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A Measure of Non-Markovianity for Unital Quantum Dynamical Maps

S. Haselit S. Salimil'* and A.S. Khorashdd

1Departrnent of Physics, University of Kurdistan, P.O.Box 66177-15175 , Sanandaj, Iran
(Dated: August 28, 2018)

One of the most important topics in the study of the dynamfaspen quantum systems is the information
exchange between system and environment. Based on theefeafiback-flow information from an environ-
ment to a system, an approach is provided to detect non-Mahity for unital dynamical maps. The method
takes advantage of non-contraction property of the von Neumentropy under completely positive and trace
preserving unital maps. Accordingly, for the dynamics oimglke qubit as an open quantum system, the sign of
the time-derivative of the density matrix eigenvalues @ slystem determines the non-Markovianity of unital
guantum dynamical maps. The main characteristics of thesuneds to make the corresponding calculations
and optimization procedure simpler.

PACS numbers: 03.65.Yz, 03.65.Ta, 42.50.Lc

I. INTRODUCTION requires complicated numerical calculatio6,[21]. Rivas et
al. proposed a measure based on the Choi-Jamiolkowski iso-
morphism and divisibility of quantum dynamical maps, which

Study of the dynamics of open quantum systems is one df called RHP measur@g]. In RHP method, one considers
the most interesting issues in the field of quantum informa@ny deviation from divisibility of the corresponding dynam
tion and computation. According to the direction of infor- ic@8l map as a witness for non-Markovianig. The other
mation flow (memory effects of environment), dynamics of@uthors use semigroup properg], fidelity [24], quantum
open quantum systems can be classified into two categoriesher information25], quantum mutual informatior2l], ac-

(i) Markovian: Time evolution of a system state is deterndine c€ssible informatiord7] and quantum los<fg] to detect non-
solely by the instantaneous state of the system. In the dylarkovianity and to measure its degree. In this paper, back
namics, there is flow of information only from the system to 10w of information from environment to system is regarded
the environment, in other words, the system smoothly lose&S @ key concept to detect non-Markovianity in the case of
information (i) Non-Markovian: The history of the system Unital quantum dynamical maps . To provide the measure,
plays an important role in the time evolution which occursNon-contraction property of the von Neumann entropy un-
along with the back flow of information from the environ- der completely positive and trace-preserving unital (CB)P
ment to the systerd]. Markovian dynamics of open quan- Maps is used. Also, for the dynamics of a single-qubit as an
tum systems can be described by a quantum dynamical senfiP€n quantum system, It can also be shown that the degree
group with the generator in the Lindblad forr, P], which of non-Markovianity may be written in terms of the_ e|g(_anval-
leads us to a time-local master equation. Since in most case4€s of the corresponding density matrix. In fact, in thisecas
dynamics of open quantum systems is non-Markovian, stud® non-Markovianity measure is related to non-monoteyici
ies of non-Markovian dynamics and its effects on correlaPehaviour of the dynamics of th.e density matrix elgen_values
tions have attracted much attention over the last few year§he advantage of the measure is to make the calculations and
[3-19]. Detecting non-Markovianity has been one of the in-OPtimization procedure simpler. It greatly increases t&ep
teresting and challenging subjects of the study on dynamictic@l relevance of the proposed measure. The paper is orga-
of open quantum systems in the last decade. There have beBffed as follows. In Sec.Il the notion of unital quantum maps
many attempts to introduce a general criterion for detgctin iS rew_ewed and the conditions unde_rv_vh|ch amap is unital are
non-Markovian feature of a quantum evolution. For instanced_escr'bed- In Sec.II_I the measure is introduced b_ased on the
Breuer et al. introduced a significant measure based on tr@igenvalues dynamics by using the non-contraction prgpert
contraction property of the trace distance under completelOf the von Neumann entropy under a CPTPU map. In Sec.IV
positive and trace-preserving (CPTP) maps, which is know$0Me examples are provided to see how the measure can be
as BLP measure2, 21]. In BLP approach, if a process is applied. The conclusion is presented in Sec.V.
Markovian, the trace distance will be a monotonic decreas-
ing function of time and information continuously flows from
the system to the environment. In the case that the trace dis-
tance does not satisfy the above-mentioned condition,rire p
cess is obviously non-Markovian and information flows back 1. UNITAL QUANTUM MAPS
from the environment to the system. Using the measure, one
needs to do optimization over all pairs of initial states ethi
Let us consider an open quantum syst&nwith Hilbert

spaceHs and arbitrary density matrix® which belongs to

the set of all bounded linear operatof$(¢{s)) acting on the
*Electronic addressshsalimi@uok.ac.ir Hilbert space. Also, let us define a CPTP méppn B(Hs)
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which can be represented in the Kraus faotnd], 29|, i) ®(¢,0) is a dynamical map,
‘I)(PS):ZEIZPSEM (1) II) (I)(tl,O)q)(tg,O):(I)(tl +t2,0)vt1,t2 20,
k iii) For everyA € B(Hs), Tr[(®:p°)A] is a continuous
whereFE), € B(#,) and due to the trace-preserving property function oft.
T 7 . .
of the map_, Ej.E; = I'is held. Such a dynamical quantum process characterizes a popular

Definition: The completely positive map is unital if and  \jarkovian one. Whenever the effective Hamiltoniéh the
only if ZkE Ey, = I, i.e. ® maps the identity operator | indblad operatorsK}), and relaxation ratesy() explicitly
to itself in the same spacé,(I) = I [29-31]. In the case depend on time, Echf leads to a time-dependent Markovian

of single-qubit systems, the unital maps can be expressed fyocess, provided that all of the relaxation rates are jpesit
terms of convex combination of the Pauli operators which aren this case we have

also well known as the Pauli map3(. From geometrical
point of view, the unital maps take the center of the BlochLip® (t) = —i[H (1), Ps(t)]Jr
sphere to itself. In other words, under these maps maximally
mixed states remain conserved. In the following, the unital + Z%
maps are parameterized for the single-qubit case.
Let p° be an operator acting on the two-dimensional Hilbert )

spaceH s = C* which in terms of the identity operatdrand  ere, the dynamical maps can be written in terms of a time-
the Pauli operator§o,, 0, 0.} can be written as ordered exponential ab(,0) = T exp fo (s)ds]. Such

s 1 Markovian maps satisfy divisibility condmorQE] Divisi-
P = §(I+ r.o), (2)  npility condition indicates that a CPTP map(f,0), can be

written as a composition of two other CPTP maps as
wherer € R3 is a Bloch vector. Every quantum dynamical

map®: B(Hs) — B(Hs) with respect to the basis may be (t2,0) = (t2,t1)P(t1,0). (8)
represented aséx 4 matrix

pSOFL(0) ~ ST O, (1)}

In some cases, it is possible that during the dynamics of
I (1 O) 3) the system, time-dependent relaxation ratggt)) become
@ =

t M negative in some time intervalg,¢s]. In such situa-
tions there is an intermediate dynamical m@fyo,t1) =
inwhicht s a vector ink? andM is a3 x 3 matrix. Therefore, T exp ft (s)ds] which is not CPTP. Existence of such non-
one can writeP[p] = 3[I +r'.0], where CPTP itermediate dynamical map leads to the violation of

4) the C_ilVISIbIlIty property given b_y Eqg). Thgref_ore the dy-
namical maps are non-Markovi&¥. The criterion for non-
is an affine transformation of the Bloch vector In this  Markovian dynamics which we are going to discuss in the fol-
parametrization, one can easily see that a dynamical énap lowing is constructed based on the monotonically incregsin
is unital if and only ift = 0 holds 31]. property of the von Neumann entropy under CPTPU maps.
For this purpose, let us have a brief look at the von Neumann
and quantum relative entropy concepts. The von Neumann
[11. MEASURE FOR NON-MARKOVIANITY entropy of a quantum state with density operatdis defined
as

Let us first consider a dynamical quantum process which
is described by a time-local master equation of the Lindblad

r'=t+ Mr

S(p®) = —Tr(p°logy p°) = = > Ailogo hi,  (9)

form
'S(t) —r S(t) 5) where/\i’_s are eige_nvalues qf° and have a probabilistic in-
p P, terpretation. It indicates the lack of the knowledge about a
where, is a Lindblad super-operator given b} [ guantum system. Since the von Neumann entropy of a pure
state is zero, such states give the full knowledge abouta-qua
LpS(t) = —i[H, p° (t)]+ tum system. On the other hand, maximal mixed states with
1 density operatof /d in a d-dimensional Hilbert space, repre-
+ > wlFepS (O F] — Q{F;IFk’ p° ()}, ©) sent maximal am/biguity with the von Neumann entropy being
k equal tolog, d. Some of the important properties of the von

in which H is the effective Hamiltoniany,’s are the relax- Neéumann entropy are:
ation rates, and;,'s are the Lindblad operators describing the
type of the noise affecting the system. As longfass and
~¢'S are time independent, and’s are positive, EqR) leads

to a dynamical semigroup of CPTP mapé&, 0) = el“l with i) For density operatqgs with rankd it satisfies) < S(p) <
the following propertiesq], log, d,

i) The von Neumann entropy of a pure state is always mini-
mum, S(ppure) =0,
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iii) The von Neumann entropy for an isolated quan-for all divisible unital quantum dynamical maps, that is; ac
tum system does not change during the evolutioncording to this measure all divisible unital dynamical maps
S(p) = S(UpUT), and is always independent of time define Markovian processes. In order to prove this statement
dS(p)/dt = 0[29, 31]. assume that the CPTPU mdxjt, 0)is divisible meaning that

) . forall t,7 > 0 one has
The von Neumann relative entropy is nearly related to the von

Neumann entropy and for two density operatprando, is (t+7,0) = Bt +7,8)B(t,0), (16)
defined as
where®(t + 7,t) is also a CPTPU map. Therefore, for any
S(pllo) = tr(plog, p) — tr(plogy o). (10)  initial statepS (0) we have
The von Neumann relative entropy introduced in above is not pS(t+7) =t +7,8)p5 (1) (17)

a distance in the mathematical sense, since it does ndiysatis
the triangle inequality and it is not symmetr29|. The von  pye to the fact thab(t + 7, ) is a CPTPU map, one can show
under CPTP maps, i.e. & is a CPTP map , we will have

S(p°(t+1)) 2 S(p°(1))- (18)
S(@(p%) || @(0%)) <5 (p° || o). (1)

Considering thi W of th N lati Thus, for all divisible unital quantum dynamical maps the
onsidering this propérty ot thé von INeumann reiative eny,,,_Neymann entropy monotonically increases ahd= 0.
tropy, one can easily find that the von Neumann entropy i

. '$n other words, we can say that all divisible unital quantym d
non-contractive under CPT?U maps. In order to prove thig,, iy maps are Markovian. However, the inverse statement
statement, suppose that = 51, thus Eq.L0) can be written

is not necessarily true, that is, there are non-divisibligalin
as guantum dynamical maps for which the entropy does not show
any temporary decrease at all. In the case of unital maps
according to the above-mentioned points non-Markovianity

o ) ) must be described by non-divisible unital dynamical maps. |
Substituting Eq12) into Eq.(L1) and after some straightfor- \1arkovian processes, the state of an open quantum system

ward calculations, one can easily find that the von Neumanfyges its purity due to interaction of the system with the sur
entropy is non-contractive under CPTPU map B2, rounding environment which gives rise to increase the value
s S of the von Neumann entropy. The increase of the von Neu-
5 ((I)(p )) = (p ) ' (13) mann entropy during the dynamics of the system can be in-

It indicates that the purity of the system decreases under tHe"Preted as the loss of the system information. Conversely
above-mentioned dynamical maps. Regarding this interprd0créasing the purity of the state of an open quantum system

tation, one can introduce a witness for non-Markovianity: alS €duivalent to the reduction of the von Neumann entropy.
unital quantum dynamical map(¢,0): p5(0) — pS(t) = This reduction can be considered as back flow of information

®(t,0)p5(0) is non-Markovian if fro_m Fhe environment to tht_a system vv_hich is the main charac-
teristics of the non-Markovian dynamical quantum processe
We will continue our discussion by looking at the dynamics of
a one-qubit system due to its interaction with its surrongdi

L environment. For one-qubit model the density matrix at time
The non-monotonicity property of the von Neumann entropy; .an be obtained by

of an open quantum system can be interpreted as back flow of

S(° 1| 31) = ~5(5°) +logy d. (12)

%S (p°(t)) <o0. (14)

information from environment to the system, so any deviatio s S pS (1) pS,(t)

from the monotonically increasing property of the von Neu- p°(t) = @(t,0)p°(0) = (ps ) p3 (t)) . (19
mann entropy shows that the dynamical maps are not com- 2 2

pletely positive and consequently are non-Markovian. Ac-The corresponding von Neumann entropy can be calculated as
cording to this criterion for the non-Markovian dynamics of S(p°(t)) = =\, (t) logy A4 (t) — A_(t)logy A_(¢), in which

open quantum systems, one can introduce a new method 10 (t) are the eigenvalues ms(t) obtained as

qguantify the degree of non-Markovianity. Mathematicathg

measure can be written as 11 —4(p3,(t)pS,(t) — |p$y(1)]2
] Ap(t) = \/ (P71 ( )2P22( ) — P12 (t)] ) (20)
o= max | at S5 (p5w).  (@15) o
{r50)} S 255 (t))<0  dt By taking the time derivative of the von Neumann entropy,
The time integration is taken over all time intervéls, ¢,) d . s dAy (1) Ax(t)
on which the time derivative of the von Neumann entropy is Es(p (1) = dt log, A (1) (21)

negative, and the maximization is evaluated over all ptessib
initial statesp® (0) of the system. The composition law of di- it can be shown from Eql@) that the dynamics of the sys-
visibility given in Eq.@) implies that this measure vanishes tem is non-Markovian, if)- = dA_(t)/dt < 0 orny =
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dXy(t)/dt > 0. Regarding the relation;(t) = 1 — A_(¢t)  whereJ(w) is the spectral density of the environme88]|
and Eq.15), the degree of non-Markovianity of the dynamical We assume that the spectral density of the environment is
maps for one-qubit models can be defined as Ohmic-like [34],

Ne(®) = {HS}%}/ et

’ o (22)  wherew, ands are the cutoff frequency and Ohmicity param-

= — max / n_dt. eter, respectively. Regarding the different values,@ne can

{0} Jn_<o have sub-Ohmics( < 1), Ohmic (¢ = 1) and super-Ohmic

(s > 1) spectral densities. Further details about this model
are presented in the appendix. The effect of the phase damp-
ing dynamical quantum map on the initial density matrix of
the one-qubit system can be written as

J(w) = wltwie e, (26)

The integral is taken over all time intervalse (a;,b;) on
which for the first equality in Eq22) 7. is positive, and for
the lattern_ is negative. The maximization is evaluated over
the all input states of the one-qubit systépt (0)}. Like the
measures proposed by the other authors, this measure dgepend p3.(0) pS,(0)e"T®

on the initial state. The general problem one faces withinap ~ ®(t,0)p°(0) = ( S ((1)3 Tray s (0) ) . (27
plying the existing non-Markovian measures is to perforen th Puibie P2

optimization procedure. Fortunately, from E2P( one ob-  Tjme derivative of the eigenvalues of the above density imnatr
serves that the optimization can be taken over the all Initiajg straightforwardly obtained as

states of the one-qubit system, which simplifies calcutegio

In view of ny = dAy(t)/dt andn_ = dA\_(t)/dt, the non- d\ (t) dr_(t)

Markovianity measure in EQRQ) can be rewritten as @ a4
—8~(t —2T'(t)| ,S 0)|2
N.(®) = max O (b:) — As(a2)) _ 87( )65 1p72(0)] 5 :
{p5(0)} = 4y/1 = 4(pf1(0)p5,(0) — e=2TM[p3,(0)[2)
(23) (28)

where the first equality is the result of trace preservindef t
dynamical map. Regarding the non-Markovianity condition
which has been presented instantly after £8),(i.e. n,. > 0
andn_ < 0, one can find that the phase damping dynami-
cal map is non-Markovian i(t) < 0, which agrees with the

To calculate the degree of non-Markovianity via the first
equality in Eq.R3), for any initial state one has to specify the
total increase of the greater eigenvalug(t) over each time

interval(a;, b;), on whichA (¢) is an ascending function, and result obtained by RHP measure B0[ 22]. The maximum

sum up the contributions of all such intervals. Finally, caea . . X .
' ., . . in EQ.@2) is achieved by the initial states’ (0) = |+)(£|,
find N.(®) by determining the maximum over the all initial o %(|O> 4 [1y). Fig.(l) shows the behaviour

states{ S (0)}. where|+) = 25 _
of the time derivative of the greater eigenvalye, for these

states as a function of timeand parametes. As can be
IV. SOME EXAMPLESIN DYNAMICAL MODELS seen, for some intervals, € [_2.5,5.5], the process is non-
Markovian due to the positivity ofy.. In other words, the
non-Markovian behaviour appears when the qubit interacts
with a super-Ohmic reservoir. Positivity gf. (negativity of
. o _n-) means that the probability of finding the state of the sys-
Let us consider a two-level system which interacts with aiem in the initial state increases in some time intervalsngur
bosonic environment, where the type of the interactiones th the process, which is interpreted as the back flow of informa-
pure dephasing. In this case, the dynamics of one-qubit Sysipn from the environment to the system. The degree of the
tem is captured by the following time-local master equationnon-Markovianity of the pure dephasing dynamical map,
[26, 33] is plotted as a function of Ohmicity parametein Fig.(2).
(1) The results agree with those obtained by BLP meas3fje [

Lop®(1) = =5 (00" (o= = p7() , (24)

A. Phase Damping Dynamical M odel

whereo, is the Pauli spin operator in thedirection, andy(t) B. DephasingModel With Colored Noise

is the time-dependent dephasing rate. The result of this typ

of interaction between one-qubit system and the bosonic en- Let us consider a two-level quantum system which inter-
vironment is the decay of the off-diagonal elements with theacts with an environment having the properties of randoen tel
decoherence facteF (), wherel'(¢) > 0 always holds. When graph signal noise. The model was first presented by Daffer et

temperature of the environmentis zelgt) can be defined by ~ al.[36]. In this model, a dynamical quantum map is described
by a master equation of the form
1 — coswt

I(t) =4 / dwJ (@) ——5—, (25) p(t) = KLpS(t), (29)



ter equation
t i 2. 7
OB / Y e R lon, [on, p5 (E)))dE,  (32)
0 g

where the kernel function comes from the correlation func-
tions of random variablesl; (t)['.({)) = a? exp(—|t —
t|/7x)d;x. As one can see, E@ is in the form of Eq.29).
Also, Daffer et al. showed that the dynamical process de-
scribed by Eq32) is completely positive when two of the,

are zero, i.e. the random telegraph noise only acts in one di-

" 4 rection. Whenever; = a; = 0 andas = a the dynamical
S 6 process is known as a completely positive dephasing with the
colored noise. Thus one can show this quantum process of the
FIG. 1: Behaviour ofy; as a function of time ands. two-level system by a CPTP map in the Kraus form as follows
(29
0.030F" ‘ ‘ ‘ ‘ ‘ s
’ p5(t) =" AipS(0) AL (33)
0.025f ] i
0.02¢f 1 where A;’s are the Kraus operators describing the dynamics
2@ 0015 1 of the system and are given by
o 1+ A(v) 1—A(v)
14 — 14
0.005r b Al = T I, A2 = T Oz, (34)
T where A(v) = e "(cos(uw) + sin(u)/p), @ =
(4a7)? — 1, andv = t/27 is dimensionless time.
S Next by straightforward calculations the time derivatife o

the greater eigenvalues of the density matrixt) in Eq.@33),

7+, can be obtained as
FIG. 2: Degree of non-Markovianity for different types ofegvoir,

sub-Ohmic § < 1), Ohmic (s = 1), super-Ohmic{ > 1). d\4 (1) _ dA(v) 2|P‘182(0)|2
dt dv- /1 —4(p71(0)p3,(0) — A(V)lefQ(O)I(QB)g)

where K is a time-dependent integral operator defined as Considering the non-Markovianity condition introduced in
Ki = f(f k(t — O (f)di, wherek(t — £)y(f) is the kernel ~ Seclll, the dephasing dynamics of the system with the col-
function which determines the type of memory in the envi-oréd noise is non-Markovian#A(v)/dv > 0, which agrees
ronment. In order to study the master equation in the form ofvith the result obtained by applying some recently intrastlic

Eq.(29), one can consider a time-dependent Hamiltonian as Measuresq0, 26]. In Fig.(3), the time derivative of the greater
eigenvaluer), (t), is plotted as a function of time and- for

the initial statep® (0) = |£) (%] (|£) = %[|O>i|1>]). Here,
we emphasize that these initial states come from maximiza-
tion procedure in Eq22). As can be seen, ifr > % then in
some time intervalg, () may be positive, which means that
the dynamics of the system is non-Markovian. Also, the de-
gree of non-MarkovianitylV, in Eq.@22), is plotted in Fig.4).
From the above examples, it can clearly be seen that the
structure of reservoir affects the non-Markovianity cltara
ter of the dynamics. In phase damping dynamical model,

H(t)=> Tk(t)os, (30)
k

where, o), is the Pauli spin operator in thee-direction and
T, (t)'s are random variables obeying the statistics of a ran
dom telegraph signall',(t) is related to the variabley(t)

by T'x(t) = arng(t), in whichng(t) has a Poisson distribu-
tion with a mean being equal tg27;, anday’s are coin-flip
random variables possessing the valieg. Making use of

the von Neumann equatiop® (t) = —(i/h)[H(t), p5], one non-Markovianity is revealed in the super-Ohmic regime and
can find an expression for the density matrix of the two-levell dephasing model with colored noise, the degree of non-
system as Markovianity increases by increasing the fluctuation rdte o

the external field.

V. CONCLUSIONS

0 =20 i [ STl olds. @D
0 &

Substituting Eq31) back into the von Neumann equation and In this paper a non-Markovianity measur¥,, has been
performing the stochastic averages lead to the following-ma proposed which is expressly connected to the time deriwativ



v 10 we just only focus on CPTPU maps, it should be pointed out
5 — that applying the measure for this kind of maps is simplemntha
‘ other measures. This is due to the fact that in this measure we
do not require complicated statistical methods, such aston
Carlo sampling of the pairs of the initial states in order ¢o d
optimization procedure.

APPENDI X

The pure dephasing interaction between a two-level system
and surrounding bosonic environment is given by

w
H = 70@ + wiblbe + > ox(grbl + gibe),  (36)
k k

FIG. 3: Variation of‘“#t(” as a function of time andr.

d

‘ ‘ ‘ ‘ ‘ ‘ whereo, is the usual Pauli matrix in the-direction,w is
1.5} i the two-level system frequency, th@(bz) are the annihila-
tion(creation) operators which satisfy the commutatida-re
tion [bk,bz] = 0, 1» gk Is @ constant which can control the
o 1 ! strength of the coupling between the system and the environ-
< ment. In this model the off-diagonal elements of the density
05k matrix of the two-level system decay during the quantum pro-
cess, while the diagonal elements are constant in time secau
: | | there is no transition between energy levels which is due to
.0 0.5 1.0 15

0.0 this fact that[H,o.] = 0 holds. In interaction picture the

0 2.0 25 3.0 . . . .
Hamiltonian is obtained as

art .
Hi(t) = Z o (gkazewkt + grage”“rt). (37)
FIG. 4: Degree of non-Markovianity in terms of the fluctuatiate, K

o When the system interacts with a large environment, one

can work in the continuum limit and have a replacement
of the density matrix eigenvalues of an open quantum system_ |9x|* — [ dwJ (w)d(wi—w), whereJ (w) is the spectral
In the measure, the back flow of information from the envi-density of the environmen8B, 34]. Using the second order
ronment to the system has been used as a feature of a ndfne-convolutionless master equatidi &t zero temperature,
Markovian process. It has been shown that if the time deriva®ne can find the master equation appeared in28j).( This
tive of the greater eigenvalue is positive (or that of theltena model can be described in the Kraus representation form as
one is negative), the purity of the system state increases du
ing the time evolution with respect to that of the initialtsta
Tr?is means that the informatic?n flows from the environment po(t) = Z Di(t)pS(O)DzT(t)v (38)
to the system and therefore the dynamics is non-Markovian. =1
In addition, it has also been shown that the structure of the here the K — . b
reservoir affects on the Markovianity and non-Markovignit Where the Kraus operatof2;(t) are given by
character of an open quantum system dynand@k [The ad-

vantage of this measure is its simplicity in calculationsl an Di(t) = [14+e 70 I, Dot) = [1—e 0 o.. (39)
optimization procedure which is only taken over the alliatit 2 ’ 2 =
input states of the single qubit system. Although in thisgrap
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