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One of the most important topics in the study of the dynamics of open quantum systems is the information
exchange between system and environment. Based on the features of back-flow information from an environ-
ment to a system, an approach is provided to detect non-Markovianity for unital dynamical maps. The method
takes advantage of non-contraction property of the von Neumann entropy under completely positive and trace
preserving unital maps. Accordingly, for the dynamics of a single qubit as an open quantum system, the sign of
the time-derivative of the density matrix eigenvalues of the system determines the non-Markovianity of unital
quantum dynamical maps. The main characteristics of the measure is to make the corresponding calculations
and optimization procedure simpler.

PACS numbers: 03.65.Yz, 03.65.Ta, 42.50.Lc

I. INTRODUCTION

Study of the dynamics of open quantum systems is one of
the most interesting issues in the field of quantum informa-
tion and computation. According to the direction of infor-
mation flow (memory effects of environment), dynamics of
open quantum systems can be classified into two categories:
(i) Markovian: Time evolution of a system state is determined
solely by the instantaneous state of the system. In the dy-
namics, there is flow of information only from the system to
the environment, in other words, the system smoothly loses
information (ii) Non-Markovian: The history of the system
plays an important role in the time evolution which occurs
along with the back flow of information from the environ-
ment to the system [1]. Markovian dynamics of open quan-
tum systems can be described by a quantum dynamical semi-
group with the generator in the Lindblad form [1, 2], which
leads us to a time-local master equation. Since in most cases,
dynamics of open quantum systems is non-Markovian, stud-
ies of non-Markovian dynamics and its effects on correla-
tions have attracted much attention over the last few years
[3–19]. Detecting non-Markovianity has been one of the in-
teresting and challenging subjects of the study on dynamics
of open quantum systems in the last decade. There have been
many attempts to introduce a general criterion for detecting
non-Markovian feature of a quantum evolution. For instance,
Breuer et al. introduced a significant measure based on the
contraction property of the trace distance under completely
positive and trace-preserving (CPTP) maps, which is known
as BLP measure [20, 21]. In BLP approach, if a process is
Markovian, the trace distance will be a monotonic decreas-
ing function of time and information continuously flows from
the system to the environment. In the case that the trace dis-
tance does not satisfy the above-mentioned condition, the pro-
cess is obviously non-Markovian and information flows back
from the environment to the system. Using the measure, one
needs to do optimization over all pairs of initial states which
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requires complicated numerical calculations [20, 21]. Rivas et
al. proposed a measure based on the Choi-Jamiolkowski iso-
morphism and divisibility of quantum dynamical maps, which
is called RHP measure [22]. In RHP method, one considers
any deviation from divisibility of the corresponding dynam-
ical map as a witness for non-Markovianity[22]. The other
authors use semigroup property [23], fidelity [24], quantum
fisher information [25], quantum mutual information [26], ac-
cessible information [27] and quantum loss [28] to detect non-
Markovianity and to measure its degree. In this paper, back
flow of information from environment to system is regarded
as a key concept to detect non-Markovianity in the case of
unital quantum dynamical maps . To provide the measure,
non-contraction property of the von Neumann entropy un-
der completely positive and trace-preserving unital (CPTPU)
maps is used. Also, for the dynamics of a single-qubit as an
open quantum system, It can also be shown that the degree
of non-Markovianity may be written in terms of the eigenval-
ues of the corresponding density matrix. In fact, in this case
the non-Markovianity measure is related to non-monotonicity
behaviour of the dynamics of the density matrix eigenvalues.
The advantage of the measure is to make the calculations and
optimization procedure simpler. It greatly increases the prac-
tical relevance of the proposed measure. The paper is orga-
nized as follows. In Sec.II the notion of unital quantum maps
is reviewed and the conditions under which a map is unital are
described. In Sec.III the measure is introduced based on the
eigenvalues dynamics by using the non-contraction property
of the von Neumann entropy under a CPTPU map. In Sec.IV
some examples are provided to see how the measure can be
applied. The conclusion is presented in Sec.V.

II. UNITAL QUANTUM MAPS

Let us consider an open quantum systemS with Hilbert
spaceHS and arbitrary density matrixρS which belongs to
the set of all bounded linear operators (B(HS)) acting on the
Hilbert space. Also, let us define a CPTP map,Φ, onB(HS)
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which can be represented in the Kraus form[1, 2, 29],

Φ(ρS) =
∑

k

E†
kρ

SEk, (1)

whereEk ∈ B(Hs) and due to the trace-preserving property
of the map,

∑

k EkE
†
k = I is held.

Definition: The completely positive mapΦ is unital if and
only if

∑

k E
†
kEk = I, i.e. Φ maps the identity operator

to itself in the same space,Φ(I) = I [29–31]. In the case
of single-qubit systems, the unital maps can be expressed in
terms of convex combination of the Pauli operators which are
also well known as the Pauli maps [30]. From geometrical
point of view, the unital maps take the center of the Bloch
sphere to itself. In other words, under these maps maximally
mixed states remain conserved. In the following, the unital
maps are parameterized for the single-qubit case.

LetρS be an operator acting on the two-dimensional Hilbert
spaceHS = C2 which in terms of the identity operatorI and
the Pauli operators{σx, σy, σz} can be written as

ρS =
1

2
(I + r.σ), (2)

wherer ∈ R3 is a Bloch vector. Every quantum dynamical
mapΦ:B(HS) → B(HS) with respect to the basis may be
represented as a4× 4 matrix

LΦ =

(

1 0
t M

)

, (3)

in whicht is a vector inR3 andM is a3×3 matrix. Therefore,
one can writeΦ[ρ] = 1

2 [I + r′.σ], where

r′ = t +Mr (4)

is an affine transformation of the Bloch vectorr. In this
parametrization, one can easily see that a dynamical mapΦ
is unital if and only ift = 0 holds [31].

III. MEASURE FOR NON-MARKOVIANITY

Let us first consider a dynamical quantum process which
is described by a time-local master equation of the Lindblad
form

ρ̇S(t) = LρS(t), (5)

whereL is a Lindblad super-operator given by [1]

LρS(t) =− i[H, ρS(t)]+

+
∑

k

γk[Fkρ
S(t)F †

k −
1

2
{F †

kFk, ρ
S(t)}],

(6)

in whichH is the effective Hamiltonian,γk’s are the relax-
ation rates, andFk ’s are the Lindblad operators describing the
type of the noise affecting the system. As long asFk ’s and
γk ’s are time independent, andγk ’s are positive, Eq.(5) leads
to a dynamical semigroup of CPTP mapsΦ(t, 0) = e[Lt] with
the following properties [2],

i) Φ(t, 0) is a dynamical map,

ii) Φ(t1, 0)Φ(t2, 0) = Φ(t1 + t2, 0) ∀ t1, t2 > 0,

iii) For everyA ∈ B(HS), Tr[(Φtρ
S)A] is a continuous

function oft.

Such a dynamical quantum process characterizes a popular
Markovian one. Whenever the effective HamiltonianH , the
Lindblad operators (Fk), and relaxation rates (γk) explicitly
depend on time, Eq.(5) leads to a time-dependent Markovian
process, provided that all of the relaxation rates are positive.
In this case we have

Ltρ
S(t) =− i[H(t), ρS(t)]+

+
∑

k

γk(t)[Fk(t)ρ
S(t)F †

k (t)−
1

2
{F †

k (t)Fk(t), ρ
S(t)}].

(7)

Here, the dynamical maps can be written in terms of a time-
ordered exponential asΦ(t, 0) = T exp[

∫ t

0
L(s)ds]. Such

Markovian maps satisfy divisibility condition [22]. Divisi-
bility condition indicates that a CPTP map ,Φ(t2, 0), can be
written as a composition of two other CPTP maps as

Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0). (8)

In some cases, it is possible that during the dynamics of
the system, time-dependent relaxation rates (γk(t)) become
negative in some time intervals[t1, t2]. In such situa-
tions there is an intermediate dynamical mapΦ(t2, t1) =

T exp[
∫ t2
t1

L(s)ds] which is not CPTP. Existence of such non-
CPTP intermediate dynamical map leads to the violation of
the divisibility property given by Eq.(8). Therefore, the dy-
namical maps are non-Markovian[22]. The criterion for non-
Markovian dynamics which we are going to discuss in the fol-
lowing is constructed based on the monotonically increasing
property of the von Neumann entropy under CPTPU maps.
For this purpose, let us have a brief look at the von Neumann
and quantum relative entropy concepts. The von Neumann
entropy of a quantum state with density operatorρS is defined
as

S(ρS) = −Tr(ρS log2 ρ
S) = −

∑

i

λi log2 λi, (9)

whereλi’s are eigenvalues ofρS and have a probabilistic in-
terpretation. It indicates the lack of the knowledge about a
quantum system. Since the von Neumann entropy of a pure
state is zero, such states give the full knowledge about a quan-
tum system. On the other hand, maximal mixed states with
density operatorI/d in a d-dimensional Hilbert space, repre-
sent maximal ambiguity with the von Neumann entropy being
equal tolog2 d. Some of the important properties of the von
Neumann entropy are:

i) The von Neumann entropy of a pure state is always mini-
mum,S(ρpure) = 0,

ii) For density operatorρ with rankd it satisfies0 ≤ S(ρ) ≤
log2 d,
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iii) The von Neumann entropy for an isolated quan-
tum system does not change during the evolution,
S(ρ) = S(UρU †), and is always independent of time
dS(ρ)/dt = 0 [29, 31].

The von Neumann relative entropy is nearly related to the von
Neumann entropy and for two density operatorsρ andσ, is
defined as

S(ρ‖σ) = tr(ρ log2 ρ)− tr(ρ log2 σ). (10)

The von Neumann relative entropy introduced in above is not
a distance in the mathematical sense, since it does not satisfy
the triangle inequality and it is not symmetric [29]. The von
Neumann relative entropy is contractive and non-increasing
under CPTP maps, i.e. ifΦ is a CPTP map , we will have

S
(

Φ(ρS) ‖ Φ(σS)
)

≤ S
(

ρS ‖ σS) . (11)

Considering this property of the von Neumann relative en-
tropy, one can easily find that the von Neumann entropy is
non-contractive under CPTPU maps. In order to prove this
statement, suppose thatσS = 1

dI, thus Eq.(10) can be written
as

S(ρS ‖
1

d
I) = −S(ρS) + log2 d. (12)

Substituting Eq.(12) into Eq.(11) and after some straightfor-
ward calculations, one can easily find that the von Neumann
entropy is non-contractive under CPTPU maps [31, 32],

S
(

Φ(ρS)
)

≥ S
(

ρS
)

. (13)

It indicates that the purity of the system decreases under the
above-mentioned dynamical maps. Regarding this interpre-
tation, one can introduce a witness for non-Markovianity: a
unital quantum dynamical mapΦ(t, 0): ρS(0) → ρS(t) =
Φ(t, 0)ρS(0) is non-Markovian if

d

dt
S
(

ρS(t)
)

< 0. (14)

The non-monotonicity property of the von Neumann entropy
of an open quantum system can be interpreted as back flow of
information from environment to the system, so any deviation
from the monotonically increasing property of the von Neu-
mann entropy shows that the dynamical maps are not com-
pletely positive and consequently are non-Markovian. Ac-
cording to this criterion for the non-Markovian dynamics of
open quantum systems, one can introduce a new method to
quantify the degree of non-Markovianity. Mathematically,the
measure can be written as

NS = max
{ρS(0)}

∫

d

dt
S(ρS(t))<0

dt
d

dt
S
(

ρS(t)
)

. (15)

The time integration is taken over all time intervals(ti, tj)
on which the time derivative of the von Neumann entropy is
negative, and the maximization is evaluated over all possible
initial statesρS(0) of the system. The composition law of di-
visibility given in Eq.(8) implies that this measure vanishes

for all divisible unital quantum dynamical maps, that is, ac-
cording to this measure all divisible unital dynamical maps
define Markovian processes. In order to prove this statement,
assume that the CPTPU mapΦ(t, 0)is divisible meaning that
for all t, τ ≥ 0 one has

Φ(t+ τ, 0) = Φ(t+ τ, t)Φ(t, 0), (16)

whereΦ(t + τ, t) is also a CPTPU map. Therefore, for any
initial stateρS(0) we have

ρS(t+ τ) = Φ(t+ τ, t)ρS(t). (17)

Due to the fact thatΦ(t+τ, t) is a CPTPU map, one can show
the non-contraction property, Eq.(13), as

S(ρS(t+ τ)) ≥ S(ρS(t)). (18)

Thus, for all divisible unital quantum dynamical maps the
von-Neumann entropy monotonically increases andNS = 0.
In other words, we can say that all divisible unital quantum dy-
namical maps are Markovian. However, the inverse statement
is not necessarily true, that is, there are non-divisible unital
quantum dynamical maps for which the entropy does not show
any temporary decrease at all. In the case of unital maps
according to the above-mentioned points non-Markovianity
must be described by non-divisible unital dynamical maps. In
Markovian processes, the state of an open quantum system
loses its purity due to interaction of the system with the sur-
rounding environment which gives rise to increase the value
of the von Neumann entropy. The increase of the von Neu-
mann entropy during the dynamics of the system can be in-
terpreted as the loss of the system information. Conversely,
increasing the purity of the state of an open quantum system
is equivalent to the reduction of the von Neumann entropy.
This reduction can be considered as back flow of information
from the environment to the system which is the main charac-
teristics of the non-Markovian dynamical quantum processes.
We will continue our discussion by looking at the dynamics of
a one-qubit system due to its interaction with its surrounding
environment. For one-qubit model the density matrix at time
t can be obtained by

ρS(t) = Φ(t, 0)ρS(0) =

(

ρS11(t) ρS12(t)
ρS21(t) ρS22(t)

)

. (19)

The corresponding von Neumann entropy can be calculated as
S(ρS(t)) = −λ+(t) log2 λ+(t)−λ−(t) log2 λ−(t), in which
λ±(t) are the eigenvalues ofρS(t) obtained as

λ±(t) =
1±

√

1− 4(ρS11(t)ρ
S
22(t)− |ρS12(t)|

2)

2
. (20)

By taking the time derivative of the von Neumann entropy,

d

dt
S(ρS(t)) =

dλ±(t)

dt
log2

λ∓(t)

λ±(t)
, (21)

it can be shown from Eq.(14) that the dynamics of the sys-
tem is non-Markovian, ifη− = dλ−(t)/dt < 0 or η+ =
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dλ+(t)/dt > 0. Regarding the relationλ+(t) = 1 − λ−(t)
and Eq.(15), the degree of non-Markovianity of the dynamical
maps for one-qubit models can be defined as

Ne(Φ) = max
{ρS(0)}

∫

η+>0

η+dt

= − max
{ρS(0)}

∫

η−<0

η−dt.
(22)

The integral is taken over all time intervalst ∈ (ai, bi) on
which for the first equality in Eq.(22) η+ is positive, and for
the latterη− is negative. The maximization is evaluated over
the all input states of the one-qubit system{ρS(0)}. Like the
measures proposed by the other authors, this measure depends
on the initial state. The general problem one faces with in ap-
plying the existing non-Markovian measures is to perform the
optimization procedure. Fortunately, from Eq.(22) one ob-
serves that the optimization can be taken over the all initial
states of the one-qubit system, which simplifies calculations.
In view of η+ = dλ+(t)/dt andη− = dλ−(t)/dt, the non-
Markovianity measure in Eq.(22) can be rewritten as

Ne(Φ) = max
{ρS (0)}

∑

i

(λ+(bi)− λ+(ai))

= − max
{ρS(0)}

∑

i

(λ−(bi)− λ−(ai)).
(23)

To calculate the degree of non-Markovianity via the first
equality in Eq.(23), for any initial state one has to specify the
total increase of the greater eigenvalueλ+(t) over each time
interval(ai, bi), on whichλ+(t) is an ascending function, and
sum up the contributions of all such intervals. Finally, onecan
find Ne(Φ) by determining the maximum over the all initial
states{ρS(0)}.

IV. SOME EXAMPLES IN DYNAMICAL MODELS

A. Phase Damping Dynamical Model

Let us consider a two-level system which interacts with a
bosonic environment, where the type of the interaction is the
pure dephasing. In this case, the dynamics of one-qubit sys-
tem is captured by the following time-local master equation
[26, 33]

Lt(ρ
S(t)) =

γ(t)

2

(

σzρ
S(t)σz − ρS(t)

)

, (24)

whereσz is the Pauli spin operator in thez-direction, andγ(t)
is the time-dependent dephasing rate. The result of this type
of interaction between one-qubit system and the bosonic en-
vironment is the decay of the off-diagonal elements with the
decoherence factoreΓ(t), whereΓ(t) ≥ 0 always holds. When
temperature of the environment is zero,Γ(t) can be defined by

Γ(t) = 4

∫

dωJ(ω)
1 − cosωt

ω2
, (25)

whereJ(ω) is the spectral density of the environment [33].
We assume that the spectral density of the environment is
Ohmic-like [34],

J(ω) = ω1−s
c ωse−

ω

ωc , (26)

whereωc ands are the cutoff frequency and Ohmicity param-
eter, respectively. Regarding the different values ofs, one can
have sub-Ohmic (s < 1), Ohmic (s = 1) and super-Ohmic
(s > 1) spectral densities. Further details about this model
are presented in the appendix. The effect of the phase damp-
ing dynamical quantum map on the initial density matrix of
the one-qubit system can be written as

Φ(t, 0)ρS(0) =

(

ρS11(0) ρS12(0)e
−Γ(t)

ρS21(0)e
−Γ(t) ρS22(0)

)

. (27)

Time derivative of the eigenvalues of the above density matrix
is straightforwardly obtained as

dλ+(t)

dt
=−

dλ−(t)

dt
=

=
−8γ(t)e−2Γ(t)|ρS12(0)|

2

4
√

1− 4(ρS11(0)ρ
S
22(0)− e−2Γ(t)|ρS12(0)|

2)
,

(28)

where the first equality is the result of trace preserving of the
dynamical map. Regarding the non-Markovianity condition
which has been presented instantly after Eq.(21), i.e. η+ > 0
andη− < 0, one can find that the phase damping dynami-
cal map is non-Markovian ifγ(t) < 0, which agrees with the
result obtained by RHP measure in [20, 22]. The maximum
in Eq.(22) is achieved by the initial statesρS(0) = |±〉〈±|,
where |±〉 = 1√

2
(|0〉 ± |1〉). Fig.(1) shows the behaviour

of the time derivative of the greater eigenvalue,η+, for these
states as a function of timet and parameters. As can be
seen, for some intervals,s ∈ [2.5, 5.5], the process is non-
Markovian due to the positivity ofη+. In other words, the
non-Markovian behaviour appears when the qubit interacts
with a super-Ohmic reservoir. Positivity ofη+ (negativity of
η−) means that the probability of finding the state of the sys-
tem in the initial state increases in some time intervals during
the process, which is interpreted as the back flow of informa-
tion from the environment to the system. The degree of the
non-Markovianity of the pure dephasing dynamical map,Ne,
is plotted as a function of Ohmicity parameters in Fig.(2).
The results agree with those obtained by BLP measure [35].

B. Dephasing Model With Colored Noise

Let us consider a two-level quantum system which inter-
acts with an environment having the properties of random tele-
graph signal noise. The model was first presented by Daffer et
al.[36]. In this model, a dynamical quantum map is described
by a master equation of the form

ρ̇S(t) = KLρS(t), (29)
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FIG. 1: Behaviour ofη+ as a function of timet ands.
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FIG. 2: Degree of non-Markovianity for different types of reservoir,
sub-Ohmic (s < 1), Ohmic (s = 1), super-Ohmic (s > 1).

whereK is a time-dependent integral operator defined as
Kψ =

∫ t

0
k(t − t́)ψ(t́)dt́, wherek(t − t́)ψ(t́) is the kernel

function which determines the type of memory in the envi-
ronment. In order to study the master equation in the form of
Eq.(29), one can consider a time-dependent Hamiltonian as

H(t) =
∑

k

Γk(t)σk, (30)

where,σk is the Pauli spin operator in thek-direction and
Γk(t)’s are random variables obeying the statistics of a ran-
dom telegraph signal.Γk(t) is related to the variablenk(t)
by Γk(t) = aknk(t), in whichnk(t) has a Poisson distribu-
tion with a mean being equal tot/2τk, andak ’s are coin-flip
random variables possessing the values±ak. Making use of
the von Neumann equation,ρ̇S(t) = −(i/~)[H(t), ρS ], one
can find an expression for the density matrix of the two-level
system as

ρS(t) = ρS(0)− i

∫ t

0

∑

k

Γk(t)[σk, ρ
S(s)]ds. (31)

Substituting Eq.(31) back into the von Neumann equation and
performing the stochastic averages lead to the following mas-

ter equation

ρ̇S(t) = −

∫ t

0

∑

k

e−(t−t́)/τka2k[σk, [σk, ρ
S(t́)]]dt́, (32)

where the kernel function comes from the correlation func-
tions of random variables〈Γj(t)Γk(t́)〉 = a2k exp(−|t −

t́|/τk)δj,k. As one can see, Eq.(32) is in the form of Eq.(29).
Also, Daffer et al. showed that the dynamical process de-
scribed by Eq.(32) is completely positive when two of theak
are zero, i.e. the random telegraph noise only acts in one di-
rection. Whenever,a1 = a2 = 0 anda3 = a the dynamical
process is known as a completely positive dephasing with the
colored noise. Thus one can show this quantum process of the
two-level system by a CPTP map in the Kraus form as follows
[29]

ρS(t) =
∑

i

Aiρ
S(0)A†

i , (33)

whereAi’s are the Kraus operators describing the dynamics
of the system and are given by

A1 =

√

1 + Λ(ν)

2
I, A2 =

√

1− Λ(ν)

2
σz , (34)

where Λ(ν) = e−ν(cos(µν) + sin(µν)/µ), µ =
√

(4aτ)2 − 1, andν = t/2τ is dimensionless time.
Next by straightforward calculations the time derivative of

the greater eigenvalues of the density matrixρS(t) in Eq.(33),
η+, can be obtained as

dλ+(t)

dt
=
dΛ(ν)

dν

2|ρS12(0)|
2

√

1− 4(ρS11(0)ρ
S
22(0)− Λ(ν)2|ρS12(0)|

2)τ
(35)

Considering the non-Markovianity condition introduced in
Sec.III , the dephasing dynamics of the system with the col-
ored noise is non-Markovian ifdΛ(ν)/dν > 0, which agrees
with the result obtained by applying some recently introduced
measures [20, 26]. In Fig.(3), the time derivative of the greater
eigenvalue,η+(t), is plotted as a function of time andaτ for
the initial statesρS(0) = |±〉〈±| (|±〉 = 1√

2
[|0〉±|1〉]). Here,

we emphasize that these initial states come from maximiza-
tion procedure in Eq.(22). As can be seen, ifaτ ≥ 1

2 , then in
some time intervalsη+(t) may be positive, which means that
the dynamics of the system is non-Markovian. Also, the de-
gree of non-Markovianity,Ne in Eq.(22), is plotted in Fig.(4).

From the above examples, it can clearly be seen that the
structure of reservoir affects the non-Markovianity charac-
ter of the dynamics. In phase damping dynamical model,
non-Markovianity is revealed in the super-Ohmic regime and
in dephasing model with colored noise, the degree of non-
Markovianity increases by increasing the fluctuation rate of
the external field.

V. CONCLUSIONS

In this paper a non-Markovianity measure,Ne, has been
proposed which is expressly connected to the time derivative
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FIG. 3: Variation ofdλ+(t)

dt
as a function of time andaτ .
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FIG. 4: Degree of non-Markovianity in terms of the fluctuation rate,
aτ .

of the density matrix eigenvalues of an open quantum system.
In the measure, the back flow of information from the envi-
ronment to the system has been used as a feature of a non-
Markovian process. It has been shown that if the time deriva-
tive of the greater eigenvalue is positive (or that of the smaller
one is negative), the purity of the system state increases dur-
ing the time evolution with respect to that of the initial state.
This means that the information flows from the environment
to the system and therefore the dynamics is non-Markovian.
In addition, it has also been shown that the structure of the
reservoir affects on the Markovianity and non-Markovianity
character of an open quantum system dynamics [37]. The ad-
vantage of this measure is its simplicity in calculations and
optimization procedure which is only taken over the all initial
input states of the single qubit system. Although in this paper

we just only focus on CPTPU maps, it should be pointed out
that applying the measure for this kind of maps is simpler than
other measures. This is due to the fact that in this measure we
do not require complicated statistical methods, such as Monte
Carlo sampling of the pairs of the initial states in order to do
optimization procedure.

APPENDIX

The pure dephasing interaction between a two-level system
and surrounding bosonic environment is given by

H =
ω0

2
σz +

∑

k

ωkb
†
kbk +

∑

k

σk(gkb
†
k + g∗kbk), (36)

whereσz is the usual Pauli matrix in thez-direction,ω0 is
the two-level system frequency, thebk(b†k) are the annihila-
tion(creation) operators which satisfy the commutation rela-
tion [bk, b

†
ḱ
] = δk,ḱ, gk is a constant which can control the

strength of the coupling between the system and the environ-
ment. In this model the off-diagonal elements of the density
matrix of the two-level system decay during the quantum pro-
cess, while the diagonal elements are constant in time because
there is no transition between energy levels which is due to
this fact that[H,σz ] = 0 holds. In interaction picture the
Hamiltonian is obtained as

HI(t) =
∑

K

σz(gka
†
ke

iωkt + g∗kake
−ωkt). (37)

When the system interacts with a large environment, one
can work in the continuum limit and have a replacement
∑

k |gk|
2 −→

∫

dωJ(ω)δ(ωk−ω), whereJ(ω) is the spectral
density of the environment [33, 34]. Using the second order
time-convolutionless master equation [1] at zero temperature,
one can find the master equation appeared in Eq.(24) . This
model can be described in the Kraus representation form as

ρS(t) =
2

∑

i=1

Di(t)ρ
S(0)D†

i (t), (38)

where the Kraus operatorsDi(t) are given by

D1(t) =

√

1 + e−Γ(t)

2
I, D2(t) =

√

1− e−Γ(t)

2
σz. (39)
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