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Abstract We studied a three-node quantum network that enables bidirec-
tional communication between two nodes with a half-duplex relay node for
transmitting classical messages. A decode-and-forward protocol is used to per-
form the communication in two phases. In the first phase, the messages of two
nodes are transmitted to the relay node. The capacity of the first phase is
well-known by previous works. In the second phase, the relay node broadcasts
a re-encoded composition to the two nodes. We determine the capacity region
of the broadcast phase. To the best of our knowledge, this is the first paper
analyzing quantum bidirectional relay networks.

Keywords Quantum information theory; Quantum network; Quantum relay
channel; Quantum broadcast channel

1 Introduction

The study of quantum channel networks has become more and more important
in the last few years.

Some of the first applications of this will be secret key transmission/gene-
ration and transmitting of secure messages over quantum networks. The ca-
pacities for secret key transmission/generation and the secrecy capacities for
message transmission have been determined in [14] and [11].

For these applications, the transmitters have to solve two main problems.
First, the message (a secret key or a secure message) has to be encoded in
such a way that it can be decoded correctly by the legal receiver. Second,
the message has to be encoded such that the wiretapper’s knowledge of the
transmitted classical message can be kept arbitrarily small.
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Transmission of secret keys and secure messages over long distances is
an essential requirement for those applications. Thus, in our paper, we con-
sider the problem how to ensure that the legal receivers are able to reproduce
the original messages. This is a necessary condition for reliable secret key
transmissions/generations and transmitting of secure messages over quantum
networks.

The problem of long-distance transmissions of quantum information is one
of the biggest problems in the realization of quantum networks. The sending
of photons in optical fibers is presently limited by 200 km because of losses
in the optical-fiber channel due to absorption on the way. One solution to
solve this problem is the development of quantum repeaters (cf. [10] and [1]).
Unfortunately, the practical realization of this component is not given until
now. The researchers already built quantum repeaters in their laboratories,
but until now it is not possible to extend the limit of 200 km.

In this paper, we use a relay instead of a quantum repeater. The advantage
of this protocol is that it is realizable and enables quantum communication
between two parties over the double length of the distance for sending photons
in optical fibers. This protocol can also be used for free space optical commu-
nications between satellites. The communications in several classical practical
applications such as satellite communication and cellular communication are
modeled with channels with relay nodes. Channel networks with relay nodes
have been studied extensively in the context of classical information theory
(cf. [24] and [13]). The study of quantum channels with relay nodes has just
recently begun (cf. [36]).

We analyze a quantum channel network model which was introduced for
classical channel networks in [33]. It is called the two-phase bidirectional re-
laying channel (Figure 1). In this model we consider a three-node quantum
network with two message sets M1 and M2, which is called a two-user bidi-
rectional quantum channel. The message m2 ∈ M2 is located at node 1, and
the message m1 ∈M1 is located at node 2, respectively, while a relay node en-
ables the bidirectional communication between these nodes. We assume that
the relay node cannot transmit and receive data at the same time. This is
usually called a half-duplex relay. This assumption is reasonable for practical
components in communication systems in general.

Our goal is that after the transmission the message m2 ∈ M2 is known at
node 2 and the messagem1 ∈M1 is known at node 1, respectively. We simplify
the problem by assuming an a priori separation of the communication into two
phases.

Fig. 1: Two-phase bidirectional relaying channels
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There exist several strategies which are usually classified by the process at
the relay node, namely the entanglement swapping-and-forward strategy (cf.
[23]) and the decode-and-forward strategy. We consider a two-phase decode-
and-forward protocol. The relay node’s task is to decode the messages that it
receives in the first phase and to forward the information to its destinations
in the second phase. This basically means that in the first phase the relay
measures and decodes and that in the second phase the relay prepares and
encodes. The disadvantage of this strategy is that the coherence is destroyed.
The advantage of this strategy is that in the second phase each receiver can
use its own message from the first phase as side information to gather a higher
capacity.

The goal of the communication is the transmission of classical signals, be-
tween two partners. The problem of the optimal transmission of these classical
signals can be divided into two parts:

1. Quantum modulation (i.e., choosing an optimal set of possible input states
which will be the input alphabet. This is equivalent to consider a special
classical-quantum channel, i.e., a quantum channel depending on the set
of chosen input states whose sender’s inputs are classical variables.)

2. Optimal coding for the classical-quantum channel.

We also consider this problem because the model of classical-quantum
channels is a very important tool for understanding the capacity formulas
for quantum channels. The capacity of classical-quantum channels has been
determined in [20], [21], and [41]. It turns out that classical-quantum channels
are not only of theoretical interest, but as well as of technical interest, too; for
instance, a code for a classical-quantum channel can be used for entanglement
generation (cf. [14]). Furthermore, new phenomenons such as super-additivity
and super-activation appear for carrying classical information through a quan-
tum channel (cf. [8]).

We would like to point out that the three-node bidirectional relay network
is an extremely advantageous tool in the relay network theory. The model
of classical three-node bidirectional relay network has been extended to more
complex models such as MIMO channels ([30], [15], [37], [32]), Gaussian chan-
nels ([37]), polar codes ([5]), and cross-layer designs ([27], [28], [29]). In view of
these previous works on the classical bidirectional relay network, our further
tasks will be to analyze these models for quantum networks (cf. [22], [17], and
[43]).

For classical models, the authors of [33] use results from coding theory for
degraded broadcast channel (cf. [6]). One of our major challenges in this paper
is that there are no equivalent tools in the quantum information theory yet.
Thus, we can only establish the capacity region with average errors, but not
the capacity region with maximal errors as in the classical case (cf. Remark
2). It still reminds open how the capacity region with maximal errors can be
established.
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Recent research has been done toward security for classical bidirectional
relay networks (cf. [39] and [5]). It is a promising task to find similar results
for quantum networks.

Another important basic feature for classical bidirectional relay networks
is the channel uncertainty ([38], [31]). The capacity for quantum channels with
uncertainty has been determined in [4], [7], and [8].

The design of communication protocols for quantum networks is a challeng-
ing task. For the design of efficient protocols, it is important to incorporate
side information into the coding schemes. In this paper, we considered the case
where both receivers have side information about the messages. [9] considered
recently the case where the transmitter has side information about the chan-
nel state. This corresponds to the classical “writing on dirty paper” coding.
This coding strategy plays an important role in modern communication sy-
stems. It is an interesting research topic to develop on the basic of [9] and the
bidirectional relaying protocol of this paper for more complicated quantum
networks.

The study of relay channels in the quantum scenario is novel. We hope our
results may raise interests in further analysis.

2 Basic definitions

2.1 A two-phase protocol

By the separation of the communication, we have a multiple-access phase,
where node 1 and node 2 transmit messages m2 and m1 to the relay node,
and a broadcast phase, where the relay forwards the messages to node 2 and
node 1, respectively. We look at the two phases separately.

Fig. 2: The multiple access phase

In the multiple-access phase, we have a classical-quantum multiple-access
channel. The multiple-access channel is a channel such that two (or more)
senders send information to a common receiver via this channel. The optimal
coding strategies and capacity regions for classical multiple-access channels



Bidirectional Relaying Classical-Quantum Channel 5

have been given in [3] and [25]. The optimal coding strategies and capacity
regions for multiple-access quantum channels have been given in [45] and [46].

Fig. 3: The broadcast phase

In the broadcast phase, we have a broadcast quantum channel. In a broad-
cast channel, one single sender sends information to two (or more) receivers.
The optimal coding strategies and capacity regions for classical broadcast
channels have been given in [26], [6], and [18]. An optimal coding strategy
and a capacity region for broadcast quantum channels have been given in [35].

For the broadcast phase, we assume that the relay node has successfully
decoded the messages m1 and m2 in the multiple-access phase. Of course, the
message m2 is also known at node 1 and the message m2 is also known at
node 2.

The goal of the relay node is to broadcast a message to node 1 and node 2
which allows both nodes to recover the unknown source. This means that
node 1 wants to recover message m1 and that node 2 wants to recover message
m2.

2.2 Notations and communication scenarios

For finite-dimensional complex Hilbert spaces G and G′, a quantum channel
N : S(G) → S(G′), S(G) 3 ρ → N(ρ) ∈ S(G′) is represented by a completely
positive trace-preserving map that accepts input quantum states in S(G) and
produces output quantum states in S(G′). Here, S(G) stands for the space of
density operators on the space G.

If the sender wants to transmit a classical message of a finite set A to the
receiver using a quantum channel N , his encoding procedure will include a
classical-to-quantum encoder to prepare a quantum message state ρ ∈ S(G)
suitable as an input for the channel. If the sender’s encoding is restricted to
transmit an indexed finite set of quantum states {ρx : x ∈ A} ⊂ S(G), then we
can consider the choice of the signal quantum states ρx as a component of the
channel. Thus, we obtain a channel σx := N(ρx) with classical inputs x ∈ A
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and quantum outputs, which we call a classical-quantum channel. This is a
map N: A→ S(G′), A 3 x→ N(x) ∈ S(G′) which is represented by the set of
|A| possible output quantum states {σx = N(x) := N(ρx) : x ∈ A} ⊂ S(G′),
meaning that each classical input of x ∈ A leads to a distinct quantum output
σx ∈ S(G′). In view of this, we have the following definition.

Let H be a finite-dimensional complex Hilbert space. A classical-quantum
channel is a map N : A→ S(H), A 3 a→ N(a) ∈ S(H).

For a probability distribution P on a finite set A and a positive constant
δ, we denote the set of typical sequences by

T nP,δ :=
{
xn ∈ An :

∣∣∣∣ 1n 〈xn | a〉 − P (a)
∣∣∣∣ ≤ δ

|A|

}
,

where 〈xn | a〉 is the number of occurrences of the symbol a in the sequence
xn.

Let n ∈ N, we define An := {(a1, . . . , an) : ai ∈ A ∀i ∈ {1, . . . , n}}. The
space which the vectors {v1⊗ . . .⊗vn : vi ∈ H ∀i ∈ {1, . . . , n}} span is defined
by H⊗n. We also write an for the elements of An.

Associated with a classical quantum channel, N : A→ S(H) is the channel
map on the n-block N⊗n: An → S(H⊗n) such that for an = (a1, . . . , an) ∈ An.
We have N⊗n(an) = N(a1)⊗ . . .⊗N(an).

For a quantum state ρ ∈ S(G), we denote the von Neumann entropy of ρ
by

S(ρ) = −tr(ρ log ρ) .
Let V: A → S(G) be a classical-quantum channel. For P ∈ P (A) the con-
ditional entropy of the channel for V with input distribution P is denoted
by

S(V|P ) :=
∑
x∈A

P (x)S(V(x)) .

Remark 1 The following definition is a more general definition of the con-
ditional entropy in quantum information theory. Let P and Q be quantum
systems. We denote the Hilbert space of P and Q by GP and GQ, respec-
tively. Let φPQ be a bipartite quantum state in S(GPQ). We denote S(P |
Q)ρ := S(φPQ)− S(φQ). Here φQ = trP(φPQ).

Let Φ := {ρx : x ∈ A} be a set of quantum states labeled by elements of
A. For a probability distribution P on A the Holevo χ quantity is defined as

χ(P ;Φ) := S

(∑
x∈A

P (X)ρx

)
−
∑
x∈A

P (X)S (ρx) .

We denote the identity operator on a space G by idG.
A collection of positive semi-definite operators {Mi : i} on G is called a

positive operator valued measure, or POVM, if it is a partition of the identity,
i.e.,

∑
iMi = idG.
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2.3 Code concepts

A two-user multiple-access quantum channel NBC−A : HBC → HA has two
senders B and C, and a single receiver A. It is defined as a map N : HBC →
HA.

An (n, J
(1)
n , J

(2)
n ) code carrying classical information for a two-user quan-

tum multiple access channel NBC−A : HBC → HA consists of a ensemble
of quantum states {w(m1) : m1 = 1, . . . , J

(1)
n } ⊂ S(HB⊗n), quantum states

{v(m2) : m2 = 1, . . . , J
(2)
n } ⊂ S(HC⊗n), and a POVM

{
Dm1,m2

: m1 ∈

{1, . . . , J (1)
n },m2 ∈ {1, . . . , J (2)

n }
}

on HA⊗n.

A pair of nonnegative numbers (R1, R2) is an achievable rate pair with
classical inputs for the quantum multiple-access channel NBC−A : HBC →
HA with average error if for every positive ε, δ, and a sufficiently large n
there is an (n, J

(1)
n , J

(2)
n ) code carrying classical information ({w(m1) : m1 =

1, . . . , J
(1)
n }, {v(m2) : m2 = 1, . . . , J

(2)
n }, {Dm1,m2

: m1 ∈ {1, . . . , J (1)
n }, m2 ∈

{1, . . . , J (2)
n }}) such that 1

n log J
(1)
n ≥ R1 − δ, 1

n log J
(2)
n ≥ R2 − δ and

1

J
(1)
n J

(2)
n

J(1)
n∑

m1=1

J(2)
n∑

m2=1

tr
(
(idHA⊗n −Dm1,m2

)N⊗nBC−A ((w(m1), v(m2)))
)
≤ ε .

(1)
The two-user broadcast quantum channel NA−BC : HA → HBC is a quan-

tum channel from a single sender A to two independent receivers B and C.
The quantum channel W1 from A to B is obtained by tracing out C from
the channel map, i.e., W1 = NA−B : HA → HB , which is the quantum
channel from A to B, is defined as W1(σ) = trC(NA−BC(σ)). Furthermore,
W2 = NA−C : HA → HB , which is the quantum channel from A to C, is
defined as W2(σ) = trB(NA−BC(σ)).

An (n, J
(1)
n , J

(2)
n ) code carrying classical information for a two-user broad-

cast quantum channelNA−BC :HA→HBC consists of a ensemble {w((m1,m2)) :

m1 = 1, . . . , J
(1)
n ,m2 = 1, . . . , J

(2)
n } ⊂ S(A⊗n), a POVM

{
D

(1)
m1 : m1 ∈ {1, . . . , J (1)

n }
}

on HB⊗n, and a POVM
{
D

(2)
m2 : m2 ∈ {1, . . . , J (2)

n }
}

on HC⊗n.

A pair of nonnegative numbers (R1, R2) is an achievable rate pair with a
classical input for the two-user broadcast quantum channel NA−BC : HA →
HBC with average error if for every positive ε, δ, and a sufficiently large n there
is an (n, J

(1)
n , J

(2)
n ) code carrying classical information ({wt(j) : j}, {Dj : j})

such that 1
n log J

(1)
n ≥ R1 − δ, 1

n log J
(2)
n ≥ R2 − δ, for every m2 ∈M2

1

J
(1)
n

J(1)
n∑
j=1

tr
(
(idHB⊗n −D(1)

m1
)W⊗n1 (w((m1,m2)))

)
≤ ε , (2)
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and for every m1 ∈M1

1

J
(2)
n

J(2)
n∑
j=1

tr
(
(idHC⊗n −D(1)

m2
)W⊗n2 (w((m1,m2)))

)
≤ ε , (3)

where W1 = NA−B and W2 = NA−C .
The capacity regions of multiple-access quantum channels and broadcast

quantum channels are convex by the time-sharing principle: Let (R1, R2) and
(R′1, R

′
2) be rate tuples of m and n block codes, respectively, with error proba-

bilities ε1 and ε2, respectively. We get an (m+ n) block code with error prob-
ability at most ε1 + ε2 and with rates

(
m

m+nR1 +
n

m+nR
′
1,

m
m+nR2 +

n
m+nR

′
2

)
by concatenating the code words to (m + n) blocks and tensoring the corre-
sponding decoding observables.

3 The classical-quantum capacity region of the bidirectional
relaying quantum channel

For the multiple-access phase, the optimal coding strategy is well known
from [45], where the following lemma for the classical-quantum rate region
of multiple-access quantum channels was given.

Lemma 1 Let NY2Y1−X be a two-user multiple-access quantum channel. Let
HY1 be the Hilbert space whose unit vectors correspond to the pure states of
node 1’s quantum system, HY2 be the Hilbert space whose unit vectors corre-
spond to the pure states of node 2’s quantum system, and HX be the Hilbert
space whose unit vectors correspond to the pure states of the relay node’s quan-
tum system.

We assume node 1’s encoding is restricted to transmitting an indexed finite
set of orthogonal quantum states Y1 ⊂ HY1 .

We assume node 2’s encoding is restricted to transmitting an indexed finite
set of orthogonal quantum states Y2 ⊂ HY2 .

The classical-quantum capacity region of the multiple-access quantum chan-
nel NY2Y1−X with average error is given by the set of all rate pairs (R2, R1),
satisfying

R2 ≤ χ(Q1;σ
X) , (4)

R1 ≤ χ(Q2;σ
X) , (5)

and
R2 +R1 ≤ χ(Q1,2;σ

X) (6)

for any joint probability distribution Q1,2 on Y1×Y2. Here, Q1 is the marginal
probability distribution of Q1,2 on Y1, Q2 is the marginal probability distribu-
tion of Q1,2 on Y2, and σX is the resulting quantum state at the outcome of
the relay node.
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Thus, if n is sufficiently large and if for M1 and M2 it holds

|M2| ≤ b2n(χ(Q1;σ
X)−ε)c ,

|M1| ≤ b2n(χ(Q2;σ
X)−ε)c ,

and
|M2|+ |M1| ≤ b2n(χ(Q1,2;σ

X)−ε)c

for some positive ε, we can assume that the relay node has successfully decoded
the messages m1 ∈M1 and m2 ∈M2.

Note that the author of [45], using block codes and showing a weak con-
verse, is able to give (4), (5), and (6) in single letter formula. Please see [9] for
more discussions on the value of multiletter formulas for quantum communi-
cation networks.

For the broadcast phase, since each node has perfect knowledge about the
message intended for the other, one can use this knowledge as a support for
the choice of the decoding strategy to decode the message intended for itself.
In view of these facts, we have the following Theorem 1.

Theorem 1 Let N be a two-user bidirectional quantum channel. Let HY1 be
the Hilbert space whose unit vectors correspond to the pure states of node 1’s
quantum system, HY2 be the Hilbert space whose unit vectors correspond to the
pure states of node 2’s quantum system, and HX be the Hilbert space whose
unit vectors correspond to the pure states of the relay node’s quantum system.
Let NX−Y1Y2

be the broadcast quantum channel in the broadcast phase.
We assume that the relay node’s encoding is restricted to transmitting an

indexed finite set of orthogonal quantum states {φx : x ∈ X} ⊂ HX .
For all probability distribution P on X, the capacity region of the bidi-

rectional broadcast quantum channel NX−Y1Y2
during the broadcast phase for

transmitting classical information with average error is given by the set of all
rate pairs (R1, R2), satisfying

R1 ≤ lim sup
n→∞

1

n
χ(Pn;σY1

⊗n
) (7)

and
R2 ≤ lim sup

n→∞

1

n
χ(Pn;σY2

⊗n
) . (8)

Here, σY1 is the resulting quantum state at the outcome of node 1, while σY2

is the resulting quantum state at the outcome of node 2.

Proof It is easy to verify that every achievable rate pair cannot exceed (7) and
(8). R1 cannot exceed lim supn→∞

1
nχ(P

n;σY1
⊗n

), even if the relay node only
sends a message to node 1 without sending any message to node 2 (cf. [21]). For
the same reason, R2 cannot exceed lim supn→∞

1
nχ(P

n;σY2
⊗n

) either. Now we
will prove the achievability of the extremal point of the rate region given by
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(7) and (8), since then every rate pair in the rate region is achievable by the
time-sharing principle.

At first, we present some tools which that were used for our proof:

Let H be a Hilbert space. For ρ ∈ S(H) and α > 0 there exists an orthog-
onal subspace projector Πρ,α commuting with ρ⊗n and satisfying

tr
(
ρ⊗nΠρ,α

)
≥ 1− d

4nα2
, (9)

tr (Πρ,α) ≤ 2nS(ρ)+Kdα
√
n , (10)

Πρ,α · ρ⊗n ·Πρ,α ≤ 2−nS(ρ)+Kdα
√
nΠρ,α , (11)

where d := dimH and K is a positive constant (cf. [42]).
Let A be a finite set and let V : A → S(H) be a classical-quantum channel.
For a probability distribution P on A, α > 0, and xn ∈ T nP there exists an
orthogonal subspace projector ΠV,α(x

n) commuting with V⊗nxn and satisfying

tr
(
V⊗n(xn)ΠV,α(x

n)
)
≥ 1− ad

4nα2
, (12)

tr (ΠV,α(x
n)) ≤ 2nS(V|P )+Kadα

√
n , (13)

ΠV,α(x
n) ·V⊗n(xn) ·ΠV,α(x

n)

≤ 2−nS(V|P )+Kadα
√
nΠV,α(x

n) , (14)

where a := #{A} and K is a positive constant (cf. [42]).
Let V : A → S(H) be a classical-quantum channel. Then, every probability
distribution P on A defines a quantum state PV on S(H), which is the re-
sulting quantum state at the output of V when the input is sent according to
P . Thus, for α′ > 0 we can define an orthogonal subspace projector ΠPV,α′

√
a

which fulfills (9), (10), and (11) (here, we set ρ = PV and α = α′
√
a). Fur-

thermore, for ΠPV,α′
√
a, we have the following inequality

tr
(
V⊗n(xn) ·ΠPV,α′

√
a

)
≥ 1− ad

4nα2
, (15)

where K is a positive constant (cf. [42]).

Lemma 2 (Measurement on Approximately Close States, cf. [42])
Let σ and ρ be two quantum states, and let Π be a positive operator such that
Π ≤ id; then,

tr(Πσ) ≥ tr(Πρ)− ‖σ − ρ‖1 .

Lemma 3 (Tender Operator, cf. [44] and [34]) Let ρ be a quantum state.
Let X be a positive operator such that X ≤ id and 1− tr(ρX) ≤ λ ≤ 1; then,

‖ρ−
√
Xρ
√
X‖ ≤

√
8λ . (16)
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Lemma 4 (Hayashi-Nagaoka Operator Inequality, cf. [19]) For any
positive operators S and T such that S ≤ id we have

id− (S + T )−
1
2S(S + T )−

1
2 ≤ (id− S) + 4T . (17)

The random encoding technique:

We denote W1 = NX−Y1
and W2 = NX−Y2

. For any positive ε let M ′1 be
a message set such that |M ′1| ≤ 2n(χ(P ;σY1 )−2ε), and let M ′2 be a message
set such that |M ′2| ≤ 2n(χ(P ;σY2 )−2ε). We generate |M ′1||M ′2| independent
random variables

{Xn(m1,m2) : m1 ∈M ′1,m2 ∈M ′2}

taking values in T nP i.i.d. according to the product distribution P (xn) =∏n
i=1 P (xi).
For all xn ∈ Xn we define ΠPW1,α

√
a on HY1

⊗n, ΠPW2,α
√
a on HY2

⊗n,
ΠW⊗n

1 (xn),α on HY1
⊗n, and ΠW⊗n

2 (xn),α on HY2
⊗n as in (12), (13), (14), and

(15). Here, we set P = P , V =W1, and =W2, respectively. α is some positive
constant which we will choose later. We define

D′
(1)
xn := ΠPW1,α

√
aΠW⊗n

1 (xn),αΠPW1,α
√
a ,

and
D′

(2)
xn := ΠPW2,α

√
aΠW⊗n

2 (xn),αΠPW1,α
√
a .

Analysis of errors of the first kind:

We say an error of the first kind occurs if (m1,m2) has been send by the
relay node, and either node 1 fails to decode m1 or node 2 fails to decode m2.

For all (m1,m2) ∈M ′1×M ′2 and any realization xn(m1,m2) ofXn(m1,m2)
we have

tr
(
W⊗n1 (xn(m1,m2))D

′(1)
xn(m1,m2)

)
= tr

(
W⊗n1 (xn(m1,m2))ΠPW1,α

√
aΠW⊗n

1 (xn(m1,m2)),α
ΠPW1,α

√
a

)
= tr

(
(ΠPW1,α

√
aW
⊗n
1 (xn(m1,m2))ΠPW1,α

√
a)ΠW⊗n

1 (xn(m1,m2)),α

)
≥ tr

(
W⊗n1 (xn(m1,m2))ΠW⊗n

1 (xn(m1,m2)),α

)
−
∥∥ΠPW1,α

√
aW
⊗n
1 (xn(m1,m2))ΠPW1,α

√
a −W⊗n1 (xn(m1,m2))

∥∥
1

≥ 1− d

4nα2
tr
(
ΠW⊗n(xn(m1,m2)),α

)
−
∥∥ΠPW1,α

√
aW
⊗n
1 (xn(m1,m2))ΠPW1,α

√
a −W⊗n1 (xn(m1,m2))

∥∥
1
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≥ 1− d

4nα2
−
√
8
ad

4nα2
. (18)

The first inequality holds because of Lemma 2, the second inequality holds
because of (12), and the third inequality holds because of Lemma 3 and (15).

Similarly, we have

tr
(
W⊗n2 (xn(m1,m2))D

′(2)
xn(m1,m2)

)
≥ 1− d

4nα2
−
√
8
ad

4nα2
. (19)

Thus, the errors of the first kind go to zero if n is sufficiently large.

Analysis of errors of the second kind:

We define ρ2 := PW2 =
∑
x∈X P (X)W2(φx); then, ρY2 = ρ2 if any re-

alization of Xn is used to decode the input message. Let us fix (m1,m2),
(m1,m

′
2) ∈ M ′1 ×M ′2 such that m2 6= m′2. Node 2 would make an error if

(m1,m2) has been sent, but node 2’s decoding results in the message m′2. We
call it an error of the second kind. We now consider the expected value of the
probability of this case, if we use the random encoder Xn to decode the input
message. We have

E
[
tr
(
W⊗n2 (Xn(m1,m2))D

′(2)
Xn(m1,m′2)

)]
= tr

[
E
(
W⊗n2 (Xn(m1,m2))

)
· E
(
D′

(2)
Xn(m1,m′2)

)]
= tr

[
ρ⊗n2 E

(
D′

(2)
Xn(m1,m′2)

)]
= tr

[
ρ⊗n2 E

(
ΠPW2,α

√
aΠW⊗n

2 (Xn(m1,m′2)),α
ΠPW2,α

√
a

)]
= tr

[
E
(
ρ⊗n2 ΠPW2,α

√
aΠW⊗n

2 (Xn(m1,m′2)),α
ΠPW2,α

√
a

)]
= tr

[
E
(
(ΠPW2,α

√
aρ
⊗n
2 ΠPW2,α

√
a)ΠW⊗n

2 (Xn(m1,m′2)),α

)]
= tr

[
(ΠPW2,α

√
aρ
⊗n
2 ΠPW2,α

√
a)E

(
ΠW⊗n

2 (Xn(m1,m′2)),α

)]
≤ 2−n[S(ρ2)−

1
2 ε]tr

[
ΠPW2,α

√
aE
(
ΠW⊗n

2 (Xn(m1,m′2)),α

)]
≤ 2n[

∑
x∈X P (X)S(W2(φx))− 1

2 ε]2−n[S(ρ2)−
1
2 ε]tr

[
ΠPW2,α

√
a

]
= 2−n[

∑
x∈X P (X)S(W2(φx))−S(

∑
x∈X P (X)W2(φx))−ε]tr

[
ΠPW2,α

√
a

]
= 2−n[χ(P,ρ

Y2 )−ε]tr
[
ΠPW2,α

√
a

]
≤ 2−n[χ(P,ρ

Y2 )−ε] . (20)

The first equality hold because Xn(m1,m2) and Xn(m1,m
′
2) are independent,

the first inequality holds because of (11), and the second inequality holds
because of (13).
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Similarly, let us fix (m′1,m2), (m1,m2) ∈ M ′1 ×M ′2 such that m1 6= m′1.
Node 1 would make an error (of the second kind) if (m1,m2) has been sent, but
node 1’s decoding results in the message m′1. We now consider the expected
value of the probability of this case if we use the random encoder Xn to decode
the input message. We have

E
[
tr
(
W⊗n1 (Xn(m1,m2))D

′
Xn(m1,m′2)

(1)

)]
≤ 2−n[χ(P,ρ

Y1 )−ε] . (21)

Thus, the errors of the second kind go to zero if n is sufficiently large.

Definition of the code:

For all (m1,m2) ∈M ′1 ×M ′2 we define

D
(1)
Xn(m1,m2)

:=

√ ∑
m∗1∈M ′1

D′
(1)
Xn(m∗1 ,m2)

−1D′(1)Xn(m1,m2)

√ ∑
m∗1∈M ′1

D′
(1)
Xn(m∗1 ,m2)

−1 ,

and

D
(2)
Xn(m1,m2)

:=

√ ∑
m∗2∈M ′2

D′
(2)
Xn(m1,m∗2)

−1D′(2)Xn(m1,m2)

√ ∑
m∗2∈M ′2

D′
(2)
Xn(m1,m∗2)

−1 ,

which depends on the random outcome ofXn. By construction, for any realiza-
tion {xn(m1,m2) : m1 ∈ M ′1,m2 ∈ M ′2} of {Xn(m1,m2) : m1 ∈ M ′1,m2 ∈
M ′2} we have for every m1 ∈M ′1,∑

m1∈M ′1

D
(1)
xn(m1,m2)

≤ idHB⊗n ,

and for every m2 ∈M ′2 ∑
m2∈M2

D
(2)
xn(m1,m2)

≤ idHC⊗n .

We combine (18) and (20), for all (m1,m2) ∈M ′1 ×M ′2 we have

E
[
tr
(
D

(1)
Xn(m1,m2)

W⊗n1 (Xn(m1,m2))
)]

≥ E
[
tr
(
D′

(1)
Xn(m1,m2)

W⊗n1 (Xn(m1,m2))
)]

− 4E

tr
 ∑
m∗1 6=m1

D′
(1)
Xn(m∗1 ,m2)

W⊗n1 (Xn(m1,m2))


≥ 1− d

4nα2
−
√
8
ad

4nα2

− 4E

tr
 ∑
m∗1 6=m1

D′
(1)
Xn(m∗1 ,m2)

W⊗n1 (Xn(m1,m2))


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≥ 1− d

4nα2
−
√
8
ad

4nα2
− 4|M ′1|2−n[χ(P,σ

Y1 )−ε]

≥ 1− d

4nα2
−
√
8
ad

4nα2
− 2−nε . (22)

The first inequity holds because of Lemma 4.

Similarly, if we combine (18) and (21), we have for all (m1,m2) ∈M ′1×M ′2

E
[
tr
(
D

(2)
Xn(m1,m2)

W⊗n2 (Xn(m1,m2))
)]
≥ 1− d

4nα2
−
√
8
ad

4nα2
−2−nε . (23)

Since (22) and (23) hold for all (m1,m2) ∈M ′1 ×M ′2, for any positive ω,
choosing a suitable α, if n is sufficiently large, we have∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
E
[
tr
(
D

(1)
Xn(m1,m2)

W⊗n1 (Xn(m1,m2))
)]
≥ 1− ω

and∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
E
[
tr
(
D

(2)
Xn(m1,m2)

W⊗n2 (Xn(m1,m2))
)]
≥ 1− ω .

By the law of large numbers, if n is sufficiently large, for any positive δ
and γ, we have

p

{ ∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(1)
Xn(m1,m2)

W⊗n1 (Xn(m1,m2))
)
≥ 1− δ

}
≥ 1−γ

and

p

{ ∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(2)
Xn(m1,m2)

W⊗n2 (Xn(m1,m2))
)
≥ 1− δ

}
≥ 1−γ .

Thus,

p
{ ∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(1)
Xn(m1,m2)

W⊗n1 (Xn(m1,m2))
)
≥ 1− δ and

∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(2)
Xn(m1,m2)

W⊗n2 (Xn(m1,m2))
)
≥ 1− δ

}
≥ 1− 2γ .

If n is sufficiently large, with a positive probability, we can find a realization
xn(m1,m2) of Xn(m1,m2) such that∑

m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(1)
xn(m1,m2)

W⊗n1 (xn(m1,m2))
)
≥ 1− δ ,
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and ∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(2)
xn(m1,m2)

W⊗n2 (xn(m1,m2))
)
≥ 1− δ .

Definition of the message sets:

Assume∣∣∣∣{m2 ∈M ′2 :
∑

m2∈M ′2

1

|M ′2|
tr
(
D

(1)
xn(m1,m2)

W⊗n1 (xn(m1,m2))
)
< 1− 2δ

}∣∣∣∣
>

1

2
|M ′2| .

We have in this case,∑
m1∈M ′1

∑
m2∈M ′2

1

|M ′1||M ′2|
tr
(
D

(1)
xn(m1,m2)

W⊗n1 (xn(m1,m2))
)
< 1− δ ,

but this is a contradiction to the result above.
Thus, there exists a setM2 ∈M ′2 such that |M2| = d 12 |M

′
2|e and for every

m2 ∈M2 we have∑
m1∈M ′1

1

|M ′1|
tr
(
D

(1)
xn(m1,m2)

W⊗n1 (xn(m1,m2))
)
≥ 1− 2δ . (24)

Similarly, there exists a set M1 ∈ M ′1 such that |M1| = d 12 |M
′
1|e and for

every m1 ∈M1 we have∑
m2∈M ′2

1

|M ′2|
tr
(
D

(2)
xn(m1,m2)

W⊗n2 (xn(m1,m2))
)
≥ 1− 2δ . (25)

For every (m1,m2) ∈M1 ×M2, we define

w((m1,m2)) := xn(m1,m2) , (26)

D(m1)
m2

:= D
(1)
xn(m1,m2)

, (27)

and
D(m2)
m1

:= D
(2)
xn(m1,m2)

. (28)

{D(m2)
m1 : m1 ∈M1} is less or equal to the partition of the identity for every

m2 ∈ M2. {D(m1)
m2 : m2 ∈ M2} is less or equal to the partition of the identity

for every m1 ∈M1.

Since node 1 already knows the message m2 ∈ M2, it chooses the corre-
sponding decoding set {

D(m2)
m : m ∈M1

}
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to decode m1 ∈ M1. Since node 2 already knows the message m1 ∈ M1, it
chooses the corresponding decoding set{

D(m1)
m : m ∈M2

}
to decode m2 ∈M2.

By (24) and (25), for every m2 ∈M2 we have∑
m1∈M1

1

|M1|
tr
(
D(m2)
m1

W⊗n1 (xn(m1,m2))
)
≥ 1− 4δ , (29)

and for every m1 ∈M1 we have∑
m2∈M2

1

|M2|
tr
(
D(m1)
m2

W⊗n2 (xn(m1,m2))
)
≥ 1− 4δ . (30)

Thus, for all sufficiently large n ∈ N any rate pairs satisfying

R1 ≤ χ(P ;σY1)− 2ε− 1

n

and
R2 ≤ χ(P ;σY2)− 2ε− 1

n

are achievable. ut

If we combine Lemma 1 and Theorem 1, we obtain

Corollary 1 Let N be a two-phase bidirectional relaying quantum channel.
Let HY1 be the Hilbert space whose unit vectors correspond to the pure states
of node 1’s quantum system, HY2 be the Hilbert space whose unit vectors cor-
respond to the pure states of node 2’s quantum system, and HX be the Hilbert
space whose unit vectors correspond to the pure states of the relay node’s quan-
tum system.

We assume that the relay node’s encoding is restricted to transmitting an
indexed finite set of orthogonal quantum states X ⊂ HX .

We assume that node 1’s encoding is restricted to transmitting an indexed
finite set of orthogonal quantum states Y1 ⊂ HY1 .

We assume that node 2’s encoding is restricted to transmitting an indexed
finite set of orthogonal quantum states Y2 ⊂ HY2 .

The classical-quantum capacity region of the two-phase bidirectional re-
laying quantum channel N with average error is the intersection of two rate
regions, Region 1 and Region 2, which are defined as follows:

1: Region 1 is the set of all rate pairs (R1, R2) such that

R2 ≤ χ(Q1;σ
X) , (31)

R1 ≤ χ(Q2;σ
X) , (32)
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and
R2 +R1 ≤ χ(Q1,2;σ

X) (33)

for any joint probability distribution Q1,2 on Y1×Y2. Here Q1 is the marginal
probability distribution of Q1,2 on Y1, Q2 is the marginal probability distribu-
tion of Q1,2 on Y2, and σX is the resulting quantum state at the outcome of
the relay node.

2: Region 2 is the set of all rate pairs (R1, R2) such that

R1 ≤ lim sup
n→∞

1

n
χ(Pn;σY1

⊗n
) (34)

and
R2 ≤ lim sup

n→∞

1

n
χ(Pn;σY2

⊗n
) (35)

for all probability distribution P on X. Here, σY1 is the resulting quantum
state at the outcome of node 1, while σY2 is the resulting quantum state at
the outcome of node 2.

Remark 2 Note that the capacity region of a multiple-access channel with
average errors is not equal to its capacity region with maximal errors. This
is a well-known fact in the classical information theory (cf. [16] and [2]). We
consider average errors, not maximal errors in Theorem 1 and Corollary 1,
since we use Lemma 1, which considered average errors, for the multiple-access
phase.

Remark 3 Without loss of generality, we assume that χ(P ;σY1) ≥ χ(P ;σY2),
i.e., W2, the channel which connects the relay node and node 2, has a lower
capacity thanW1 in the broadcast phase. If χ(Q2;σ

X) = χ(P ;σY2), i.e., the ca-
pacities ofW2 in both directions are identical, then R1 cannot exceed χ(P ;σY2)
in the multiple-access phase. In this case, we may assume that in the broad-
cast phase the message sets M1 = {1, . . . , |M1|} and M2 = {1, . . . , |M2|}, that
the relay node sends to node 1 and node 2, satisfy |M1| ≤ 2nχ(P ;σY2 )−ε and
|M2| ≤ 2nχ(P ;σY2 )−ε for a positive ε.

In this case, we have a very simple coding strategy for the broadcast phase.
The common message set which the relay node sends to both node 1 and
node 2 in the broadcast phase is a set M ′ = {1, . . . , |M ′|} which satisfies
|M ′| = b2nχ(P ;σY2 )−εc.

We consider the case that the relay node wants to send (m1,m2) ∈ M1 ×
M2, where node 1 shall detect m1, while node 2 shall detect m2. Then, the
relay node sends m1 + m2 mod |M ′| as a common message to both node 1
and node 2. By the HSW Random Coding Theorem (cf. [41] and [21]) node 1
and node 2 can decode the common message if the size of the message set is
less than 2nχ(P ;σY2 )

Since node 1 already knows m2, it can obtain m1 by simply subtracting
m2 from m1 +m2 modulo |M ′|. Since node 2 already knows m1, it can obtain
m2 by subtracting m1 from m1 +m2 modulo |M ′|.
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