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Efficient Bit Sifting Scheme of Post-processing in
Quantum Key Distribution

Qiong Li, Dan Le, Xianyan Wu, Xiamu Niu∗, and Hong Guo

Abstract—Bit sifting is an important step in the post-processing
of Quantum Key Distribution (QKD) whose function is to sift
out the undetected original keys. The communication traffic
of bit sifting has essential impact on the net secure key rate
of a practical QKD system, and it is facing unprecedented
challenges with the fast increase of the repetition frequency of
quantum channel. In this paper, we present an efficient bit sifting
scheme whose core is a lossless source coding algorithm. Both
theoretical analysis and experimental results demonstrate that the
performance of our scheme is approaching the Shannon limit.
Our scheme can greatly decrease the communication traffic ofthe
post-processing of a QKD system, which means it can decrease
the secure key consumption for classical channel authentication
and increase the net secure key rate of the QKD system.
Meanwhile, it can relieve the storage pressure of the system
greatly, especially the device at Alice side. Some recommendations
on the application of our scheme to some representative practical
QKD systems are also provided.

Index Terms—Quantum cryptography, post-processing, bit
sifting, source coding, unconditionally secure authentication.

I. I NTRODUCTION

T HE quantum key distribution (QKD) is the most devel-
oped branch of quantum cryptography, whose security

is based on the principles of quantum mechanics. It can not
only enhance the security of traditional symmetric/asymmetric
cryptographic systems, but also construct an information-
theoretic secure cryptographic system by combing with Ver-
nam one-time pad cipher [1]. QKD comprises two phases: the
transmission of the photons over the quantum channel and
the post-processing over the authenticated classical channel.
In the first phase, by transmitting the modulated photons,
Alice and Bob obtain a partially shared bit-string, so called
original key. A representative high performance QKD system
can transmit original keys at rates in the order of Gbps. In
the second phase, by performing sifting, error reconciliation
and privacy amplification in an authenticated classical channel,
Alice and Bob obtain the identical and unconditionally secure
key, so called secure key. The highest secure key rate is about
1Mbps according to the published literatures [2], [3]. The
essential procedures of post-processing include sifting,error
reconciliation and private amplification. Every procedureof
post-processing is responsible for the dramatic loss of thekey
rate between the original key and secure key. The function
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of the first procedure is to sift out the undetected original
keys and the original keys whose preparation and measurement
basis are incompatible, which is also named bit sifting and
basis sifting respectively. The loss due to basis sifting depends
on the protocol gain of the QKD system. For example, the
protocol gain for BB84 protocol [4] is 0.5, which is introduced
by Bennett and Brassard in 1984 and still the most widely
used QKD protocol at present. The loss due to bit sifting is
determined by the count rate of the QKD system. The count
rate is also called detection probability in some publications.
The loss caused by the private amplification is the cost to
pay for decreasing Eve’s knowledge about the secure key to
almost zero. Most of Eve’s knowledge is obtained from the
exchanged messages during the error reconciliation. So far,
most studies on post-processing focus on improving the secure
key rate via increasing the reconciliation efficiency, which
means decreasing the amount of interactive information during
the error reconciliation. While the huge amount of interactive
messages during sifting has not drawn enough attentions.

The reason that we should study the method to decrease the
communication traffic of sifting is mainly related to the key
consumption due to the authentication of classical channel.
One of the basic assumptions of the security analysis for QKD
protocols is that there is an authenticated classical channel
between Alice and Bob [5]–[7]. However, the classical channel
in a QKD system cannot be authenticated by itself unless
we authenticate all interactive messages between Alice and
Bob by employing an unconditionally secure authentication
algorithm, i.e. the family of almost strongly universal hash
functions based algorithm at the cost of some key consump-
tion. For the first round of the QKD system, a pre-shared
key must be available, which is exchanged through a secret
channel, such as face to face or other ways. For the following
rounds, a part of the secure key generated by the QKD system
is used as the authentication key. In order to maximize the
net secure key rate after the withdrawal by the authentication
in a practical QKD system, it is essential to minimize the
key consumption of authentication. The consumed key lengths
of some representative authentication algorithms are listed in
TableI, as functions of the security parameter and the authen-
ticated message length. It can be found that the consumed key
length monotonically increases with the message lengthm.
Therefore, we must try to reduce the communication traffic as
much as possible. In the post-processing of QKD, the sifting
procedure needs to communicate much more than the other
procedures. Lin etc. presented a software implementation of
post-processing of QKD, and declared that sifting procedure
needed the most network resource in 2009 [8]. So it is of great
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meaning to study how to decrease the communication traffic
of sifting.

TABLE I
THE CONSUMED KEY LENGTHS OF SOME REPRESENTATIVE

AUTHENTICATION ALGORITHMS FOR GIVEN SECURITY PARAMETERε AND

MESSAGE LENGTHm.

Authentication algorithm Consumed Key Length
den Boer [9] ≈ −2log2ε+ 2log2m

Bierbrauer etc. [10] ≈ −3log2ε+ 2log2m
Krawczyk [11] −3log2ε+ 3log2 (1 + 2m) + 1
Abidin etc. [12] −4log

2
ε+ 3log

2
m+ 8

With the fast increase of the repetition frequency of quantum
channel, post-processing devices are facing unprecedented
challenges. Taking BB84 protocol as an example, the input
data rate of sifting procedure at Alice side is twice the
repetition frequency and three times at Bob side. For decoy
BB84 protocol [13], the input data rate of sifting is even
more than that of BB84. To date, the repetition frequency of
a high speed QKD system has been up to about ten GHz
[2], so the post-processing devices are facing huge storage
pressure. In 2007, Mink indicated that the storage of sifting
was one bottleneck for his QKD system [14], whose repetition
frequency is 3.125Gbps. It is noted that although the input
data rate at Bob side is more than that at Alice side, Bob
can immediately sift out the undetected original keys whose
amount is far more than the amount of the detected, while
Alice cannot sift out them until Bob announces which original
keys he has detected, so the storage pressure of the device at
Alice side is much heavier. Therefore, the method to decrease
the communication traffic of sifting should not only have good
compression performance but also be performed as fast as
possible so that Alice could remove the undetected original
keys from her buffer in time.

Although the post-processing has drawn much attention
since the mid-1990s, only very few researchers study the
sifting procedure. In 2010, in order to save communication
traffic, Kollmitzer etc. stated that Bob could inform Alice the
detection position represented by⌈log2m⌉ bits, wherem is
the number of original keys to be processed [15]. The scheme
can reduce the amount of exchanged messages to some extent,
but the compression efficiency is far from the optimum. This
scheme was implemented by Li etc. in 2012 [16]. In 2014,
Walenta etc. declared that the sifting should be performed as
fast as possible to allow Alice to sift out the undetected and
incompatible original keys to avoid buffer overflow. They also
pointed out that the amount of bits exchanged during sifting
should be kept as small as possible due to the authentication
cost [17]. Their sifting scheme is to encode the detection time
indexes between two adjacent detection events at Bob side.
Their compression efficiency is less than twice the Shannon
limit when the count rate is between10−4 and 10−1, while
the performance falls sharply when the count rate is out of the
limit.

The key point to decrease the communication traffic of
sifting procedure is to reduce the amount of interactive mes-
sages during bit sifting step to a maximum extent owing to
the following two reasons. As mentioned above, the sifting

consists of bit sifting and basis sifting. The function of bit
sifting is to get rid of the undetected original keys and the
basis sifting aims to sift out the original keys whose bases
are incompatible. On one hand, the amount of interactive
messages of bit sifting is far more than that of basis sifting.
On the other hand, from the point of information theory, the
great redundancy due to the very low count rate makes it
possible to decrease the amount of interactive messages of
bit sifting significantly. While the interactive messages during
basis sifting can hardly be compressed because of the low
redundancy due to the completely random basis selection at
both Alice and Bob sides. Hence, we only focus our study on
bit sifting in this paper.

In this paper, we firstly present a lossless source coding
based bit sifting scheme. Considering the expected codelength
of the source coding algorithm as the optimization object,
an efficient iteration algorithm is proposed to solve the opti-
mization problem. Both theoretical analysis and experimental
results demonstrate that the performance of our scheme is
approaching the Shannon limit and also better than the com-
petitive scheme within the entire reasonable interval of count
rate. Besides, some suggestions on how to apply our scheme
to some representative practical QKD systems are provided.

The rest of this paper is organized as follows. In sectionII ,
some preliminaries are presented. In sectionIII , the proposed
lossless source coding based bit sifting scheme and the theo-
retical analysis on its performance are discussed in detail. The
experimental results and analysis are presented in sectionIV.
Finally, some conclusions are drawn in sectionV.

II. PRELIMINARIES

In the section, some theoretical bases for proposed bit sifting
scheme are introduced briefly.

A. convergence for series

Definition 1 (Absolutely convergent) [18]. Given a series
∑

ak, we may form a new series
∑

|ak|. If the new series
is convergent, then we say that the original series

∑

ak is
absolutely convergent.

Theorem 1 [18] Suppose thatak ≥ 0 for all k ≥ 1. Then the
series

∑

ak either converges or diverges to+∞. Especially,
if it converges, then it converges absolutely.

Definition 2 (Rearrangement of series) [18]. Suppose that
∑+∞

k=1 ak is a given series. Let{nk} be a sequence of positive
integers such that each positive integer occurs exactly once in
the sequence. That is, there exists a bijective mapf : N+ →
N

+ with f(k) = nk, k ∈ N
+, so that each term in the series

∑+∞
k=1 bk(bk = ank

) is also a term in
∑+∞

k=1 ak, but occurs in
different order. The series

∑+∞
k=1 bk is called a rearrangement

of
∑+∞

k=1 ak.

Theorem 2 [18]. If
∑+∞

k=1 ak converges absolutely with sum
s, then every series

∑+∞
k=1 bk obtained by rearranging its terms

also converges absolutely to the same sums.



3

B. Shannon’s limit of source coding

Definition 3 (Entropy) [19]. Let X be a discrete random
variable with alphabetX and probability mass function
p (x) , x ∈ X. the entropyH(X) of the discrete random
variable X is defined byH(X) = −

∑

x∈X

p(x) logb p(x). In

this paper,b is set to 2.

Definition 4 (Source code) [19]. A source codeC for a
random variableX is a mapping fromX, the range ofX ,
to D∗, the set of finite length strings of symbols from aD-ary
alphabet. LetC (x) denote the codeword corresponding tox
and l(x) denote the length ofC(x).

Definition 5 (Expected Codelength) [19]. The expected code-
length (also called average codelength)L of a source codeC
for a random variableX with probability mass functionp (x)
is given byL =

∑

x∈X

p (x) l (x).

Theorem 3 [19]. Given a discrete memoryless source of
entropyH(X), the average codelengthL for any distortionless
source encoding scheme is bounded byL ≥ H (X).

According to Theorem3, H(X) is the theoretical lower
bound of the average codelength per source letter, so the
definition of compression efficiency is defined as follows.

Definition 6 (Compression Efficiency) SupposeC is a loss-
less source code of the discrete random variableX , andL is
the expected codelength ofC. The compression efficiency of
the source codeC is given byf = L

H(X) .

In this paper the indicator of compression efficiency is used
to evaluate the compression performance of a source coding
algorithm. According to the Theorem3, the moref is closer
to 1, the better the source code. Since the entropyH(X)
is a constant for a given information source represented by
the random variableX , the smaller expected codelengthL
indicates the better compression efficiency.

III. PROPOSED BIT SIFTING SCHEME

A. description of bit sifting scheme

The schematic diagram of the proposed bit sifting scheme
with the preceding and following steps is shown in Fig.1. A ba-
sic QKD protocol starts with the preparation, transmissionand
detection of a random sequence modulated photons, also called
qubits or quantum states, which are transferred into the origi-
nal key at both sides. The original key constitutes the inputof
QKD post-processing system. Since a large fraction of qubits
cannot be detected due to the loss of the transmission and the
imperfection of the detection device, Bob needs to announce
the detected validity of each original key. As mentioned
above, the data amount of the announcements is extremely
large, which requires a huge secure key consumption for the
corresponding authentication. In order to save the secure key
consumption, a source encoder and decoder is designed in
our bit sifting scheme at Bob and Alice side respectively.
The optimal compression performance of the source coding
algorithm is pursued to minimize the secure key consumption
for the authentication of bit sifting. Since Alice has to buffer

all original keys until she receives the validity announcement
from Bob, the storage pressure would be too much to bear
if the source encoding and decoding cannot be implemented
in real time. Therefore, another desired performance of the
source coding algorithm is low computation complexity.

B. description of the MZRL source coding algorithm

Generally, the announcement is a binary string, in which
the value of each bit indicates the detected validity of the
corresponding original key. Without loss of generality, we
assume that ”0” represents the case of undetected, and ”1”
represents the case of detected. Since the number of photons
in one pulse, the noise of quantum channel, and the response
of detection device are all almost random, the detected validity
is nearly random. So the announcement of detected validities
can be considered as a binary memoryless information source
which is just the object that we need to compress via a source
coding.

Considering that the number of ”0” in the binary string is
far more than the number of ”1”, a modified zero run length
(MZRL) source coding algorithm is designed. First of all let
us recall the traditional zero run length coding. Suppose that
there is a binary string ”0010001100000001”, the traditional
zero run length coding result would be ”2-3-0-7”. Such simple
coding algorithm is not completely suitable in the context
of QKD. Since a QKD system may run continuously, the
length of zero run may be any element from the set of natural
number, i.e.{0, 1, 2, · · · ,+∞}. That is to say that the binary
information source is transferred to a non-binary source with
infinite and countable source letters. While it is not realistic to
represent infinite numbers in a practical system. In many cases,
the run lengths larger than a preset threshold are truncated
because the probabilities of the big run lengths are usually
so small that they can be neglected in some error tolerant
applications. But such truncation scheme does not fit for QKD
since ”lossless” is the basic requirement for the bit sifting
scheme and any error is not acceptable.

To losslessly represent infinite possible run lengths by using
finite resources, we design the MZRL algorithm based on
a straightforward and efficient idea, i.e. segmentation. The
encoding schematic diagram of MZRL algorithm is shown in
the Fig.2.

Fig. 2. Encoding schematic diagram of MZRL codes.

The function of theSource Parserin Fig.2 is to divide the
binary source output sequence into messages, which are the
objects to be assigned codewords by theMessage Encoder.
In Fig.2, the output ofSource Parserare n variable-length
messages. The function of theMessage Encoderis to map
each message into a codeword. To simplify the decoding
operation, the length of every codeword is set to⌈log2n⌉. The
output messages of theSource Parserand their corresponding
codewords produced by theMessage Encoderin the MZRL
coding are presented in TableII .
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Fig. 1. The bit sifting schematic diagram with the precedingand following steps.

TABLE II
MZRL CODES.

Source Message Codeword
s0 = ”1” c0 = 00 · · · 0
s1 = ”01” c1 = 00 · · · 1

...
...

sn−2 = ”00 · · · 0
︸ ︷︷ ︸

n−2 0′s

1” cn−2

sn−1 = ”00 · · · 00
︸ ︷︷ ︸

n−1 0′s

” cn−1

As shown in TableII , the definition of messages are the
same as the traditional zero run length coding except thenth
messagesn−1. The firstn − 1 messagessi follow the same
pattern whose length isi + 1 and the last digit is 1. But the
nth messagesn−1 is a sequence of all 0’s of lengthn− 1. It
is obvious thatn must be greater than or equal to 2.

It is clear that the codewordc0 to cn−2 can represent the
run length from 0 ton−2. How to represent a run length that
is greater than or equal ton− 1 is the next problem we need
to solve. Our method is to segment the long binary sequence
into one or moresn−1’s and one messagesi (0 ≤ i ≤ n− 2),
which can be represented bycn−1 and ci (0 ≤ i ≤ n − 2)
respectively. That is to say, for an arbitrary zero run length
RL(0) = m ∗ (n − 1) + i, wherem, i ∈ N and0 ≤ i ≤
n − 2, the codeword sequence iscn−1

0
cn−1

1
· · · cn−1

m−1
ci.

For example, ifn = 4, the MZRL codeword sequence for the
binary string ”0010001100000001” is ”c2c3c0c0c3c3c1”.

According to TableII , both encoding and decoding are quite
simple and efficient. For the encoder, theSource Parserstores
letters from theBinary Sourceuntil it sees that these letters

form a valid message as defined in TableII and theMessage
Encoderoutputs the corresponding codeword. For the decoder,
it decodes the received codewordci to the corresponding
messagesi which is just the final output of the decoder. Since
MZRL is a non-singular fix-length code, it is by nature an
instantaneous code, which means the end of a codeword is
immediately recognizable and a codeword can be decoded
without reference to future codewords. Such property makes
the decoding of MZRL more efficient.

The simple encoding and decoding principles of MZRL
guarantee that the algorithm can be implemented very fast.
Except the computation complexity, what we care about
most in the scenario of QKD is the compression efficiency
of the source coding algorithm. Since the shorter expected
codelength indicates the better compression efficiency fora
given information source, we explore the optimal expected
codelength of MZRL algorithm in the following sections.

C. expected codelength of MZRL codes

Suppose that the count rate of a QKD system isq, which
means the probability of ”1” and ”0” areq and 1 − q for
the binary sourceX in Fig.2. It is easy to deduct that the
probability of the zero run lengthl is

P (l) = (1− q)
l
q. (1)

For any given i ∈ {0, 1, · · · , n− 2}, the message
si only appears once when the zero run lengthsl ∈



5

{l|l = m(n− 1) + i,m ∈ N}. ThereforeP (si) is given by

P (si) =
+∞
∑

m=0

P (m(n− 1) + i)

=
(1− q)

i+1
q

1− (1− q)
n
− q

, ∀i ∈ {0, 1, ..., n− 2} . (2)

While the messagesn−1 would appears⌊ l
n−1⌋ times when the

zero run lengthsl ∈ {l |l ≥ n− 1 ∩ l ∈ N}. SoP (sn−1) is
given by

P (sn−1) =

+∞
∑

l=n−1

⌊

l

n− 1

⌋

P (l). (3)

SinceP (l) ≥ 0 and

P (sn−1) =

+∞
∑

l=n−1

⌊

l

n− 1

⌋

P (l)

≤

+∞
∑

l=0

lP (l)

=
1

q
− 1, (4)

the seriesP (sn−1) in the Eq.(3) converges absolutely ac-
cording to the Theorem1. According to the Theorem2,
any rearranged series of the seriesP (sn−1) also converges
absolutely to the same sum. In order to compute the sum of
P (sn−1), it is rearranged as follows,

P (sn−1) =

+∞
∑

m=1

m

n−2
∑

k=0

P (m (n− 1) + k)

=
(1− q)

n

1− (1 − q)
n
− q

. (5)

Since the codelength of the codewordci corresponding to
the messagesi is a constant⌈log2n⌉, and the probability mass
function P (si) is given by Eq.(2) and Eq.(5), the expected
codelength of MZRL codeC for the n-ary source, i.e. the
random variableS, is given by

LC =

n−1
∑

i=0

P (si) ⌈log2n⌉

=
⌈log2n⌉

1− (1− q)n−1 (6)

according to the Definition5. To obtain the expected code-
length for the binary source, i.e. the random variableX , we
also need to compute the average length of the source message
of S by Eq.(7)

LS =

n−2
∑

i=0

P (si) (i+ 1) + P (sn−1) (n− 1)

=
1

q
. (7)

Hence the expected codelength for the binary sourceX is

L (n) =
LC

LS

=
q ⌈log2n⌉

1− (1− q)
n−1 . (8)

According to the Eq.(8), the expected codelength is an
expression ofn, which is the size of code alphabet of MZRL,
and the count rateq. For a QKD system,n is a parameter that
should be adjusted carefully depending upon the requirements
and available resources, while the count rateq is almost con-
stant. To analyze the optimization of the expected codelength,
we need to confine the possible range of count rate. In general,
the count rateq is determined by the mean photon numberµ,
the fibre loss coefficientα, the distanced between two parties,
the inner lossγBob of the optical devices of Bob, the detection
efficiency ηD of Bob’s detector, and the dark count ratePd.
The relationship is given by

q = 1− e−µ·10−(α·d+γBob)/10·ηD + Pd. (9)

TableIII illustrates the typical value of these parameters above
[20]. To the best of our knowledge, the current maximal
communication distance is about 250km [21], [22], in which
case the count rateq is about10−6. Besides, the count rates
of most practical QKD systems are always less than 0.1
[23]. So it is reasonable to set the range of count rateq

as
[

10−15, 10−1
]

, which covers all possible values of current
QKD systems.

TABLE III
THE TYPICAL PARAMETERS RELATED TO THE COUNT RATE OFQKD.

µ α(dB/km) d(km) γBob(dB) ηD(%) Pd

0.5 0.2 0-250 4 10 10−5

Since the smallerL indicates the higher compression ef-
ficiency, our goal is to minimize the value ofL under the
constraintq ∈

[

10−15, 10−1
]

. The optimization problem is
hereby formalized in the Eq.(10)



















min
n

L (n) =
q⌈log2n⌉

1−(1−q)n−1

s.t. n ∈ N

n ≥ 2
q ∈

[

10−15, 0.1
]

(10)

D. optimization of the expected codelength

For simplicity of expression,g (n) is used to denote1 −
(1− q)n−1, thenL (n) can be rewritten as

L (n) =
q ⌈log2n⌉

g (n)
.

It is easy to conclude thatg (n) is monotonic increasing
function with respect to the variablen for any given0 < q <

1, so

g (n) ≤ g
(

2k
)

, ∀n ∈
(

2k−1, 2k
]

∩ N
+, k ∈ N

+.

Besides, the value of the following expression

q ⌈log2n⌉

is invariant in the rangen ∈
(

2k−1, 2k
]

∩N
+. So

L (n) ≥ L
(

2k
)

, ∀n ∈
(

2k−1, 2k
]

∩ N
+. (11)
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Therefore we only need to consider the function values at2k

and the optimization problem Eq.(10) is equivalent to










min
k

L (k) = qk

1−(1−q)2
k
−1

s.t. k ∈ N
+

q ∈
[

10−15, 0.1
]

(12)

To explore the properties of the functionL (k) with respect
to the variablek, the domain ofk is extended fromN+ to real
numbers no less than 1. That is

L(z) =
qz

1− (1− q)
2z−1 , z ∈ [1,+∞) . (13)

Theorem 4 For any givenq ∈ (0, 0.1], there exists a constant
z0 ∈ (−log2 (− ln (1− q)) ,+∞) satisfying that the function
L (z) monotonically decreases in the domainz ∈ [1, z0),
monotonically increases in the domainz ∈ (z0,+∞), and
reaches the global minimum at the pointz = z0. In other
words,















∂L
∂z

< 0, when z ∈ [1, z0)

∂L
∂z

= 0, when z = z0
∂L
∂z

> 0, when z ∈ (z0,+∞)

. (14)

Proof: Please refer to AppendixA.
An example curve ofL (z) demonstrating the Theorem4 is

shown as Fig.3, whereq = 0.05.

Fig. 3. The illustration of Theorem4 in which caseq = 0.05.

Lemma 1 The optimal solution of Eq.(12) is reached atz =
⌊z0⌋ or z = ⌈z0⌉.

Sincek ∈ N
+, the Lemma1 is a straightforward derivation

of the Theorem4.
So far, the existence of the optimal solution of Eq.(12)

has been proved, and the optimal parameterkopt has been
determined as⌊z0⌋ or ⌈z0⌉. So the next task is to solve the
key valuez0.

Theorem 5 For any givenq ∈
[

10−15, 0.1
]

, the point z0
which leads to the global minimum of functionL (z) is
bounded by

−log2 (− ln (1− q)) < z0 < −log2 (− ln (1− q)) + 3.

Proof: According to the Theorem4, we have

z0 > −log2 (− ln (1− q)) , ∀q ∈
[

10−15, 0.1
]

. (15)

At the same time, the value of the partial deviation∂L
∂z

at
z = −log2 (− ln (1− q)) + 3 is given by

∂L

∂z
|z=−log2(− ln(1−q))+3 =

e8(1 − q)q

(1− e8 (1− q))
2A (q) , (16)

where

A (q) = −1− 24 ln 2 + e8(1− q) + 8 ln (− ln (1− q)) .

Since

e8(1− q)q

(1− e8 (1− q))
2 > 0, ∀q ∈

[

10−15, 0.1
]

(17)

the sign of Eq.(16) is same as the sign ofA (q). The partial
derivative ofA (q) can be evaluated as

∂A

∂q
= −e8 −

8

(1− q) ln (1− q)
,

which is a monotonic decreasing function with respect to the
variableq and

{

∂A
∂q

> 7.20× 1015, when q = 10−15

∂A
∂q

< −2.80× 103, when q = 0.1

So the functionA (q) is firstly monotonic increasing and
then monotonic decreasing in the rangeq ∈

[

10−15, 0.1
]

.
The minimum must occur at the pointq = 10−15

(A
(

10−15
)

≈ 2687.85) or q = 0.1 (A (0.1) ≈ 2647.22), so

A (q) > 0, ∀q ∈
[

10−15, 0.1
]

. (18)

Hence, combining the Eq.(16), Eq.(17) and Eq.(18),

∂L

∂z
|z=−log2(− ln(1−q))+3 > 0, ∀q ∈

[

10−15, 0.1
]

. (19)

Making use of Eq.(19) and the Theorem4, it can be concluded
that

z0 < −log2 (− ln (1− q)) + 3, ∀q ∈
[

10−15, 0.1
]

. (20)

Combining the Eq.(15) and Eq.(20), the theorem is proved.
According to the Lemma1 and the Theorem5, the opti-

mal parameterkopt is one of the following five values, i.e.
⌊y⌋ , ⌊y⌋ + 1, ⌊y⌋ + 2, ⌊y⌋ + 3, ⌈y⌉ + 3, wherey is the brief
denotation of−log2 (− ln (1− q)). Subsequently, an efficient
iterative solution of Eq.(12) is presented, which is called
Algorithm 1.

Algorithm 1 The solution of optimization problem
Eq.(12).

Input: Count rateq.
Output: The optimal solutionLopt, and the optimal
parameterkopt.

1 k = ⌊−log2 (− ln (1− q))⌋.
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2 L1 = L (k).
3 while (1) do
4 k = k + 1.
5 L2 = L (k).
6 if

(

L1 ≤ L2

)

then
7 break.
8 else
9 L1 = L2.

10 end if
11 end while
12 Lopt = L1.
13 kopt = k − 1.

For convenience, the steps3 - 11 of Algorithm 1 are called
one iteration. It is obvious that the algorithm converges within
five iterations for any givenq ∈

[

10−15, 0.1
]

. Some count
ratesq between10−6 and 10−1 are chosen as the input of
Algorithm 1, and the corresponding numbers of iterations are
demonstrated in Fig.4. The experimental results show that the
largest number of iterations is 4 and the average number of
iterations is 3.28.

Fig. 4. The number of iterations of Algorithm1 as a function of the count
rate q.

To sum up, the optimal solution of Eq.(10) stated in the
previous section is solved when the size of codeword alphabet
n = 2kopt .

E. theoretical performance analysis

1) compression efficiency:To compute the compression
efficiency f = L

H(X) , first of all we need to calculate the

expected codelengthL. One hundred different count rates
are selected in the range

[

10−6, 10−1
]

on the logarithmic
scale. The optimal codelength of n-ary sourceS, i.e. kopt,
is computed via Algorithm1 for each count rate and the
corresponding optimal size of codeword alphabetnopt is
2kopt . The expected codelengthL(n) can be hereby computed
according to Eq.(8). The entropy of binary source can be
obtained by straightforward application of Definition3, i.e.

H (X) = −qlog2q − (1− q) log2 (1− q), denoted ash (q).
So far, the compression efficiencyf = L

h(q) can be obtained.

The theoretical results ofkopt, L andf are shown as Fig5 -
7 respectively.

Fig. 5. The optimal codelength ofS kopt (q).

Fig. 6. The expected codelengthL (q).

The compression efficiencyf is less than 1.10 during the
whole domain of count rate. So it is demonstrated that the
compression performance of our MZRL source coding is very
close to the Shannon’s limit.

2) time complexity:In this section, we will analyse the time
complexity of proposed bit sifting scheme in Fig.1.

Bit sifting at Bob side consists of theUndetected Bit
Removaland theSource Encoder. For eachoriginal keyB,
the Undetected Bit Removaldetermines whether it is a valid
detection or not, and outputs the detected validity to the
Source Encoder. The Source Parseof the Source Encoderin
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Fig. 7. The compression efficiencyf (q).

Fig.2 determines whether a valid messagesi is formed, i.e.
the current input detected validity is ”1” or the current zero
counteri is equal ton− 1. If not, i = i + 1. Otherwise, the
messagesi is output to theMessage Encoderwhich outputs
the corresponding codewordci, and the zero counteri is reset
to 0. Since the time complexity of both theUndetected Bit
Removaland theSource Encoderare constant, the time com-
plexity of bit sifting for eachoriginal keyB is also constant.
Hence, whenm original keyB are input, the time complexity
of bit sifting at Bob side isO (m).

Once receiving a codewordci, theSource Decoderat Alice
side in Fig.1, whose time complexity is constant, decodes it
to the corresponding messagesi, and outputs thesi to the
Undetected Bit Removal. If i is equal ton−1, theUndetected
Bit Removaldiscardsn − 1 consecutiveoriginal keyA from
theBuffer. Otherwise theUndetected Bit Removaldiscards the
formeri original keyA and reserve thei+1th as araw keyA.
Therefore the time complexity of bit sifting for the input
codewordci is O (i). Assuming that the receivedw codewords
areci0 , ci1 , · · · , ciw−1

, the time complexity of bit sifting is

O





w−1
∑

j=0

ij



 .

In fact,
w−1
∑

j=0

ij is the number of processedoriginal keyA so

the time complexity of bit sifting at Alice side is alsoO (m).
In summary, the time complexity of the bit sifting at both

Alice and Bob sides are linearly dependent on the number of
original keysm.

3) space complexity:In this section, we will analyse the
space complexity of proposed bit sifting scheme in Fig.1. Here,
we assume that Bob does not cache more than one codeword
but send a codeword to Alice as soon as it is formed. In
this case, the bit sifting at Bob side only need to store two
temporary variables, i.e. one zero counter and one codeword.
Both of them are represented by⌈log2n⌉ bits, so the space

complexity of bit sifting at Bob side isO (log2n).
Since Alice has to store theoriginal keyA in the Buffer

till she receives a codeword carrying the detected validityof
the original keyA from Bob, the required storage consists
of some temporary variables and theBuffer used to store
original keyA. The temporary variables are the received code-
word ci and the messagesi which are both represented by
⌈log2n⌉ bits. While the size of theBufferdepends on the time
differencetdiff between the time when anoriginal keyA is
stored in theBufferand the time it is removed from theBuffer
by the Undetected Bit Removal. According to the MZRL
codes, Alice has to send Bob at mostn− 1 qubits to form a
codeword. So the maximum time difference is

tdiff = (n− 2) trf + t2 + t3 + t4 + t5. (21)

(n− 2) trf means the time that Alice preparesn − 1 qubits,
wheretrf is the reciprocal of the repetition frequency of QKD.
t2 is the time that then− 1th qubit is transmitted from Alice
to Bob over quantum channel, which depends on the distance
d between Alice and Bob.
t3 is the time that the bit sifting at Bob side processes the
n− 1th original keyB, which is a constant according to the
analysis in sectionIII-E2. By then, the codewordcn−2 or cn−1

is formed.
t4 is the time that the codeword is transmitted from Bob to
Alice over authenticated classical channel, which also depends
on the distanced.
t5 is the time that theSource Decoderat Alice side decodes
the codeword to the corresponding message, which is also a
constant according to the analysis in sectionIII-E2. So far,
the Undetected Bit Removalcan begin to discard thesen− 1
original keyA from theBuffer.
Hence the number of the cachedoriginal keyA in the Buffer
is

tdiff

trf
+ 1 = (n− 1) +

t2 + t3 + t4 + t5

trf
,

which isO (n). Therefore, the space complexity of bit sifting
at Alice side isO (n).

Since the size of code alphabetn exponentially dependents
on the optimal parameterkopt, the required storage at Alice
side may be very large. For instance, letq = 10−6, then the
optimal parameterkopt is 22 according to Algorithm1, and
the required storage at Alice side is about multiple times 4Mb.
The times depend on the protocol of the QKD systems. In
fact, memory resource sometimes may be very expensive, such
as FPGA based QKD system [17], [21], [24]. Although the
storage of FPGA can be extended by attaching several SRAMs
or DDRs, the performance of SRAM or DDR is not as good
as the inner storage of FPGA. In the case of limited storage
resource, the optimization problem Eq.(10) can be rewritten
as



















min
n

L (n) =
q⌈log2n⌉

1−(1−q)n−1

s.t. n ∈ N

nmax ≥ n ≥ 2

q ∈
[

10−15, 0.1
]

(22)



9

, where nmax is the possible maximal code alphabet size,
which can be evaluated according to the available storage size.
The optimal solution of Eq.(22) is stated in the Theorem6.

Theorem 6 For any givenq ∈
[

10−15, 0.1
]

and nmax, if
nmax ≥ 2kopt then the optimal solution of Eq.(22) is reached
at n = 2kopt . Otherwise it is reached atn = 2⌊log2nmax⌋ or
n = nmax.

Proof: For brevity, let{a...b}
∆
= [a, b] ∩ N.

(a) Whennmax ≥ 2kopt , the optimal code alphabet size

nopt = 2kopt ≤ nmax,

which is reachable in the domain{2...nmax}. So the optimal
solution of Eq.(22) is reached atn = 2kopt in this case.

(b) Whennmax < 2kopt , the optimal code alphabet size

nopt = 2kopt > nmax,

which cannot be reachable in the domain{2...nmax}. In the
case, the domain{2...nmax} is divided into

{

2...2kmax

}

and
{

2kmax + 1...nmax

}

, wherekmax = ⌊log2nmax⌋.

(b.1) Since

{

2...2kmax
}

=

kmax
⋃

k=1

{

2k−1 + 1...2k
}

and the minimum ofL (n) in the range
{

2k−1 + 1...2k
}

occurs at the point2k according to Eq.(11), 1 ≤ k ≤ kmax,
we just need to consider the minimum ofL (k) in the range
{1...kmax}. According to Lemma1, it can be inferred that
kopt ≤ ⌈z0⌉ and

kmax = ⌊log2nmax⌋ ≤ kopt − 1 ≤ ⌈z0⌉ − 1 < z0.

So according to Theorem4, L (k) is monotonic decreasing
in the range{1...kmax} and reaches the minimum at the
point k = kmax. Therefore, the minimum ofL (n) in the
range

{

2...2kmax

}

occurs at the pointn = 2kmax , i.e. n =
2⌊log2nmax⌋.

(b.2) Since the functionL (n) is monotonic decreasing in
the range

{

2kmax + 1...nmax

}

, the minimum ofL (n) in the
range occurs at the pointn = nmax.

Combining(b.1) and (b.2), it can be seen that the optimal
solution of Eq.(22) is reached atn = 2⌊log2nmax⌋ or n = nmax

whennmax < 2kopt .
Combining the case(a) and the case(b), the theorem is

proved.
Figure8 shows an example curve ofL (n) with three preset

nmax, which demonstrates the different aspects of Theorem6.
Here the count rateq = 0.05, kopt is 6 according to Algorithm
1, and the optimal solution is reached at

n =







2kopt = 64, when nmax = nmax0
= 80

nmax = 30, when nmax = nmax1
= 30

2⌊log2nmax⌋ = 16, when nmax = nmax2
= 18

According to the Theorem6, Algorithm 2 is presented to
obtain the optimal solution of Eq.(22). Its convergence can be
deduced directly from the convergence of Algorithm1.

Fig. 8. The illustration of the Theorem6 whereq = 0.05.

Algorithm 2 The solution of optimization problem
Eq.(22).

Input: Count rateq, and possible maximal code alphabet
sizenmax.

Output: The optimal solutionLopt, and the optimal
parameternopt.

1 kmax = ⌊log2nmax⌋.
2 Let q be the input of Algorithm1, thenLopt andkopt

can be obtained.
3 if

(

nmax ≥ 2kopt
)

then
4 nopt = 2kopt .
5 else ifL

(

2kmax
)

> L (nmax)
6 nopt = nmax.
7 Lopt = L (nmax).
8 else
9 nopt = 2kmax .

10 Lopt = L
(

2kmax
)

.
11 end if

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. compression efficiency

In the experiment, one hundred different count rates are
selected in the range

[

10−6, 10−1
]

on the logarithmic scale
and the simulation results are obtained by processing1010

original keys for each count rate.
Figure9 demonstrates the compression efficiencyf of the

proposed bit sifting scheme and the bit sifting scheme of [17].
The performance of the scheme of [17] is near the Shannon
limit for q ∈

[

10−4, 10−1
]

, while falls sharply as the count
rate is outside of the range. It is clear that the compression
efficiency of our scheme is always near the Shannon limit and
superior to the scheme of [17] in the whole range of the count
rate.

B. secure key consumption

In [17], Walenta etc. use a combination [25] of ε-almost
strongly universal hash functions and a family of strongly
universal hash functions named polynomial hashing [26], [27]
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to achieve information theoretically secure authentication. The
authentication algorithm produces a 127-bit authentication tag
for every220 bits of classical communication, and consumes
383 secure keys to select a hash function for every tag.
According to the result of [28], the same hash function can be
reused for multiple authentication rounds if the tags attached to
the messages are one-time pad encrypted, so only 127 secure
keys are consumed for the classical communication of every
220 bits and the key consumption can be reduced to one third.
Although the authentication scheme is very efficient, the key
consumptions are still 2.7% and 5% of the generated secure
key of the QKD system when the fibre length is 1km and
25km respectively.

Let M be the amount of classical communication, then the
key consumption is

K = 127 ·

⌈

M

220

⌉

.

Especially, the key consumption for the bit sifting is

Kbs = 127 ·

⌈

m · h (q) · f

220

⌉

,

wherem is the number of original keys to be processed,q is
the count rate, andf is the compression efficiency. Since

m · h (q)

220
f ≤

⌈

m · h (q) · f

220

⌉

<
m · h (q)

220
f + 1

and m·h(q)
220 f is usually very large becausef ≥ 1 and QKD

is a continuous high speed system which leads to the large
m·h(q)
220 , we have

⌈

m · h (q) · f

220

⌉

≈
m · h (q)

220
f.

So
Kbs−A

Kbs−B

≈
fA

fB
, (23)

Fig. 9. The comparison of compression efficiencyf between the proposed
scheme and Walenta’s scheme [17].

where subscriptA and B indicate two different bit sifting
schemes. The Eq.(23) demonstrates that the key consumption
depends linearly on the compression efficiency. Since the
compression efficiency of proposed scheme is always superior
to that of the scheme of [17], the key consumption of proposed
scheme is always less.

More experiment results of the proposed scheme and the
Walenta’s scheme are listed in TableIV, including com-
pression efficiency and the ratio of the two compression
efficiencies. It needs to explain that the count rate is not
given explicit in [17], while it can be inferred according to
the sifted key rate and the repetition frequency of the QKD
system. It can be seen that if the QKD system in [17] employs
our proposed scheme for bit sifting, 29%, 19% and 17%
of the secure key consumption for bit sifting can be saved
when the fibre length is 1km, 12.5km and 25km respectively.
Besides, more than 88% of the key consumption of the post-
processing comes from the bit sifting step, which is evaluated
according to the sifting scheme and the communication rate
among the procedures of post-processing presented in [17]. So
our scheme can greatly save the secure key consumption of
the whole QKD post-processing system.

TABLE IV
THE COMPARISON BETWEEN THE PERFORMANCES OF PROPOSED SCHEME

AND WALENTA’ S SCHEME[17] FOR THEQKD SYSTEM IN [17]. THE

SUBSCRIPTw INDICATES WALENTA’ S SCHEME, WHILE THE SUBSCRIPTp
INDICATES THE PROPOSED SCHEME.

Fibre Length Count Rate fw fp fp/fw
1 km 2.76 ∗ 10−3 1.51 1.07 0.71

12.5 km 1.18 ∗ 10−3 1.34 1.08 0.81
25 km 7.87 ∗ 10−4 1.27 1.06 0.83

C. some suggestions for some representative QKD systems

Many QKD systems have been developed since the first
QKD system was developed in 1984. Most of them failed to
take into account the authentication of the classical channel, so
they didn’t pay much attention to the communication traffic.
The parameters of four representative QKD systems are given
in Table V, which are used to compute the corresponding
count rate of these systems by Eq.(9). Upon the calculated
count rates, the optimal code alphabet sizes are suggested for
them in TableVI according to their available storages. The
theoreticaln is calculated byn = 2k without considering the
constraint of storage, wherek is obtained by Algorithm1, and
the corresponding compression efficiency is named theoretical
f . While the recommendedn is calculated after taking into
account the storage constraint, and the corresponding compres-
sion efficiency is named as actualf . The systems of [2], [24],
[29] have sufficient storage, and all of their actual compression
efficiencies are near 1. However, the system of [21] just has
32Kb storage for sifting which is not enough for the theoretical
optimal n = 222. The protocol adopted by [21] is coherent
one-way (COW) [30], which needs two bits to describe each
original keyA. One bit indicates whether it is a decoy or a
signal, and the other determines its value when it is a signal.
Hence Alice should store two bits for each originalkeyA.
If the memory is extended to 8Mb, then the compression



11

TABLE V
THE PARAMETERS OF FOURQKD SYSTEMS.

QKD System Dark Count RatePd Mean Photon Numberµ Distanced(km) Loss(dB)a Detection EfficiencyηD
Dixon etc. [29] 1.36 ∗ 10−5 0.55 20 8.01 10.00%
Stucki etc. [21] 1.60 ∗ 10−8 0.50 250 42.60 2.65%
Zhang etc. [24] 1.00 ∗ 10−5 0.60 20 7.20 12.00%
Tanaka etc. [2] 2.00 ∗ 10−5 0.40 50 14.00 10.00%
a The parameter includes both the loss of transmission and theinner lossγBob of Bob’s optical devices.

TABLE VI
THE RECOMMENDATIONS FOR FOUR REPRESENTATIVEQKD SYSTEMS.

QKD System Count Rateq Theoreticaln Theoreticalf Available Storage Recommendedn Actual f
Dixon etc. [29] 8.68 ∗ 10−3 28 1.08 ≥ 2GBa 28 1.08
Stucki etc. [21] 7.44 ∗ 10−7 222 1.06 32Kbb 12 ∗ 210 70.57c

Zhang etc. [24] 1.36 ∗ 10−2 28 1.08 32Mbd 28 1.08
Tanaka etc. [2] 1.42 ∗ 10−3 211 1.07 833MBe 211 1.07
a The system is implemented in PC and the available storage is estimated to be larger than 2GB.
b The system is implemented in Virtex II Pro FPGA, and 32Kb memory for sifting.
c If the storage for sifting is extended to 8Mb, the actual compression efficiency would be 1.06.
d The system is implemented in two Cyclone III series FPGAs (EP3C120), and 32Mb memory for sifting.
e The system is implemented in Several FPGAs, and average 833MB memory is used for each FPGA.

efficiency of the system would be 1.06. Otherwise, if 8Kb
is allocated to basis sifting step, then the rest 24Kb is for bit
sifting. Therefore the possible maximum code alphabet size
nmax is set as12∗210, i.e. 12K. According to Algorithm2, the
optimal code alphabet sizen and optimal solution is12 ∗ 210

and 70.57, respectively. It can be seen that the performance
falls sharply due to the lack of the storage resource.

V. CONCLUSION

In this paper, an efficient bit sifting scheme for QKD is
proposed, whose core is a modified zero run length source
coding algorithm with performance near Shannon’s limit. The
existence of optimal codelength of the source coding algorithm
is proved, and a fast iteration algorithm is presented to solve
the optimal parameter. Both the theoretical analysis and the
experimental results demonstrate that our scheme can reduce
the classical communication traffic greatly and hereby save
the secure key consumption for authentication evidently. As
a fast bit sifting scheme, the storage pressure of Alice can
be relieved greatly by sifting out the undetected original keys
in time. The impact of storage resource of a QKD system
on the application of our scheme is also discussed. Some
recommendations on how to apply our scheme into four
representative QKD systems are given.

APPENDIX

PROOF OFTHEOREM 4

Proof: For convenience, we denotep = 1 − q, thenp ∈
[0.9, 1) andq = 1− p. TheL (z) in Eq.(13) can be rewritten
as

L (z) =
(1− p) z

1− p2
z−1

,

and the partial derivative of the expected codelengthL with
respect to the variablez is given by

∂L

∂z
=

(1− p)p

(p− p2
z)

2

(

p− p2
z

+ z2zp2
z

ln 2 ln p
)

. (24)

Due top ∈ [0.9, 1),

(1− p)p

(p− p2
z)

2 > 0.

we only need to focus on the sign of

r (z) = p− p2
z

+ z2zp2
z

ln 2 ln p. (25)

The partial derivative ofr (z) with respect to the variablez
can be evaluated as

∂r

∂z
= z2zp2

z

ln22 ln p (1 + 2z ln p) . (26)

Due to z2zp2
z

ln22 ln p < 0, the sign of∂r
∂z

is determined by
the sign of the expression1+2z ln p. Let 1+2z ln p > 0, then

z < −log2 (− ln p)
∆
= zm.

So










∂r
∂z

< 0, when 1 ≤ z < zm
∂r
∂z

= 0, when z = zm
∂r
∂z

> 0, when z > zm

. (27)

Therefore functionr (z) is monotonic decreasing in the do-
main z ∈ [1, zm) and monotonic increasing in domain
(zm,+∞), and reaches the global minimum value at the point
z = zm, which is

r (zm) =
−1 + ep+ ln (− ln p)

e
. (28)

Since

∂r (zm)

∂p
= 1 +

1

ep ln p
< −2.87, ∀p ∈ [0.9, 1),

function r (zm) is monotonic decreasing with respect to the
variablep and comes to the maximum value atp = 0.9, which
is about−0.30. So

r (zm) < 0, ∀p ∈ [0.9, 1). (29)
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In addition, asz approaches+∞, the limit of r (z) is

lim
z→+∞

r (z) = p, ∀p ∈ [0.9, 1). (30)

Upon Eq.(29), Eq.(30) and the continuity ofr (z) in the
domainz ∈ [zm,+∞), it can be inferred that there exists at
least onez0 ∈ (zm,+∞) satisfying thatr (z0) = 0 according
to the intermediate value theorem [18]. Besides, sincer (z)
is monotonic increasing function in the rangez ∈ [zm,+∞),
the root ofr(z) = 0 is unique, and







r (z) < 0, when z ∈ [zm, z0)
r (z) = 0, when z = z0
r (z) > 0, when z ∈ (z0,+∞)

(31)

Since
zm ≥ −log2 (− ln p)|p=0.9 > 3.24,

we have to discuss the sign ofr (z) in the domainz ∈ [1, zm).
Now our concern is the sign of

r (1) = p− p2 + 2p2 ln 2 ln p. (32)

Th partial derivative ofr (1) with respect to the variablep is
given by

∂r (1)

∂p
= 1− 2p+ 2p ln 2 + 4p ln 2 ln p, (33)

and the 2nd partial derivative ofr (1) with respect to the
variablep is given by

∂2r (1)

∂p2
= −2 + 6 ln 2 + 4 ln 2 ln p. (34)

Obviously in the domainp ∈ [0.9, 1), the function ∂2r(1)
∂p2

is monotonic increasing with respect to the variablep, and
reaches the minimum value atp = 0.9, which is about 1.87.
Thus the function∂r(1)

∂p
with respect to the variablep is also

monotonic increasing and also reaches the minimum value at
p = 0.9, which is about 0.18. Thereforer (1) is a monotonic
increasing function with respect to the variablep and reaches
the supremum 0 atp = 1, so

r (1) < 0, ∀p ∈ [0.9, 1). (35)

Since r (z) is a monotonic decreasing function in the range
z ∈ [1, zm), we have

r (z) ≤ r (1) < 0, ∀z ∈ [1, zm) . (36)

Combining Eq.(31) and Eq.(36), we have






r (z) < 0, when z ∈ [1, z0)
r (z) = 0, when z = z0
r (z) > 0, when z ∈ (z0,+∞)

. (37)

Since the sign of∂L
∂z

is the same as the sign ofr (z),














∂L
∂z

< 0, when z ∈ [1, z0)

∂L
∂z

= 0, when z = z0
∂L
∂z

> 0, when z ∈ (z0,+∞)

wherez0 ∈ (zm,+∞), i.e.

z0 ∈ (−log2 (− ln (1− q)) ,+∞) .
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