bob obtain a partially shared bit-string, so alletion. For the first round of the QKD system, a pre-shared
original key. A representative high performance QKD systekey must be available, which is exchanged through a secret
can transmit original keys at rates in the order of Gbps. thannel, such as face to face or other ways. For the following
the second phase, by performing sifting, error recon@imt rounds, a part of the secure key generated by the QKD system
and privacy amplification in an authenticated classicahale is used as the authentication key. In order to maximize the
Alice and Bob obtain the identical and unconditionally secu net secure key rate after the withdrawal by the authentioati
key, so called secure key. The highest secure key rate is abiua practical QKD system, it is essential to minimize the
1Mbps according to the published literatured, [[3]. The key consumption of authentication. The consumed key length
essential procedures of post-processing include sifémgpr of some representative authentication algorithms aredigt
reconciliation and private amplification. Every procedwfe Tablel, as functions of the security parameter and the authen-
post-processing is responsible for the dramatic loss okélye ticated message length. It can be found that the consumed key
rate between the original key and secure key. The functi@hgth monotonically increases with the message lemgth
. . . . Therefore, we must try to reduce the communication traffic as
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meaning to study how to decrease the communication traffionsists of bit sifting and basis sifting. The function of bi

of sifting. sifting is to get rid of the undetected original keys and the
basis sifting aims to sift out the original keys whose bases

TABLE | are incompatible. On one hand, the amount of interactive

THE CONSUMED KEY LENGTHS OF SOME REPRESENTATIVE messages of bit sifting is far more than that of basis sifting

AUTHENTICATION ALGORITHMS FOR GIVEN SECURITY PARAMETERE AND

VESSAGE LENG THim. On the other hand, from the point of information theory, the

great redundancy due to the very low count rate makes it

A”th%”“caéion gigomhm Conlsumed Key Length possible to decrease the amount of interactive messages of

en Boer ~ —2logye + 2logom c g . - . . . X

Bierbrauer etc. 0] ~ —3logae + 2logam bit s.lftm.g IS|gn|f|cantIy. While the interactive messagesidg
Krawczyk [11] —3logye + 3logy (1 + 2m) + 1 basis sifting can hardly be compressed because of the low
Abidin etc. [17] —4logye + 3logym + 8 redundancy due to the completely random basis selection at

both Alice and Bob sides. Hence, we only focus our study on
With the fast increase of the repetition frequency of quantubit sifting in this paper.

channel, post-processing devices are facing unprecetientein this paper, we firstly present a lossless source coding
challenges. Taking BB84 protocol as an example, the inpyésed bit sifting scheme. Considering the expected cogélen
data rate of sifting procedure at Alice side is twice thef the source coding algorithm as the optimization object,
repetition frequency and three times at Bob side. For decgy efficient iteration algorithm is proposed to solve thei-opt
BB84 protocol [L3], the input data rate of sifting is evenmization problem. Both theoretical analysis and experialen
more than that of BB84. To date, the repetition frequency @ésults demonstrate that the performance of our scheme is
a high speed QKD system has been up to about ten GHigproaching the Shannon limit and also better than the com-
[2], so the post-processing devices are facing huge storggfitive scheme within the entire reasonable interval afnto
pressure. In 2007, Mink indicated that the storage of gftirrate. Besides, some suggestions on how to apply our scheme
was one bottleneck for his QKD systeri¥], whose repetition to some representative practical QKD systems are provided.
frequency is 3.125Gbps. It is noted that although the inputThe rest of this paper is organized as follows. In section
data rate at Bob side is more than that at Alice side, Bayme preliminaries are presented. In sectibnthe proposed
can immediately sift out the undetected original keys whoggss|ess source coding based bit sifting scheme and the theo
amount is far more than the amount of the detected, whilgtical analysis on its performance are discussed in dataé
Alice cannot sift out them until Bob announces which Origin%xperimentai results and anaiysis are presented in sadtion

keys he has detected, so the storage pressure of the deviqggd|ly, some conclusions are drawn in section
Alice side is much heavier. Therefore, the method to deereas

the communication traffic of sifting should not only have doo

compression performance but also be performed as fast as Il. PRELIMINARIES

possible so that Alice could remove the undetected original ) ) L

keys from her buffer in time. In the sect|_on, some thec_)retlcal bases for proposed biigift
Although the post-processing has drawn much attenti&ﬁheme are introduced briefly.

since the mid-1990s, only very few researchers study the

sifting procedure. In 2010, in order to save communicati

traffic, Kollmitzer etc. stated that Bob could inform Alicleet

detection position represented Bjog,m] bits, wherem is Definition 1 (Absolutely convergent[18]. Given a series

the number of original keys to be processeéd]] The scheme > a;, we may form a new seri€s. |ax|. If the new series

can reduce the amount of exchanged messages to some exierdonvergent, then we say that the original serfesuy, is

but the compression efficiency is far from the optimum. Thigbsolutely convergent.

scheme was implemented by Li etc. in 201iZ][ In 2014,

Walenta etc. declared that the sifting should be perfornsed 'gheorem 1 [18] Suppose thai,; > O forall k > 1. Then the

fast as possible to allow Alice to sift out the undetected arﬁﬁi”esZ Ok elth(;r converges or dlvi;erg(ias EIBOO' Especially,
incompatible original keys to avoid buffer overflow. Thegal I it converges, then it converges absolutely.

pointed out that the amount of bits exchanged during Siftir[gefinition 2 (Rearrangement of Series[]_g]_ Suppose that
should be kept as small as pqssible due to the auth.entic_at'@Et;rg ap is a given series. Le@nk} be a sequence of positive
cost [L7]. Their sifting scheme is to encode the detection timitegers such that each positive integer occurs exactheanc
indexes between two adjacent detection events at Bob sifis sequence. That is, there exists a bijective hapN*® —

Their compression efficiency is less than twice the Shanngrt with f(k) = ng, k € N*t, so that each term in the series

(0] .
A]. convergence for series

limit when the count rate is betwee®~* and 10~!, while " by(br, = an, ) is also a term in";"> ax, but occurs in
the performance falls sharply when the count rate is out®f tQifferent order. The serieigj"; by is called a rearrangement
limit. of S 4 a

k=1 “k-

The key point to decrease the communication traffic of oo _
sifting procedure is to reduce the amount of interactive-mekheorem 2 [18]. If 201821 ax, converges absolutely with sum

sages during bit sifting step to a maximum extent owing to then every serie}, ] b, obtained by rearranging its terms
the following two reasons. As mentioned above, the siftingfSO converges absolutely to the same sum



B. Shannon’s limit of source coding all original keys until she receives the validity announeain

Definition 3 (Entropy) [19]. Let X be a discrete random from Bob, the storage pressure would be too much to bear
variable with alphabetX and probability mass function if the source encoding and decoding cannot be implemented
p(z),z € X. the entropyH(X) of the discrete random in real time. Therefore, another desired performance of the

variable X is defined byH (X) = — 3" p(z)log, p(z). In Source coding algorithm is low computation complexity.
. . zeX
this paperp is set to 2. B. description of the MZRL source coding algorithm

Definition 4 (Source cod [19. A source codeC for a Generally, the announcement is a binary string, in which
random variableX is a mapping fromX, the range ofX, the value of each bit indicates the detected validity of the
to D*, the set of finite length strings of symbols fronbeary corresponding original key. Without loss of generality, we
alphabet. LetC (z) denote the codeword correspondingasto assume that "0” represents the case of undetected, and "1”
and/(x) denote the length of' (z). represents the case of detected. Since the number of photons
in one pulse, the noise of quantum channel, and the response
of detection device are all almost random, the detecteditali
is nearly random. So the announcement of detected vafiditie
e — can be considered as a binary memoryless information source
is given byl = zze:xp (@) (2). which is just the object that we need to compress via a source
ding.
Considering that the number of "0” in the binary string is
r more than the number of "1”, a modified zero run length
(MZRL) source coding algorithm is designed. First of all let
According to TheorenB, H(X) is the theoretical lower us recall the traditional zero run length coding. Suppos¢ th
bound of the average codelength per source letter, so there is a binary string "0010001100000001", the tradiion
definition of compression efficiency is defined as follows. zero run length coding result would be "2-3-0-7". Such sienpl
— . - _ coding algorithm is not completely suitable in the context
Definition 6 (Compression EfficiencySuppose” is a loss- of QKD. Since a QKD system may run continuously, the

Iﬁss source godedolf the r?'g?re_i}ﬁ random "af'aﬁ'ﬁg_”‘_“ IS gength of zero run may be any element from the set of natural
the expected codelength ol The compression efiiciency Ohumber, i.e{0,1,2,--- ,4o00}. Thatis to say that the binary

ic qi _ _L ) . . . .
the source cod€’ is given byf = H(X)" information source is transferred to a non-binary sourda wi

In this paper the indicator of compression efficiency is usd@finite and countable source letters. While it is not reilit
to evaluate the compression performance of a source codiggresentinfinite numbers in a practical system. In mangs;as
algorithm. According to the TheoreB) the moref is closer the run lengths larger than a preset threshold are truncated
to 1, the better the source code. Since the entréfyk) because the probabilities of the big run lengths are usually
is a constant for a given information source represented 89 small that they can be neglected in some error tolerant
the random variableX, the smaller expected codelengih applications. But such truncation scheme does not fit for QKD

indicates the better compression efficiency. since "lossless” is the basic requirement for the bit giftin
scheme and any error is not acceptable.

To losslessly represent infinite possible run lengths bggusi
finite resources, we design the MZRL algorithm based on
a straightforward and efficient idea, i.e. segmentatione Th

The schematic diagram of the proposed bit sifting schereéicoding schematic diagram of MZRL algorithm is shown in
with the preceding and following steps is shown in Eigh ba-  the Fig2.
sic QKD protocol starts with the preparation, transmissiod
detection of a random sequence modulated photons, alsguicgg;”u"’rrc‘{e Source ’S‘Oirryce Message |Codeword
qubits or quantum states, which are transferred into t@-orlxz{m}—> Parser [S={s,. - T Encoder W 3
nal key at both sides. The original key constitutes the irgiut T !
QKD post-processing system. Since a large fraction of qubj;ig. 2
cannot be detected due to the loss of the transmission and the
imperfection of the detection device, Bob needs to announceThe function of theSource Parsein Fig.2 is to divide the
the detected validity of each original key. As mentioneldinary source output sequence into messages, which are the
above, the data amount of the announcements is extremeljects to be assigned codewords by Message Encoder
large, which requires a huge secure key consumption for thneFig.2, the output ofSource Parserare n variable-length
corresponding authentication. In order to save the seceye knessages. The function of thdessage Encodeis to map
consumption, a source encoder and decoder is designeceach message into a codeword. To simplify the decoding
our bit sifting scheme at Bob and Alice side respectivelpperation, the length of every codeword is sefltag,n]. The
The optimal compression performance of the source codingtput messages of ti&ource Parseand their corresponding
algorithm is pursued to minimize the secure key consumpticndewords produced by thdessage Encodein the MZRL
for the authentication of bit sifting. Since Alice has to feuf coding are presented in Tablle

Definition 5 (Expected Codeleng) 19]. The expected code-
length (also called average codelength)of a source codé€”
for a random variableX with probability mass functiop ()

. . 0
Theorem 3 [19). Given a discrete memoryless source o?
entropyH (X ), the average codelengihfor any distortionless fa
source encoding scheme is boundediby H (X).

IIl. PROPOSED BIT SIFTING SCHEME
A. description of bit sifting scheme

Encoding schematic diagram of MZRL codes.
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Fig. 1. The bit sifting schematic diagram with the precedamgl following steps.
TABLE I form a valid message as defined in Tahleand theMessage
MZRL copes Encoderoutputs the corresponding codeword. For the decoder,
Source Message Codeword it decodes the received codeworg to the corresponding
so="1" co=00---0 message; which is just the final output of the decoder. Since
51 ="01" c1=00---1 MZRL is a non-singular fix-length code, it is by nature an
: : instantaneous code, which means the end of a codeword is
Sp—2="00---01" Cn—2 immediately recognizable and a codeword can be decoded
SN—— .
n—20's without reference to future codewords. Such property makes
sn—1="00---00 Cn—1 the decoding of MZRL more efficient.
n—10’s

The simple encoding and decoding principles of MZRL
guarantee that the algorithm can be implemented very fast.
) o Except the computation complexity, what we care about

As shown in Tablell, the definition of messages are thenost in the scenario of QKD is the compression efficiency
same as the traditional zero run length coding excepttihe f the source coding algorithm. Since the shorter expected
messages, 1. The firstn — 1 messages; follow the same cogelength indicates the better compression efficiencyafor
pattern whose length is+ 1 and the last digit is 1. But the gjyen information source, we explore the optimal expected

nth message, -, is a sequence of all 0's of lengih—1. It cogelength of MZRL algorithm in the following sections.
is obvious that» must be greater than or equal to 2.

It is clear that the codeword, to ¢,_o can represent the
run length from 0 ton — 2. How to represent a run length that
is greater than or equal to— 1 is the next problem we needC. expected codelength of MZRL codes
to solve. Our method is to segment the long binary sequence
into one or mores,,_;’s and one message (0 < i < n—2), Suppose that the count rate of a QKD systeng,isvhich
which can be represented lay;_; and¢; (0 < i < n—2) means the probability of ”1” and "0” arg and 1 — ¢ for
respectively. That is to say, for an arbitrary zero run langthe binary sourceX in Fig.2. It is easy to deduct that the
RL(0) = m* (n — 1) + 14, wherem,i € Nand0 < i < probability of the zero run lengthis
n — 2, the codeword sequence d%—1ocn—11 “Cp-1,  Ci

1

For example, ifn = 4, the MZRL codeword sequence for the

1l

binary string "0010001100000001” is:Jcscococscscy”. Pl)=010-9) ¢ @
According to Tabldl, both encoding and decoding are quite

simple and efficient. For the encoder, tBeurce Parsestores For any giveni € {0,1,---,n—2}, the message

letters from theBinary Sourceuntil it sees that these letterss; only appears once when the zero run lengthse



{l]l = m(n — 1) +14,m € N}. ThereforeP (s;) is given by According to the EqR), the expected codelength is an
expression of, which is the size of code alphabet of MZRL,

P(s;) = Z P (m(n—1)+1) and the count ratg. For a QKD systemy is a parameter that
should be adjusted carefully depending upon the requir&snen
(1 — 9™y and available resources, while the count rais almost con-

T—(_q —¢ Vi€ {0,1,..,n—2}.(2) stant. To analyze the optimization of the expected codéfeng
we need to confine the possible range of count rate. In general
the count ratey is determined by the mean photon numper
the fibre loss coefficient, the distancel between two parties,

While the message, ; would appears 1J times when the
zerorunlengthd € {I|l>n—-1nNn1l¢€ N} SO P (s,—1) is

given by the inner lossy s, of the optical devices of Bob, the detection
+oo l efficiency np of Bob’s detector, and the dark count raf.
P(sp1)= > L”L — 1J () (3)  The relationship is given by
l=n—1
SinceP (l) >0 a_nd q= 1 eflu‘.lof(o"d‘#’YBob)/lO.nD + Pd- (9)
= l Tablelll illustrates the typical value of these parameters above
P(sp-1) = Z Ln—lJ P(l) [20]. To the best of our knowledge, the current maximal
I=n=1 communication distance is about 250ka1], [27], in which
o ZZP(Z) case the count rate is about10~6. Besides, the count rates
- of most practical QKD systems are always less than 0.1
1: [23]. So it is reasonable to set the range of count rate
= . 1, (4) as[107'5,10'], which covers all possible values of current

) _ QKD systems.
the seriesP (s,—1) in the EQ.B) converges absolutely ac-

cording to the Theorenl. According to the Theoren?, TABLE Il

any rearranged series of the seri¢s, 1) also CONVErges  The TypICAL PARAMETERS RELATED TO THE COUNT RATE ORQKD.
absolutely to the same sum. In order to compute the sum of

P (s,_1), it is rearranged as follows, L O‘(dg"z‘m) dc()l-(g]s)o VBob(fB) "D(;/S) 15 a4
+oo n—2 : :
P(sp-1) = Z ZP (n—1) + k) Since the smalled. indicates the higher compression ef-
m=1 ficiency, our goal is to minimize the value df under the
— %_ (5) constraintg € [107'°,107!]. The optimization problem is
1-(1-9)" —q hereby formalized in the Ed.()

Since the codelength of the codewardcorresponding to
the message; is a constanflog,n], and the probability mass

s To(n) — _allogyn]
function P (s;) is given by Eq.2) and Eq.B), the expected min L (n) = =g
codelength of MZRL code” for the n-ary source, i.e. the st. neN (10)
random variables, is given by n>2

g€ [107"°,0.1]
Le = ZP(Si) [log,n]
' D. optimization of the expected codelength

1
= % (6) For simplicity of expressiong (n) is used to denoté —
1-(1-4q) (1 —q)"~ 1, thenL (n) can be rewritten as
according to the Definitiorb. To obtain the expected code-
length for the binary source, i.e. the random variaklewe T(n) =12 [logyn]
also need to compute the average length of the source message g(n)
of 5 by Eq.() It is easy to conclude thaj (n) is monotonic increasing
_ n-2 _ function with respect to the variabte for any given0 < ¢ <
Ls = P(si) (i +1) + P(sn-1) (n = 1) 1, so
i=0
1 ) g(n)ﬁg(?k), Vn € (2]“_1,2]“} NNT ke NT.
q , : .
Hence the expected codelength for the binary soufcis Besides, the value of the following expression
_ 13 q [logyn]
I(n) = =< ?
Ls is invariant in the range € (2,2 NN*. So
q [logyn|

S g (8) I(n)>T (2", Yne (2812 NN+, (11)



Therefore we only need to consider the function value®*at
and the optimization problem E4Q) is equivalent to

. - qk
min L (k) = P
st. keNt (12)
g€ [107"°,0.1]

To explore the properties of the functidn(k) with respect
to the variablég:, the domain of: is extended fronN™ to real
numbers no less than 1. That is

qz
= W, z €[1,400).

L(2) (13)

Theorem 4 For any giverg € (0, 0.1], there exists a constant

20 € (—log, (—In (1 —q)),+o0) satisfying that the function
L (z) monotonically decreases in the domainc [1, z),
monotonically increases in the domaine€ (zp, +o0), and
reaches the global minimum at the point= zy. In other

words,
OL

52 <0, when z € [1,20)
‘g—f =0, whenz =z (14)
‘g—f >0, when z € (zp, +00)

Proof: Please refer to AppendiA. [ |

An example curve of. (») demonstrating the Theore#nis
shown as Fig3, whereq = 0.05.

0.9+

0.8

0.7

Fig. 3. The illustration of Theorer in which caseg = 0.05.

Lemma 1 The optimal solution of EqLQ) is reached at: =
|z0] or z = [20].

Sincek € NT, the Lemmal is a straightforward derivation
of the Theoremi.

So far, the existence of the optimal solution of HQ)(
has been proved, and the optimal paramétg; has been

determined agzy| or [z9]. So the next task is to solve the

key valuezy.

Theorem 5 For any giveng € [107'5,0.1], the pointz,
which leads to the global minimum of functiab(z) is
bounded by

—logy (—In(1 —q)) < 29 < —logy (—In (1 —q)) + 3.
Proof: According to the Theorem, we have

29 > —log, (—In (1 —q)), Vg € [107'%,0.1] . (15)

At the same time, the value of the partial deviati%{; at
z = —log, (—In (1 —q)) + 3 is given by

oL B e¥(1 —q)q

a_ |lz=-—lo — In(1— — —A 5 16
az| log,(—In(1—q))+3 (1—68(1—q))2 (Q) ( )

ere
AlQ)=—-1-24In2+¢e*(1—¢)+8In(—In(1 —q)).
Since
uigi(—?i)(;))? > 0,¥g € [107%,0.1] (17)

the sign of Eq.16) is same as the sign of (¢). The partial
derivative of A (¢) can be evaluated as

oA s 8

dq (1-q)n(l-gq)
which is a monotonic decreasing function with respect to the
variableq and

%4 >720x 10", whenq=10""°
% < —2.80 x 103, when ¢ = 0.1

So the functionA (¢) is firstly monotonic increasing and
then monotonic decreasing in the ranges [107'%,0.1].
The minimum must occur at the poing 10-15
(A (107'%) ~ 2687.85) or ¢ = 0.1 (A (0.1) ~ 2647.22), SO

A(q) >0,vq € [107"°,0.1] . (18)
Hence, combining the E4.6), Eq.(L7) and Eq.18),
oL _
_|z:—10g2(—1n(1—q))+3 > Oqu € [10 15a 01] . (19)

0z

Making use of Eq19) and the Theorem, it can be concluded
that

20 < —logy (—In(1—¢q)) +3,Yg € [107"°,0.1] . (20)

Combining the Eq15) and Eq.R0), the theorem is proveds
According to the Lemmad and the Theorenb, the opti-
mal parametel,,; is one of the following five values, i.e.
lyl,ly] +1,ly] +2,|y] +3,[y] + 3, wherey is the brief
denotation of-log, (—In (1 — ¢)). Subsequently, an efficient
iterative solution of EqX2) is presented, which is called

Algorithm 1.

Algorithm 1 The solution of optimization problem
Eq.@2).

Input: Count rateg.

Output: The optimal solutionL,,;, and the optimal
parametetk,,; .

1 k=|~logy(=In(1-4q))].



2 Ly = L(k). H (X) = —qlogyq — (1 —q)log, (1 — ¢), denoted asi (q).
3 while (1) do So far, the compression efficiengy= ﬁ can be obtained.
4 k=k+1 The theoretical results df,,;, L and f are shown as Fi -
5 Ly=L(k). 7 respectively.
6 if (Ll < LQ) then
7 break. 22
8 else
- 20
9 Ly = Lo.
10 endif 18
11 end while 16
12 Top = Ly
13 kopr =k — 1. b

For convenience, the stefs 11 of Algorithm 1 are called
one iteration. It is obvious that the algorithm convergethimi
five iterations for any givery € [107'5,0.1]. Some count
ratesq between10~% and 10! are chosen as the input of
Algorithm 1, and the corresponding numbers of iterations are
demonstrated in Figd. The experimental results show that the 4
largest number of iterations is 4 and the average number of

iterations is 3.28. ! ‘ ‘ ‘
7 7 107 107° 10
T T T T Count Rate (q)

Optimal Codelength k ¢

Fig. 5. The optimal codelength & kop: (q)-

The Number of Iterations

10 10~ 10°* 10° 10 10
Count Rate (q)

Fig. 4. The number of iterations of Algorithrh as a function of the count
rate q.

5

To sum up, the optimal solution of E4Q) stated in the 10 =

6 -5 4
previous section is solved when the size of codeword alghabe ° 10 10 10
— 9kope Count Rate (q)
n = .

10 10

Fig. 6. The expected codelengih(q).

E. theoretical performance analysis The compression efficiency is less than 1.10 during the

1) compression efficiencyTo compute the compressionyhole domain of count rate. So it is demonstrated that the
efficiency f = sy, first of all we need to calculate thecompression performance of our MZRL source coding is very
expected codelengtli.. One hundred different count ratesclose to the Shannon’s limit.
are selected in the rangho—ﬁ,lo—l} on the logarithmic  2) time complexityiln this section, we will analyse the time
scale. The optimal codelength of n-ary sourgei.e. k,,:, complexity of proposed bit sifting scheme in Hig.
is computed via Algorithml for each count rate and the Bit sifting at Bob side consists of thé&ndetected Bit
corresponding optimal size of codeword alphabgf, is Removaland theSource EncoderFor eachoriginal_keyp,
2kort, The expected codelengfi(n) can be hereby computedthe Undetected Bit Removaletermines whether it is a valid
according to Eqf). The entropy of binary source can bealetection or not, and outputs the detected validity to the
obtained by straightforward application of Definiti@) i.e. Source EncoderThe Source Parsef the Source Encodemn



W 7 7 7 ] complexity of bit sifting at Bob side i® (log,n).

Since Alice has to store theriginal key, in the Buffer
till she receives a codeword carrying the detected validity
the original_key, from Bob, the required storage consists
of some temporary variables and tiBuffer used to store
original_key . The temporary variables are the received code-
word ¢; and the message; which are both represented by
[log,n] bits. While the size of th8uffer depends on the time
differencetq;s between the time when asriginal_key, is
stored in theBufferand the time it is removed from tHguffer
by the Undetected Bit RemovalAccording to the MZRL
codes, Alice has to send Bob at maest- 1 qubits to form a
codeword. So the maximum time difference is

1.09

1.08

1.07

1.06

Compression Efficiency (f)

1.05

taif = (n —2) try+1o+t3 + 14+ ts. (22)

104 Il Il Il Il
10" 10° 10 100 ] ) ]
Count Rate (q) (n —2)t,y means the time that Alice prepares- 1 qubits,

' _ N wheret, ¢ is the reciprocal of the repetition frequency of QKD.

Fig. 7. The compression efficienc(q). ty is the time that they — 1th qubit is transmitted from Alice

to Bob over quantum channel, which depends on the distance

d between Alice and Bob.

the current input detected validity is "1” or the current(zert?’ Is the t!me that the b't. S'ﬁ'”g at Bob side processes the
n — 1th original_keyy, which is a constant according to the

counteri is equal ton — 1. If not, i = i + 1. Otherwise, the analysis in sectiofi|-E2. By then, the codeword, _, or
messages; is output to theMessage Encodewhich outputs 2"V - BY : —2 Y Cn—1

. . is formed.
the corresponding codeworg, and the zero countéris reset . . . .
to 0. Since the time complexity of both tHéndetected Bit Z‘l.; t:eer“g]?ht:r?tt'ctgtz dcggzvg% gjl éi;;ar?;mlt?ghf;?:ceggb to
Removaland theSource Encodeare constant, the time com- ' verad : ! » Whi P

plexity of bit sifting for eachoriginal_keyy is also constant on the distance.
. smal_xkeyp 15 . ts5 is the time that theSource Decodeat Alice side decodes
Hence, whenn original_keyy are input, the time complexity

of bit sifting at Bob side iSO (m). the codeword to the corresponding message, which is also a

o . constant according to the analysis in sectiifE2. So far,
Once receiving a codewokd, the Source Decodeat Alice
T X o e Undetected Bit Removahn begin to discard these— 1
side in Figl, whose time complexity is constant, decodes

to the corresponding messagg and outputs thes; to the Ongmal key, from the Buffer.

Undetected Bit Removdf i is equal ton — 1, the Undetected Hence the number of the cachedginal key , in the Buffer
Bit Removaldiscardsn — 1 consecutiveoriginal_key, from
the Buffer. Otherwise théJndetected Bit Removdiscards the
formeri original_key, and reserve thé+ 1th as araw_key 4.
Therefore the time complexity of bit sifting for the inputyhich is O (n). Therefore, the space complexity of bit sifting
codewordc; is O (i). Assuming that the received codewords at Alice side isO ().

arec;,, ¢, -+, ci,_,, the time complexity of bit sifting is

Fig.2 determines whether a valid messageis formed, i.e.

)

ta; ty +t3 +ta+ 15
1= (-1
rf rf

Since the size of code alphabeexponentially dependents
. on the optimal parametek,,:, the required storage at Alice
19) Z i | side may be very large. For instance, det= 10-%, then the
optimal parametek,,, is 22 according to Algorithri, and
the required storage at Alice side is about multiple time$4M
The times depend on the protocol of the QKD systems. In
fact, memory resource sometimes may be very expensive, such
the t|me complexny of bit sifting at Alice side is algd (m). as FPGA based QKD system 7, [21], [24]. Although the
In summary, the time complexity of the bit sifting at bottstorage of FPGA can be extended by attaching several SRAMs
Alice and Bob sides are linearly dependent on the number @f DDRs, the performance of SRAM or DDR is not as good
original keysm. as the inner storage of FPGA. In the case of limited storage
3) space complexityin this section, we will analyse theresource, the optimization problem EL) can be rewritten
space complexity of proposed bit sifting scheme in Eiglere, as
we assume that Bob does not cache more than one codeword

J=0

In fact, Z i; is the number of processegtiginal key, SO

. N min L (n) = q[logyn]
but send a codeword to Alice as soon as it is formed. In - T—(1—g)" !
this case, the bit sifting at Bob side only need to store two st. meN (22)
temporary variables, i.e. one zero counter and one codeword Nmax > 1 > 2

Both of them are represented Kjog,n]| bits, so the space g€ [1071%,0.1]



, where n,,., is the possible maximal code alphabet size, '

which can be evaluated according to the available storage s
The optimal solution of Eg22) is stated in the Theore®

Theorem 6 For any giveng € [107'°,0.1] and nmaz, if
Nmax > 2Fert then the optimal solution of EQP) is reached
at n = 2kert. Otherwise it is reached at = 2U1082mmax] or

n = Nmazx-

Proof: For brevity, let{a...b} = [a,b] N N.
(@) Whenn,., > 2Frt, the optimal code alphabet size

_ ok
Nopt = 2%ort S Mmax,

which is reachable in the domaif2...nmax }. So the optimal
solution of Eq.R2) is reached at = 2%t in this case.
(b) Whenn,,., < 2Frt, the optimal code alphabet size

_ ok
Nopt = 2%ort > Nmax,

which cannot be reachable in the domdinh..ny..}. In the
case, the domai2...nmax} is divided into {2...2F=»} and
{2Fmex £ 1. Mmax |, Wherekyax = [1089nmax] -

(b.1) Since

Fmax

2,28} = | ] {21 + 1.2}

k=1

and the minimum ofL (n) in the range{2*~!+1..2%}
occurs at the poin2* according to EqX1), 1 < k < knae,
we just need to consider the minimum bf(k) in the range
{1...kmax}. According to Lemmal, it can be inferred that
Eopt < [20] and

Fmax = LIOanmaXJ < kopt -1< (ZO~| —1 < 2.

So according to Theorem, L (k) is monotonic decreasing
in the range{l...kn.x} and reaches the minimum at the
point & = kya.. Therefore, the minimum of. (n) in the
range {2...2k==x} occurs at the poinh = 2Fmes, j.e. n =
9l1ogsnmax ]

(b.2) Since the functionL (n) is monotonic decreasing in
the range{2"=» 4 1...nmax }, the minimum ofL (n) in the
range occurs at the poimt = n,.x.

o
©

Expected Codelength (L)

o
©

o o
) ~

o
3

Myax, = 80

°
IS

30 40 50 60
codeword alphabet size (n)

90

Fig. 8. The illustration of the Theore® whereq = 0.05.

Algorithm 2 The solution of optimization problem

Eq.@2).

Input: Count rate;, and possible maximal code alphabet
SIZ€ Nmaz-

Output: The optimal solutionZ,,;, and the optimal
parameter,,;.

[

kmaw = LIOanmaXJ- .
Let ¢ be the input of Algorithml, then L,,, and k.
can be obtained.

N

3 if (Rmax > 2Fort) then
4 nopt = 2k°pt.
5 else if L (2"=) > T (nyaq)
6 Nopt = Nmax-
7 ZopiE = Z (nmam)-
8 else
9 nopt = 2kmaz.
10 Topt = L (2Fmes).
11 end if

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. compression efficiency

In the experiment, one hundred different count rates are

Combining(b.1) and (b.2), it can be seen that the optimaiSelected in the ranggl0~° 10~'] on the logarithmic scale

solution of Eq.R2) is reached at = 211°22"m=x) or n = n,py 00
When npay < 2Fort.

Combining the caséa) and the cas€b), the theorem is
proved.

and the simulation results are obtained by processging
original keys for each count rate.

Figure 9 demonstrates the compression efficierfcpf the

m Proposed bit sifting scheme and the bit sifting schemelaf. [

Figure8 shows an example curve &f(n) with three preset The performancilof th_el scheme cf7] is near the Shannon
nmax, Which demonstrates the different aspects of Thegsemlimit for ¢ € [107%,107"], while falls sharply as the count

Here the count rate = 0.05, k., is 6 according to Algorithm '
1, and the optimal solution is reached at

2kort = 64,
Nmax = 30,
2Uoganmax] — 16,

WheNn Nmax = Nmax, = 30
WheN Nmax = Nmax; = 30

r
n =

When Nmax = Nmax, = 18

According to the Theorend, Algorithm 2 is presented to

ate is outside of the range. It is clear that the compression

efficiency of our scheme is always near the Shannon limit and
superior to the scheme of ] in the whole range of the count

ate.

B. secure key consumption

In [17], Walenta etc. use a combinatioi5] of s-almost

obtain the optimal solution of EQ®). Its convergence can bestrongly universal hash functions and a family of strongly

deduced directly from the convergence of Algoritdm

universal hash functions named polynomial hashir,[[27]
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to achieve information theoretically secure authenticatThe where subscriptd and B indicate two different bit sifting
authentication algorithm produces a 127-bit authenticatag schemes. The E®8) demonstrates that the key consumption
for every 22° bits of classical communication, and consumesgepends linearly on the compression efficiency. Since the
383 secure keys to select a hash function for every tagpmpression efficiency of proposed scheme is always superio
According to the result of48], the same hash function can beo that of the scheme of.[], the key consumption of proposed
reused for multiple authentication rounds if the tags aga@do scheme is always less.

the messages are one-time pad encrypted, so only 127 secuiore experiment results of the proposed scheme and the
keys are consumed for the classical communication of evafjalenta’s scheme are listed in Tabl¥, including com-

220 pits and the key consumption can be reduced to one thigtession efficiency and the ratio of the two compression
Although the authentication scheme is very efficient, thg kefficiencies. It needs to explain that the count rate is not
consumptions are still 2.7% and 5% of the generated secgreen explicit in [L7], while it can be inferred according to
key of the QKD system when the fibre length is 1km anthe sifted key rate and the repetition frequency of the QKD

25km respectively. system. It can be seen that if the QKD systemlir] gmploys
Let M be the amount of classical communication, then theur proposed scheme for bit sifting, 29%, 19% and 17%
key consumption is of the secure key consumption for bit sifting can be saved
M when the fibre length is 1km, 12.5km and 25km respectively.
K =127- {ﬁ-‘ . Besides, more than 88% of the key consumption of the post-
. . o processing comes from the bit sifting step, which is evaldat
Especially, the key consumption for the bit sifting is according to the sifting scheme and the communication rate
m-hiq)-f among the procedures of post-processing presenteéd’jngo
Kys =127 - { 520 -‘ ) our scheme can greatly save the secure key consumption of
) o _ the whole QKD post-processing system.
wherem is the number of original keys to be processeds
the count rate, and is the compression efficiency. Since TABLE IV
h h h THE COMPARISON BETWEEN THE PERFORMANCES OF PROPOSED SCHEME
m- (q)f m-h(q)-f m: (q)f +1 AND WALENTA’S SCHEME[17] FOR THEQKD SYSTEM IN[17]. THE
220 - 220 220 SUBSCRIPTw INDICATES WALENTA’S SCHEME WHILE THE SUBSCRIPT

INDICATES THE PROPOSED SCHEME

m-h(q) i >
gnd 570 fis usqally very large becau_gé_ 1 and QKD T S
is a continuous high speed system which leads to the large Tkm S76x10-7 381 107 071

-h
mhia) | we have 125km  1.18%10~3 134 108 081
25 km 7.87%10"% 127 106 0.83

m-h(q)-f1 _m-h(q)
920 920 f
So C. some suggestions for some representative QKD systems
Kps—a _ fa 23 Many QKD systems have been developed since the first
Kos_n  fB (23) QKD system was developed in 1984. Most of them failed to

take into account the authentication of the classical cbkiso

they didn't pay much attention to the communication traffic.
50 ' ' ' ' T The parameters of four representative QKD systems are given
:C\Zgﬁ:‘: in Table V, which are used to compute the corresponding
— count rate of these systems by E.(Upon the calculated
count rates, the optimal code alphabet sizes are suggested f
them in TableVI according to their available storages. The
theoreticaln is calculated by, = 2% without considering the
constraint of storage, whefeis obtained by Algorithni, and
the corresponding compression efficiency is named theateti
/. While the recommended is calculated after taking into
account the storage constraint, and the correspondingresmp
sion efficiency is named as actu@l The systems of7], [24],
[29] have sufficient storage, and all of their actual compressio
efficiencies are near 1. However, the system 2f] ust has
32Kb storage for sifting which is not enough for the theaagti
optimal n = 2%2. The protocol adopted by?]] is coherent
one-way (COW) §0], which needs two bits to describe each
“();;um rete (10_3 107 10" original key,. One bit indicates whether it is a decoy or a

9 signal, and the other determines its value when it is a signal

Fig. 9. The comparison of compression efficientyetween the proposed Hence Alice should store two bits for each origiray,.
scheme and Walenta's schemef If the memory is extended to 8Mb, then the compression

IS
o
T

w
o
T

N
o
T

Compression Efficiency (f)

10F
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TABLE V
THE PARAMETERS OF FOURQKD SYSTEMS

QKD System Dark Count Rat®; Mean Photon Number,  Distanced(km) Loss(dB} Detection Efficiencynp

Dixon etc. P9 1.36 % 10—° 0.55 20 8.01 10.00%
Stucki etc. P1] 1.60 * 108 0.50 250 42.60 2.65%
Zhang etc. 24 1.00 % 10—° 0.60 20 7.20 12.00%
Tanaka etc. ] 2.00 % 10~ 0.40 50 14.00 10.00%

2 The parameter includes both the loss of transmission anthttes lossvyg,;, of Bob's optical devices.

TABLE VI
THE RECOMMENDATIONS FOR FOUR REPRESENTATIVOKD SYSTEMS

QKD System Count Ratg Theoreticaln  Theoreticalf  Available Storage = Recommended Actual f

Dixon etc. P9 8.68 x 103 28 1.08 > 2GB? 28 1.08
Stucki etc. P1]  7.44 % 10~7 922 1.06 32K 12 % 210 70.5F
Zhang etc. 4]  1.36 10~ 2 28 1.08 32mH 28 1.08
Tanaka etc.]]  1.42% 1073 211 1.07 833MB® 211 1.07

2 The system is implemented in PC and the available storagstimaged to be larger than 2GB.

b The system is implemented in Virtex || Pro FPGA, and 32Kb menfor sifting.

¢ If the storage for sifting is extended to 8Mb, the actual corspion efficiency would be 1.06.

d The system is implemented in two Cyclone Ill series FPGAS3ER0), and 32Mb memory for sifting.
€ The system is implemented in Several FPGAs, and average B38bmory is used for each FPGA.

efficiency of the system would be 1.06. Otherwise, if 8KDue top € [0.9,1),
is allocated to basis sifting step, then the rest 24Kb is for b 1
sifting. Therefore the possible maximum code alphabet size (_71))1)2
Nmaa 1S S€t as2x219, i.e. 12K. According to Algorithn®, the (p—p*)
optimal code alphabet size and optimal solution i92 % 2'°  \ye only need to focus on the sign of

and 70.57, respectively. It can be seen that the performance

falls sharply due to the lack of the storage resource. r(z)=p-— p> +22°p% In2Inp. (25)

> 0.

The partial derivative of (z) with respect to the variable

V. CONCLUSION
. . . ~can be evaluated as
In this paper, an efficient bit sifting scheme for QKD is or

proposed, whose core is a modified zero run length source — =22°p  In*2Inp (1 + 2% Inp). (26)
coding algorithm with performance near Shannon’s limiteTh 9z
existence of optimal codelength of the source coding algori Due to 222p? In*21Inp < 0, the sign of% is determined by

is proved, and a fast iteration algorithm is presented twesolthe sign of the expressiant-27 Inp. Let1+2%1np > 0, then
the optimal parameter. Both the theoretical analysis aed th

) A
experimental results demonstrate that our scheme caneeduc z < —logy (—Inp) = z,.

the classical communication traffic greatly and hereby sa %

the secure .k(_ey consumption for authentication ewder_nly. % <0, whenl<z< 2,

a fast bit sifting scheme, the storage pressure of Alice can o

be relieved greatly by sifting out the undetected origiratk 9z =0, when z = zp, : (27)

%>0, when z > 2z,

in time. The impact of storage resource of a QKD system
on the application of our scheme is also discussed. Some . . . L
recommendations on how to apply our scheme into forjberefore functionr (z) is monotonic decreasing in the do-

representative QKD systems are given. main z € [1,z,) and monotonic increasing in domain

(zm, +00), and reaches the global minimum value at the point
z = z,, Which is

APPENDIX
-1 In(—1
PRogF OFTHEOREM4 r (2) = +ep+In( np)' (28)
Proof: For convenience, we denote= 1 — g, thenp € e
[0.9,1) andg =1 —p. The L (2) in Eq.(L3) can be rewritten Since
o - (1-p)z Orlem) 1o L osry €1[0.9,1)
L(Z): 1_p2z717 Bp - eplnp : Y p ] I

and the partial derivative of the expected codelengtivith ~functionr (z,,) is monotonic decreasing with respect to the
respect to the variable is given by variablep and comes to the maximum valuegat= 0.9, which

oL 1) is about—0.30. So
_ —p)p 27 z, 27
Dz (p — p*°)? (p po +22°p 1n21np) : (24) r(zm) < 0,Yp €1]0.9,1). (29)



In addition, asz approaches-oo, the limit of r (2) is

lim r(z)=p,Vpe[0.9,1).

z—+o0

(30)
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domainz € [z, +00), it can be inferred that there exists at, the discussions of the inference of some formulas. This

least onezy € (z,, +00) satisfying that- (zy) = 0 according
to the intermediate value theoremd]. Besides, since: (z)
is monotonic increasing function in the range [z,,, +00),

the root ofr(z) = 0 is unique, and
r(z) <0, when z € [zm, 20)
r(z) =0, whenz =z (31)
r(z) >0, when z € (29, +00)

Since
(1]

(2]

Zm > —logy (—Inp)|,_q ¢ > 3.24,

we have to discuss the signofz) in the domairz € [1, z,,).
Now our concern is the sign of
r(1) =p—p*+2p*In2Inp. (32)

Th partial derivative of (1) with respect to the variablg is
given by

(3]
ar (1) Y

dp
and the 2nd partial derivative of (1) with respect to the
variablep is given by

=1-2p+2pIn2+4pIn2inp, (33)

(5]

2
() 562+ 4l2Inp. 34) ©
o 7
; : ; o092l
Obviously in the domairp € [0.9,1), the function ap(z)

is monotonic increasing with respect to the variapleand
reaches the minimum value at= 0.9, which is about 1.87.
Thus the functionag—;l) with respect to the variablg is also
monotonic increasing and also reaches the minimum value R
p = 0.9, which is about 0.18. Therefore(1) is a monotonic
increasing function with respect to the variapland reaches [10]

the supremum O gt = 1, so
r (1) <0,Vpe€[0.9,1). (35)

Sincer (z) is a monotonic decreasing function in the rang@zl
z € [1,zm,), we have [13]

[11]

r(z) <r(l)<0,Vzell, zp). (36)
Combining Eq.81) and Eq.86), we have 4]
r(z) <0, whenz € [l,z) [15]
r(z) =0, whenz =z (37)
r(z) >0, when z € (29, +00) [16]
Since the sign ofg—f is the same as the sign of(2),
g—z <0, when z € [l,z) (17
g—fzo, when z = zg
g—g >0, when z € (29, +00) 18]
wherezy € (zp, +0), i.e.
[19]
20 € (—logy (—In (1 —¢q)), +00).
[20]
|
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