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Abstract

The properties of the coinless quantum walk model have not been
as thoroughly analyzed as those of the coined model. Both evolve in
discrete time steps but the former uses a smaller Hilbert space, which
is spanned merely by the site basis. Besides, the evolution operator
can be obtained using a process of lattice tessellation, which is very
appealing. The moments of the probability distribution play an im-
portant role in the context of quantum walks. The ballistic behavior
of the mean square displacement indicates that quantum-walk-based
algorithms are faster than random-walk-based ones. In this paper, we
obtain analytical expressions for the moments of the coinless model
on d-dimensional lattices. The mean square displacement for large
times is explicitly calculated for the one- and two-dimensional lattices
and, using optimization methods, the parameter values that give the
largest spread are calculated and compared with the equivalent ones of
the coined model. Although we have employed asymptotic methods,
our approximations are accurate even for small numbers of time steps.

1 Introduction

Quantum walks are the quantum versions of random walks. Their interesting
non-classical behavior has allowed the development of faster quantum search
algorithms [1]. Discrete-time quantum walks, introduced by Aharonov et
al. [2], use an additional space which represents the coin, whereas coin-
less quantum walks, introduced by Patel et al. [3], have a Hilbert space
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which is spanned only by the site basis. The coined model has been widely
studied during the last decade. For example, Ambainis et al. [4] analyzed
the dynamics of one-dimensional coined walks and showed that they spread
quadratically faster compared to the classical random walks. Moments and
the mean square displacement (or variance) of the coined quantum walk
on one-dimensional lattices were analyzed in Refs. [5, 6, 7, 8] and on two-
dimensional lattices in Refs. [9, 10, 11].

The coinless or staggered quantum walk model is defined by an evolution
operator that is the product of two reflections, U0 and U1, acting on the
site basis. These reflections can be obtained through a process of lattice
tessellation as described by Falk [12]. Examples of tessellations for one-
and two-dimensional lattices are depicted in Fig. 1. Different tessellations
can be used to the generic d-dimensional lattice but some of them generate
operators which describe trivial walks. Quantum search algorithms on two-
dimensional lattices using the coinless model were analyzed numerically in
Refs. [3, 13, 12]. The numerical results suggested that this model is as
efficient as the coined model with the advantage of using a smaller Hilbert
space. Ambainis et. al [14] proved analytically that the coinless model finds
a marked site in time O(

√
N logN) for a two-dimensional lattice with N

vertices using Falk’s model, confirming the numerical results just mentioned.
Portugal et al. [15] analyzed the dynamics of one-dimensional coinless walks
and its relation with the coined model.

−1 0 1 2

(a) One-dimentional lattice

00 10 20 30

01 11 21 31

02 12 22 32

03 13 23 33

(b) Two-dimentional lattice

Figure 1: Example of tessellations for the one- and two-dimensional lattices.
U0 is associated to the blue tessellation (solid line) and U1 is associated to
the red tessellation (dashed line).

The coinless model has not been so extensively analyzed as the coined
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model. Specially important in this context are the moments of the prob-
ability distribution. The mean square displacement, for example, gives us
information about how far from the initial position a walker can be found.
If quantum walks spread faster than random walks, there is hope for im-
proving random-walk-based algorithms by using quantum walks. In this
paper, we analyze the moments of the coinless model on lattices. Due to
the translational invariance, it is possible to find a Fourier transform that
generates a 2d× 2d reduced evolution operator, which contains all informa-
tion about the dynamics. After calculating the eigenvalues of this reduced
operator, we obtain an analytical expression of the nth moment in terms
of the nth derivative of the eigenvalues and give explicit solutions for the
one- and two-dimensional lattices. For the one-dimensional lattice we use
the most generic coinless quantum walk with a 2-site tessellation, see Fig. 1,
taking a localized initial condition. For the two-dimensional lattice we use a
4-site tessellation taking the simplest basis vectors with non-localized initial
conditions. For both cases, we analyze the mean square displacement and
obtain what are the best choice for the largest spread and compare with the
results of the coined model.

This paper is organized as follows. In Sec. 2 we describe the coinless
model on lattices. In Sec. 3, we obtain an analytical expression for the mo-
ments of the coinless model using the moment generating function. The mo-
ments and the mean square displacement are calculated for the one- and two-
dimensional lattices in Sec. 4 and Sec. 5, respectively. In the Appendix, the
first and second moments of the coined model on one- and two-dimensional
lattices are given for comparison.

2 Coinless quantum walks on lattices

The equation that describes the evolution of the quantum walk is∣∣ψ(t)
〉

= U t
∣∣ψ(0)

〉
, (1)

where U = U1U0 is the propagator. The reflections U0 and U1 are defined
as

U0,1 = 2
∑
~x

∣∣u0,1~x 〉〈u0,1~x ∣∣− I, (2)

where the sum runs over all patches of the associated tessellation. As shown
by Fig. 1, we have two different tessellations which generate reflections U0

and U1. Vectors
∣∣u0,1~x 〉 are superpositions of 2d vertices associated with one

patch of the tessellation, and can be written as∣∣u0~x〉 =
∑

~β∈{0,1}d
u0~β

∣∣2~x+ ~β
〉
, (3)

∣∣u1~x〉 =
∑

~β∈{0,1}d
u1~β

∣∣2~x+ ~β + 1
〉
, (4)
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with
∑

~β∈{0,1}d

∣∣∣u0,1~β ∣∣∣2 = 1.

The eigenspectrum of U is obtained using a staggered Fourier transform,
which is defined by ∣∣ψ~β~k 〉 =

∑
~m even

e−i(~m+~β)·~k∣∣~m+ ~β
〉
, (5)

where ~β ∈ {0, 1}d and ~m runs over sites with even labels. The staggered
Fourier basis spans a hyperplane, which is invariant under the action of U .
A vector in this hyperplane can be represented by a reduced vector with 2d
entries. The action of U on the reduced vector can be described by a reduced

operator U~k, which depends on ~k. Let
∣∣v~β~k 〉 and

∣∣w~β~k〉 be the eigenvectors of
U and U~k, respectively. The relation that connects these eigenvectors is∣∣v~β~k 〉 =

∑
~β′∈{0,1}d

〈
~β′
∣∣w~β~k〉∣∣ψ ~β′~k 〉. (6)

The eigenvalues λ
~β
~k

of U and U~k are the same. For ~k = {k1, . . . , kd}, let us
denote ∫ π

−π
· · ·
∫ π

−π
dk1 . . . dkd by

∫ π

−π
d~k.

The connection between U and U~k is

U =

∫ π

−π

d~k

(2π)d

∑
~β, ~β′

〈
~β
∣∣U~k∣∣~β′〉∣∣ψ~β~k 〉〈ψ ~β′~k ∣∣. (7)

The t-th power U t is obtained by substituting U~k for U t~k, which follows from
repeated insertions of the completeness relation in the Fourier basis and〈
ψ
~β′

~k

∣∣ψ~β~k 〉 = δ~β, ~β′δ~k,~k′ .

3 Moments

Let us calculate the moment generating function
〈
eikjxj

〉
t

=
〈
ψ(t)

∣∣eikjxj ∣∣ψ(t)
〉

at time t. Recall that ~k = {k1, . . . , kd} and ~x = {x1, . . . , xd}. Using Eqs. (1)
and (7), we eventually obtain〈

eikjxj
〉
t

=

∫ π

−π

d~k′

(2π)d

∑
~β, ~β′

〈
~β
∣∣(U t~k′)†U t~k′′∣∣~β′〉〈ψ(0)

∣∣ψ~β~k′〉〈ψ~β′~k′′∣∣ψ(0)
〉
, (8)

where ~k′′ = {k′1, . . . , k′j−1, k′j + kj , . . . , k
′
d}. Let us take the initial condition∣∣ψ(0)

〉
=
∣∣~0〉. Then

〈
ψ(0)

∣∣ψ~β~k 〉 = δ~β,~0 for any ~k and〈
eikjxj

〉
t

=

∫ π

−π

d~k′

(2π)d
〈
~0
∣∣(U t~k′)†U t~k′′∣∣~0〉. (9)
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By differentiating the moment generating function n times with respect to
kj and setting kj = 0 we obtain the n-th moment at time t

〈
xnj
〉
t

=

(
−i δ
δkj

)n 〈
eikjxj

〉
t

∣∣∣
kj=0

(10)

=

∫ π

−π

d~k

(2π)d
〈
~0
∣∣(U t~k)†

[(
−i δ
δkj

)n
U t~k

] ∣∣~0〉. (11)

Let
Λ~k =

[∣∣w~β~k〉]~β (12)

be the diagonalizing matrix, whose columns are the eigenvectors of U~k, such

that U~k = Λ~kD
[
λ
~β
~k

]
Λ†~k

, where we define D as the diagonal matrix of the

eigenvalues. Then,

U~k
t = Λ~kD

[(
λ
~β
~k

)t]
Λ†~k
, (13)

after repeated use of Λ†~k
Λ~k = I. The right hand side of Eq. (13) oscillates

with respect to t because the eigenvalues of U~k have modulus 1. The n-
th derivative with respect to kj generates terms proportional to tn. Using
Eq. (13) we obtain to leading order in t:

(
−i δ
δkj

)n
U~k

t = tnΛ~kD

(λ~β~k)t
−iδ lnλ

~β
~k

δkj

nΛ†~k
+O(tn−1),

and after substituting into Eq. (11), we obtain

〈
xnj
〉
t

= tn
∫ π

−π

d~k

(2π)d
〈
~0
∣∣Λ~kD

−iδ lnλ
~β
~k

δkj

nΛ†~k

∣∣~0〉+O(tn−1),(14)

again using Λ†~k
Λ~k = I repeatedly, and realizing that both diagonal matrices

merge into one matrix using that
∣∣∣λ~β~k ∣∣∣2 = 1.

4 One-dimensional lattice

From the tessellation for the one-dimensional lattice depicted in Fig. 1, we
define the vectors∣∣u0x〉 = cos

α

2

∣∣2x〉+ eiφ1 sin
α

2

∣∣2x+ 1
〉
, (15)∣∣u1x〉 = cos

β

2

∣∣2x+ 1
〉

+ eiφ2 sin
β

2

∣∣2x+ 2
〉
, (16)
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with tunable parameters (α, φ1) and (β, φ2), each pair generating a Bloch
sphere. The propagator is U = U1U0, where

U0,1 = 2
∞∑

x=−∞

∣∣u0,1x 〉〈u0,1x ∣∣− I. (17)

Ref. [15] describes the eigenvalues and eigenvectors for the coinless quantum
walk on the one-dimensional lattice. The Fourier basis in this case is given
by

∣∣ψ0
k

〉
=

∞∑
x=−∞

e−2xki
∣∣2x〉, (18)

∣∣ψ1
k

〉
=

∞∑
x=−∞

e−(2x+1)ki
∣∣2x+ 1

〉
. (19)

The reduced matrix in this case is

Uk =

(
A −B∗
B A∗

)
, (20)

where

A = − cosα cosβ + sinα sinβei(2k+φ1+φ2), (21)

B = sinα cosβei(k+φ1) + cosα sinβe−i(k+φ2). (22)

The eigenvalues of Uk are λ = e±iθ, where

cos θ =
A+A∗

2
. (23)

The associated eigenvectors are

1√
C±

(
−B∗

e±iθ −A

)
, (24)

where
C± = sin θ(2 sin θ ± i(A−A∗)). (25)

Using Eq. (24) and
δθ

δk
=
A−A∗

i sin θ
, (26)

we obtain from Eq. (14) that the odd moments are

〈
x2n−1

〉
t

=
t2n−1

4π

∫ π

−π

[
A−A∗

i sin θ

]2n
dk +O(t2n−2), (27)

and the even moments are〈
x2n
〉
t

= 2t
〈
x2n−1

〉
t
+O(t2n−1). (28)
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The variance is
σ2 = (2t− 〈x〉t) 〈x〉t , (29)

which simplifies asymptotically to

σ2

t2
=


4 cosβ(1− cosβ), (α, β) ∈ I
−4 cosβ(1 + cosβ), (α, β) ∈ II

4 cosα(1− cosα), (α, β) ∈ III
−4 cosα(1 + cosα). (α, β) ∈ IV

β

α

π

π
0

II

I

III IV (30)

Notice that σ2 does not depend on parameters φ1 and φ2. The maximum
value of σ2 is 1, which is achieved at the points (α, β) either for specific values
β ∈

{
π
3 ,

2π
3

}
and the interval α ∈

[
π
3 ,

2π
3

]
or for specific values α ∈

{
π
3 ,

2π
3

}
and the interval β ∈

[
π
3 ,

2π
3

]
, as can be seen in Fig. 2.

Figure 2: Rescaled variance of the coinless quantum walk on the one-
dimensional lattice. The variance depends only on the parameters α and
β.

The maximum asymptotic value of the mean is 〈x〉t = 2t, which is ob-
tained when α = β = π

2 . In this case σ2 = 0, which shows that the wave
function does not spread moving ballistically rightward. The mean is zero
only for α = 0 or β = 0, which also produces localized walks. The only way
to obtain a non-trivial symmetric walk is by starting with a non-local initial
condition such as

(∣∣0〉+ i
∣∣1〉) /√2.

The results of this section can be compared with the moments of the
coined model described in the Appendix.
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5 Two-dimensional lattice

From the tessellation for the two-dimensional lattice shown in Fig. 1, we
define the vectors∣∣u0xy〉 =

1

2

1∑
x′,y′=0

∣∣2x+ x′, 2y + y′
〉
, (31)

∣∣u1xy〉 =
1

2

1∑
x′,y′=0

∣∣2x+ x′ + 1, 2y + y′ + 1
〉
. (32)

The propagator is U = U1U0, where

U0,1 = 2
∞∑

x,y=−∞

∣∣u0,1xy 〉〈u0,1xy ∣∣− I. (33)

Ref. [15] describes the spectral decomposition of the evolution operator for
the two-dimensional case. The Fourier basis in this case is∣∣ψ0

kl

〉
=

∞∑
x,y=−∞

e−i(2xk+2yl)
∣∣2x, 2y〉, (34)

∣∣ψ1
kl

〉
=

∞∑
x,y=−∞

e−i(2xk+(2y+1)l)
∣∣2x, 2y + 1

〉
, (35)

∣∣ψ2
kl

〉
=

∞∑
x,y=−∞

e−i((2x+1)k+2yl)
∣∣2x+ 1, 2y

〉
, (36)

∣∣ψ3
kl

〉
=

∞∑
x,y=−∞

e−i((2x+1)k+(2y+1)l)
∣∣2x+ 1, 2y + 1

〉
. (37)

From the Fourier basis we can generate the 4× 4 reduced matrix

Ukl =


cos k cos l
e−i(k+l)

sin k cos l
ie−ik

cos k sin l
ie−il sin k sin l

sin k cos l
ie−ik

cos k cos l
ei(k−l) − sin k sin l ie−il cos k sin l

cos k sin l
ie−il − sin k sin l cos k cos l

ei(k−l) ie−ik sin k cos l

sin k sin l ie−il cos k sin l ie−ik sin k cos l e−i(k+l) cos k cos l

 ,
(38)

whose eigenvalues are 1 and e±iθ where

cos θ = 2 cos2 k cos2 l − 1. (39)

The eigenvectors associated with eigenvalue 1 are

∣∣w0
kl

〉
=

1

2c+


sin(k − l)

sin l − sin k
sin l − sin k
sin(k − l)

 , ∣∣w1
kl

〉
=

1

2c−


sin(l − k)

sin l + sin k
− sin l − sin k

sin(k − l)

 , (40)
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where (c±)2 = (1 ± cos k cos l)(1 ∓ cos(k − l)). The eigenvectors associated
with eigenvalue e−iθ is

∣∣w2
kl

〉
=

1

2c


−ε
√
c− ε sin k cos l

√
c− ε cos k sin l√

c− ε sin k cos l
√
c+ ε cos k sin l√

c+ ε sin k cos l
√
c− ε cos k sin l

ε
√
c+ ε sin k cos l

√
c+ ε cos k sin l

 , (41)

where c2 = 1− cos2 k cos2 l and ε is the sign of cos k cos l. The eigenvectors
associated with eigenvalue eiθ are obtained by inverting the sign of ε in the
eigenvectors associated with e−iθ.

Let us start the walk with the initial condition∣∣ψ(0)
〉

= a
∣∣00
〉

+ b
∣∣01
〉

+ c
∣∣10
〉

+ d
∣∣11
〉
, (42)

which corresponds to a state in the blue cell that contains the origin, see
Fig. 1. Using the expressions for eigenvectors

∣∣wβkl〉 and Eq. (39), we obtain
from Eq. (8) that the first moments are

〈x〉t = D2

(
|a|2 + |b|2 − |c|2 − |d|2 + ab+ ba− dc− cd

)
t+O(1), (43)

〈y〉t = D2

(
|a|2 − |b|2 + |c|2 − |d|2 − bd− db+ ca+ ac) t+O(1). (44)

The second moments are〈
x2
〉
t

= 2

(
D2 +

(
− 3

π
+ 1

)(
ac+ ca+ db+ bd

)
+(

− 7

3π
+ 1

)(
ab+ ba+ dc+ cd

)
+(

10

3π
− 1

)(
bc+ cb+ ad+ da

))
t2 +O(t), (45)

〈
y2
〉
t

= 2

(
D2 +

(
− 7

3π
+ 1

)(
ac+ ca+ db+ bd

)
+(

− 3

π
+ 1

)(
ab+ ba+ dc+ cd

)
+(

10

3π
− 1

)(
bc+ cb+ ad+ da

))
t2 +O(t), (46)

where

D2 = 1− 2

π
. (47)

The maximum value of the coefficient of the total mean square displacement
σ2 = σ2x + σ2y is 8D2 ≈ 2.91, which is obtained for more than one value of
parameters a, b, c, d. In the real case, there is only one assignment, which is
a = b = c = d = 1/2.

The results of this section can be compared with the moments of the
coined model described in the Appendix.
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6 Conclusions

Using the method of Fourier transforms and generating functions, we have
obtained an analytical expression for the nth moment of the probability
distribution of the coinless quantum walk model on d-dimensional lattices
in terms of the nth derivative of the eigenvalues of the reduced propagator.
We have analyzed in details the mean square displacement for the one- and
two-dimensional lattices. For the one-dimensional case we have taken a
localized initial condition and analyzed the most generic coinless walk with
a 2-site tessellation. The mean square displacement σ2 depends only on
parameters α and β and the values of those parameters that produce the
maximum σ2 are depicted in Fig. 2. For the two-dimensional lattice we
have taken non-localized initial conditions and analyzed the coinless walk
with a 4-site tessellation using the simplest choice of basis vectors. The real
assignment for the initial condition which gives the maximum mean square
displacement is the uniform one.
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Appendix A

A.1 First and second moments of the Hadamard DTQW

The shift operator for the Hadamard DTQW is

S =
∞∑

x=−∞

∣∣0〉〈0∣∣⊗ ∣∣x+ 1
〉〈
x
∣∣+
∣∣1〉〈1∣∣⊗ ∣∣x− 1

〉〈
x
∣∣, (48)
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where the coin operator is

H =
1√
2

[
1 1
1 −1

]
(49)

and the initial state with generic coin state is∣∣ψ(0)
〉

=
(

cos
α

2

∣∣0〉+ eiφ sin
α

2

∣∣1〉) ∣∣x = 0
〉
.

Using the same techniques employed in this work, we can calculate the
expressions of the first and second moments for the coined model, which are

〈x〉 = D1 (1 + sinα cosφ) t+O(1), (50)

〈x2〉 = D1 t
2 +O(t), (51)

where

D1 = 1− 1√
2
. (52)

Note that D1 is a characteristic number of the Hadamard walk. The second
moment does not depend on the parameters α, φ of the initial condition and
is characterized by D1 asymptotically. On the other hand, the standard
deviation σ(t) =

√
〈x2〉 − 〈x〉2 depends on the parameters of the initial

condition. It is not possible to obtain a sub-ballistic walk, since the smallest
value of the coefficient of t in the standard deviation is

√
D1 − 2D2

1 ≈ 0.35,
which is obtained when α = π/2, φ = 0. The largest coefficient is

√
D1 ≈

0.54 when α = π/2, φ = π.

A.2 First and second moments of the two-dimensional Grover
DTQW

The shift operator for the two-dimensional regular lattice is [1]

S
∣∣i, j〉∣∣x, y〉 =

∣∣i, j〉∣∣x+ (−1)j(1− δi,j), y + (−1)jδi,j
〉
. (53)

The Grover coin is given by

G =
1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 (54)

and the initial state with generic coin state is∣∣ψ(0)
〉

=
(
a
∣∣00
〉

+ b
∣∣01
〉

+ c
∣∣10
〉

+ d
∣∣11
〉) ∣∣x = 0, y = 0

〉
with the constraint |a|2 + |b|2 + |c|2 + |d|2 = 1.
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Using the same techniques employed in this work, we can calculate the
expressions of the first moments, which are

〈x〉 =
D2

2

(
|b|2 − |c|2 −<{(a+ d)(b∗ − c∗)}

)
t+O(1), (55)

〈y〉 =
D2

2

(
|a|2 − |d|2 −<{(a− d)(b∗ + c∗)}

)
t+O(1), (56)

where

D2 = 1− 2

π
. (57)

and the asymtotic expressions of the second moments, which are

〈x2〉
t2

' 1 + |b|2 + |c|2

6π
+
|a+ d|2

12π
+

(
1

2
− 19

12π

)
|b− c|2 −(

1

2
− 4

3π

)
<{(a+ d) (b∗ + c∗)} , (58)

〈y2〉
t2

' 1 + |a|2 + |d|2

6π
+
|b+ c|2

12π
+

(
1

2
− 19

12π

)
|a− d|2 −(

1

2
− 4

3π

)
<{(b+ c) (a∗ + d∗)} , (59)

where <{x} is the real part of x. The maximum value of the coefficient

of the standard deviation σ =
√
σ2x + σ2y is

√
D2 ≈ 0.60, which is obtained

for more than one value of parameters a, b, c, d. In the real case, there is
only one assignment, which is a = −b = −c = d = 1/2. This result was
obtained numerically in Ref. [16]. The minimum value of the coefficient of
the standard deviation is

√
10/3π − 1 ≈ 0.25, which is obtained by setting

a = b = c = d = 1/2.
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