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Abstract

The fidelity and local unitary transformation are two widely useful notions in quantum physics. We

study two constrained optimization problems in terms of the maximal and minimal fidelity between two

bipartite quantum states undergoing local unitary dynamics. The problems are related to the geometric

measure of entanglement and the distillability problem. We show that the problems can be reduced to

semi-definite programming optimization problems. We give close-form formulae of the fidelity when the

two states are both pure states, or a pure product state and the Werner state. We explain from the point

of view of local unitary actions that why the entanglement in Werner states is hard to accessible. For

general mixed states, we give upper and lower bounds of the fidelity using tools such as affine fidelity,

channels and relative entropy from information theory. We also investigate the power of local unitaries,

and the equivalence of the two optimization problems.
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1 Introduction

Finding suitable quantities for characterizing the correlations in a bipartite or multipartite quantum state

has been an important problem in quantum information theory. Three well-known quantities are entan-

glement, fidelity and mutual information [1]. Investigating the quantities under unitary dynamics has

various physical applications. The local evolution of free entangled states into bound entangled or separa-

ble states in finite time presents the phenomenon of sudden death of distillability. In the phenomenon, the

fidelity was used to evaluate how close the evolved state is close to the initial state [2]. Next, finding out

the local unitary orbits of quantum states characterizes their properties for various quantum-information

tasks, and it is also mathematically operational [3]-[8]. By searching for the maximally and minimally
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correlated states on a unitary orbit, the authors in [9] quantified the amount of correlations in terms of the

quantum mutual information. The correlations in a multipartite state within the construction of unitary

orbits have been also examined [10]. These applications originate from the fact that the unitary dynamics

influences the interaction of quantum systems. It is thus a widely concerned question to characterize

how heavy the influence can be under certain metric such as the fidelity. The latter has been used to

evaluate the entangled photon pairs obtained by experimental heralded generation [11], and the unitary

gates of experimentally implementing quantum error correction [12]. In contrast to the global unitary

dynamics which involves nonlocal correlation, the local unitary action can be locally performed and does

not change the properties of quantum states. Because of the easy accessibility in mathematics, the global

unitary dynamics has been studied a lot [13]. In contrast, much less is known about the local unitary

dynamics.

In this paper, we study the maximal and minimal fidelity between two bipartite quantum states, one of

which undergoes arbitrary local unitary dynamics. To be more specific, let ρ and σ be two bipartite states

acting on the Hilbert space H1 ⊗H2 of dimensions dimHi = di, i = 1, 2. Let U(H1) be the unitary group

on H1. We propose two constrained optimization problems as computing the functionals

Gmax(ρ, σ) := max
Ui∈U(Hi):i=1,2

F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†) (1.1)

and

Gmin(ρ, σ) := min
Ui∈U(Hi):i=1,2

F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†) (1.2)

where F(ρ, σ) := Tr
(√√

ρσ
√

ρ
)

is the fidelity between any two semidefinite positive matrices ρ and σ.

Because of the symmetric property of fidelity, the two functionals are unchanged under the exchange of

arguments ρ and σ. Note that if the local unitary action is replaced by global unitary action, then the

problems have been analytically solved in [13].

Intuitively, the functionals respectively stand for the maximal and minimal distance that local unitary

can create between quantum states. The solution to the optimization problems exists because the unitary

group is a compact Lie group. We will show that they can indeed be reduced to the well-known semidef-

inite programming (SDP) problems. So we may efficiently compute the functionals for many states. Then

we derive the close-form formulaes to the functionals when ρ and σ are both pure states, or a pure prod-

uct state and the Werner state. We show that in contrast with the separable Werner state, the entangled

Werner state of d > 3 is closer to the set of pure separable states under local unitary dynamics. In this

context, the distillability of two-qubit and two-qutrit Werner states may be distinguished by comparing

their Gmax. For general mixed states, we derive the upper and lower bounds of the functionals in terms of

the monotonicity of fidelity, quantum channel, the affine fidelity, the integral over the unitary group via

Haar measure. We also investigate how local unitaries influence the commutativity of quantum states, as

well as the equivalence of the two optimization problems.

Our results straightforwardly make progress towards the following quantum-information problems.

First, Gmax(ρ, σ) reduces to the geometric measure of entanglement (GME) when ρ or σ is a pure product

state [14, 15]. Mathematically the GME of a quantum state ρ is defined as maxψ〈ψ|ρ|ψ〉 where |ψ〉 is a

product state. It is known that the GME of a bipartite state measures the closest distance between this
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state and separable states. It coincides with the intuitive interpretation of the functionals. The GME is

a multipartite entanglement measure and has been extensively studied recently [16, 17]. The GME also

applies to the construction of initial states for Grover algorithm [19, 18], the discrimination of quantum

states under local operations and classical communications (LOCC) [20], and one-way quantum computa-

tion [16]. For a review of GME we refer the readers to [17]. Recall that the fully entangled fraction (FEF)

for any bipartite state ρ in a d ⊗ d system is defined as the maximal overlap with maximally entangled

pure states,

max
U,V unitaries

〈
Ω

∣∣∣(U ⊗ V)ρ(U ⊗ V)†
∣∣∣Ω
〉

,

where |Ω〉 = 1√
d

∑
d−1
j=0 |jj〉 is the maximally entangled state. Then, Gmax(ρ, σ) is the square root of the FEF

when one state of ρ and σ is a maximally entangled state for d1 = d2 [21]. In this case, the other state

of ρ and σ can be any mixed state. The FEF works as the fidelity of optimal teleportation, and thus has

experimental significance [22]. The close-form for the FEF in a two-qubit system is derived analytically

by using the method of Lagrange multiplier [23]. Second, Gmin(ρ, σ) is related to the famous distillability

problem in entanglement theory. The latter is related to the additivity property of distillable entanglement

and the activation of bound entanglement [24]. It is known that a bipartite state ρ is distillable if and only if

there exists a positive integer n and a Schmidt-rank two pure state |ψ〉, such that 〈ψ|(ρ⊗n)Γ|ψ〉 < 0 [25, 26].

Our optimization problems imply that ρ is distillable if and only if minλ∈(0,1) G2
min(|φλ〉, (ρ⊗n)Γ + x1) < x,

where |φλ〉 =
√

λ|00〉+
√

1 − λ|11〉 and x is a positive number such that the second argument is positive

semi-definite. We stress that the difficulty of the distillability problem mostly arises from the local unitary

orbits involved in the optimization problems above. The distillability problem has turned out to be hard,

and a review of recent progress can be found in [27]. All these problems are thus well motivated by the

findings in this paper.

The rest of the paper is organized as follows. In Sec. 2, we show that the computation of the two

functionals Gmax and Gmin can be reduced to the SDP problem. Then we derive the close-form formulae

of functionals when ρ and σ are both pure states, or a pure product state and the Werner state. We also

point out a potential connection between the distillability problem and our optimization problem for Gmax.

Next, several connections, upper and lower bounds on the functionals are computed in Sec. 3. We discuss

in Sec. 4, and conclude in Sec. 5.

2 SDP and analytical formula of functionals

We see that F(ρ, (U ⊗ V)σ(U ⊗ V)†) is a continuous function over local unitary groups U(H1)⊗ U(H2).

Since U(H1) and U(H2) are compact Lie groups, it follows that there exists Ui, Vi ∈ U(Hi)(i = 1, 2) such

that

Gmax(ρ, σ) = F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†) and Gmin(ρ, σ) = F(ρ, (V1 ⊗ V2)σ(V1 ⊗ V2)

†).

Denote σ̂ := (U1 ⊗ U2)σ(U1 ⊗ U2)
† and σ̃ = (V1 ⊗ V2)σ(V1 ⊗ V2)

†. Thus

Gmax(ρ, σ) = F(ρ, σ̂) and Gmin(ρ, σ) = F(ρ, σ̃).

The SDP has been extensively used to treat the distillability problem [28], the separability problem [29],

the quantification of entanglement [30] and so on [31]. The SDP for fidelity between two states is obtained
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by Watrous [1]. We show that our problems of computing Gmax and Gmin can be reduced to the SDP

optimization problem [32, 33], as a primal problem below. Let τ = σ̂ or σ̃. Then

maximize:
1

2

(
Tr (X) + Tr

(
X†
))

, (2.1)

subject to:

[
ρ X

X† τ

]
> 0, (2.2)

where X is a operator of order d1d2. Under the above constraint the optimal value of 1
2

(
Tr (X) + Tr

(
X†
))

is fidelity F(σ, τ). Its dual problem is

minimize:
1

2
(〈ρ, Y〉+ 〈τ, Z〉) , (2.3)

subject to:

[
Y −1

−1 Z

]
> 0, (2.4)

where Y, Z are Hermitian operators. So we can numerically solve the optimization problems for many

states with high efficiency. On the other hand, we can analytically solve the problems for pure states.

Theorem 2.1. Let ρ = |Φ12〉〈Φ12| and σ = |Ψ12〉〈Ψ12|, where the spectra of reduced density operators ρ1 and

σ1 are {a1 > · · · > aN > 0} and {b1 > · · · > bN > 0}, respectively, and d = d1 = d2. Then Gmax(ρ, σ) =

∑
d
j=1

√
ajbj and Gmin(ρ, σ) = 0.

Proof. There are two d2 × d1 matrices A, B such that |Φ12〉 = vec(A) and |Ψ12〉 = vec(B) [1]. Then

(U1 ⊗ U2)|Ψ12〉 = vec(U1BUT

2 ) implies F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†) =

∣∣Tr
(

A†U1BUT

2

)∣∣ . Since ρ1 = AA†

and σ1 = BB†, the first assertion follows from the fact maxU,V |Tr (XUYV) | = ∑
N
k=1 sk(X)sk(Y) [34]. The

second assertion is equivalent to the fact that the product states in the Schmidt decomposition of |Φ12〉
can be by local unitaries converted into states orthogonal to those of |Ψ12〉.

When |Φ12〉 is from a maximally entangled basis, the proof for Gmin(ρ, σ) = 0 is similar to the technique

for the known quantum super-dense coding. On the other hand, a particular case of this theorem has been

used to construct a family of entanglement witnesses [35]. Next if ρ is a pure product state, then G2
max(ρ, σ)

amounts to the S(1)-norm ‖σ‖S(1), which is lower bounded by the (d1 + d2 − 1)-th eigenvalue in increasing

order of σ [36], where the S(k)-norm of bipartite operator X on H1 ⊗H2 is defined as

‖X‖S(k) := sup
|u〉,|v〉∈H1⊗H2

{|〈u |X| v〉| : SR(|u〉), SR(|v〉) 6 k} .

Here SR(|w〉) stands for the Schmidt-rank of pure bipartite state |w〉 ∈ H1 ⊗ H2, i.e. the number of

nonvanishing coefficients in Schmidt decomposition of |w〉.
The problem can be analytically solved for the Werner state σ(t) = 1

d(d−t)
(1d ⊗ 1d − t ∑

d
i,j=1 |ij〉〈ji|),

t ∈ [−1, 1]. Indeed [37] implies

Gmax(ρ, σ) =
√
‖σ‖S(1) =

√
1 + |min(t, 0) |

d(d − t)
. (2.5)

One can easily show that the minimum of this functional over t is achievable when t = 0. That is, the

Werner state becomes the maximally mixed state, which is at the center of the set of separable states.
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Next, the maximum of the functional may be reached at two points, t = −1 and 1 as plotted in Figure 1.

The two points respectively correspond to a separable Werner state and the most entangled Werner state.

Figure 1 implies that in contrast with the separable Werner state, the entangled Werner state of d > 3

is closer to the set of pure separable states under local unitary dynamics. That is, the entanglement of

Werner states might be a more unaccessible quantum correlation than the separability. It is known that

two-qubit entangled states are distillable, and it is conjectured that two-qutrit entangled Werner states

may be non-distillable [38]. Our inequalities imply that the distillability of Werner states of d = 2 and

d > 2 may be essentially distinguished by their distance to the pure separable states under local unitary

dynamics.
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Figure 1: The figure shows the maximum distance between the

Werner state and the set of pure product states in terms of the

functional Gmax. The leftmost value is smaller than the rightmost

value for d = 2, and bigger than the rightmost value for d = 4.

The two values are equal for d = 3.

In Appendix 5, we also have computed Gmax for the pure product state and the isotropic state. In

spite of these results, finding the analytical solution to the optimization problems is unlikely because local

unitary actions are much more involved than global unitary action U. Indeed, the extremal values of

F(ρ, UσU†) are determined by those global unitary such that the commutator [ρ, UσU†] = 0 [13]. For our

purpose we need to replace the global unitary action by local unitary U1 ⊗ U2. We do not know whether

there exist U1 and U2 such that F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†) can attain its extremal values. In next section

we study the upper and lower bounds of Gmax and Gmin, as well as their connections.

3 Upper and lower bounds of functionals

The optimization problems ask to find out the critical points arg Gmax(ρ, σ) and arg Gmin(ρ, σ) in the local

unitary group, which respectively achieve Gmax and Gmin. They respectively refer to the local unitary

operator V1 ⊗V2 such that Gmax(ρ, σ) = F(ρ, (V1 ⊗V2)σ(V1 ⊗V2)
†) and Gmin(ρ, σ) = F(ρ, (V1 ⊗V2)σ(V1 ⊗

V2)
†). Using these facts, we construct several relations between Gmax and Gmin. In Proposition 3.1 and
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3.2, we show that the sum and difference of Gmax and Gmin (or their squares) are both upper and lower

bounded in terms of some functions of their arguments such as the rank and fidelity. As a result, we study

the fidelity inequality in Proposition 3.3, and the affine fidelity of global unitary action in Proposition 3.4.

We construct the bounds of Gmax and Gmax by using the monotonicity of the fidelity, the affine fidelity, the

integral over the unitary group via Haar measure, and the relative entropy in Subsect 3.1 and 3.2.

Proposition 3.1. Let ρ, σ, and σ′ = 1
d1d2−1 (1d1d2

− σ) be three quantum states. We have

rank(ρ) > Gmax(ρ, σ)2 + (d1d2 − 1)Gmin(ρ, σ′)2
> 1. (3.1)

The first equality holds if there exist two unitary matrices W1, W2 such that conditions (i),(ii) and (iii) hold. The

second equality holds if and only if there exist two unitary matrices V1, V2 such that conditions (iv),(v), and (vi)

hold:

(i) W1 ⊗W2 = arg Gmax(ρ, σ) = arg Gmin(ρ, σ′);

(ii)
√

ρ(W1 ⊗W2)σ(W1 ⊗W2)
†√ρ and

√
ρ(W1 ⊗W2)σ

′(W1 ⊗W2)
†√ρ both have identical nonzero eigenvalues;

(iii) rank
(√

ρ(W1 ⊗W2)
√

σ
)
= rank

(√
ρ(W1 ⊗ W2)

√
σ′
)
= rank(ρ);

(iv) V1 ⊗ V2 = arg Gmax(ρ, σ) = arg Gmin(ρ, σ′);

(v)
√

ρ(V1 ⊗ V2)σ(V1 ⊗ V2)
†√ρ has rank one;

(vi)
√

ρ(V1 ⊗ V2)σ
′(V1 ⊗ V2)

†√ρ has rank one.

The proof is given in Appendix 5. One can easily verify that the second equality in (3.1) holds when ρ

is pure, or ρ = 1
2 (|00〉〈00|+ |01〉〈01|) and (V1 ⊗ V2)σ(V1 ⊗ V2)

† = |00〉〈00|. In both cases, computing Gmax

and Gmin are equivalent. This is the first connection we have between the two functionals, so it is enough

to consider only one of them. We shall discuss the general case in Sec. 4. Furthermore, conditions 5 and 6

imply that ρ has rank at most two. If it has rank two, then conditions 5 and 6 imply that σ is pure. Thus, at

least one of ρ and σ is pure when the second equality in (3.1) holds. Next we construct another restriction

between Gmax and Gmin or their squares. This is realized based on the inequalities for the framework of

wave-particle duality [39] and the ensembles of Holevo quantity [41].

Proposition 3.2. Let ρ, σ, and σ′ = 1
d1d2−1 (1d1d2

− σ) be three quantum states. Assume that U1 ⊗ U2 =

arg Gmax(ρ, σ) and V1 ⊗ V2 = arg Gmin(ρ, σ′). Then

Gmax(ρ, σ) + Gmin(ρ, σ′) 6
√

2 + 2F(σ̂, σ̂′), (3.2)

where σ̂ = (U1 ⊗ U2)σ(U1 ⊗ U2)
† and σ̂′ = (V1 ⊗ V2)σ

′(V1 ⊗ V2)
†. Moreover,

∣∣∣G2
max(ρ, σ)− G2

min(ρ, σ′)
∣∣∣ 6

√
1 − F2(σ̂, σ̂′) (3.3)

and

∣∣Gmax(ρ, σ)− Gmin(ρ, σ′)
∣∣ 6

√
1 − F2(σ̂, σ̂′). (3.4)
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Proof. The assertion straightforwardly follow from three inequalities in [39, 40] and [41]:

max
ρ

(F(M, ρ) + F(N, ρ)) =
√

Tr (M) + Tr (N) + 2F(M, N), (3.5)

∣∣∣F2(σ, ρ)− F2(τ, ρ)
∣∣∣ 6

√
1 − F2(σ, τ), (3.6)

and

|F(σ, ρ)− F(τ, ρ) | 6
√

1 − F2(σ, τ). (3.7)

where M, N are positive semidefinite operators, and ρ, σ, τ are three quantum states.

The results show that the characterization of fidelity is important for obtaining a tight bound for the

functionals. We study the characterization using an inequality for the approximation of Markov chain

property [42].

Proposition 3.3. Let ρ and σ be two quantum states on Cd, and Φ be a quantum channel over Cd. Then

F(ρ, σ) 6 ∑
j

F(MjρM†
j , MjσM†

j ) 6 F(Φ(ρ), Φ(σ)), (3.8)

where Φ(∗) = ∑j Mj ∗ M†
j is any Kraus representation of Φ.

Proof. From Lemma B.7 in [42], we know that for an identity resolution ∑j Ej = 1,

F(ρ, σ) 6 ∑
j

F(EjρEj, σ).

Since Φ(∗) = ∑j Mj ∗ M†
j is a quantum channel, ∑k M†

j Mj = 1. Assuming Ej = M†
j Mj in the above

inequality, we have

F(ρ, σ) 6 ∑
j

F(M†
j MjρM†

j Mj, σ). (3.9)

Again, by employing the following simple fact, Lemma B.6 in [42], F(W†ρW, σ) = F(ρ, WσW†), we obtain

the inequality in (3.8). The other inequality is from the concavity of fidelity.

Proposition 3.4. For any given two quantum states ρ and σ on Cd, there exists a unitary operator U0 on Cd, which

depends on ρ and σ, such that

F(ρ, σ) = A(ρ, U0σU†
0 ), (3.10)

where A(ρ, σ) is called affine fidelity [43, 44], defined by A(ρ, σ) := Tr
(√

ρ
√

σ
)
.

Proof. Consider a map defined over the unitary group U(Cd) in the following:

g(U) = A(ρ, UσU†).

Apparently, g is a continuous map over U(Cd). Furthermore, g(1d) 6 F(ρ, σ) s a basic matrix inequality.

It implies that the affine fidelity is upper bounded by the fidelity. Since the unitary group U(Cd) is a

7



compact and connected Lie group, it follows that the image of U(Cd) under the map g is a closed interval.

Thus it suffices to show that there exists a unitary operator V such that F(ρ, σ) 6 g(V). We proceed with

the following result obtained in [13]: there exists a unitary operator V ∈ U(Cd) such that

F(ρ, σ) = Tr
(

exp
(

log
√

ρ + V log
√

σV†
))

.

By Golden-Thompson inequality Tr
(
eA+B

)
6 Tr

(
eAeB

)
, where A and B are Hermitian, we get that

F(ρ, σ) 6 g(V). Now the fidelity F(ρ, σ) ∈ im(g), the image of g. Therefore there exists a unitary op-

erator U0 ∈ U(Cd) satisfying the property that we want. We are done.

In the following two subsections, we will respectively derive the upper and lower bounds of Gmax and

Gmin.

3.1 Bounds of Gmax

The monotonicity of the fidelity implies the upper bound

Gmax(ρ, σ) 6 min

(
max

U1

F(ρ1, U1σ1U†
1 ), max

U2

F(ρ2, U2σ2U†
2 ), max

U12

F(ρ, U12σU†
12)

)
. (3.11)

This bound is analytically derivable, as we have computed explicitly maxU F(ρ, UσU†) and minU F(ρ, UσU†)

[13]. This result directly applies to the computation of maxU12
F(ρ, U12σU†

12). Next we obtain a lower

bound of Gmax. From a well-known fact in matrix analysis: |Tr(A) | 6 Tr(|A|) for any matrix A, where

|A| =
√

A† A, letting A =
√

ρ
√

σ gives rise to

∣∣Tr
(√

ρ
√

σ
)∣∣ 6 Tr

(∣∣√ρ
√

σ
∣∣) .

Clearly Tr
(√

ρ
√

σ
)

is a nonnegative real number and F(ρ, σ) = Tr
(∣∣√ρ

√
σ
∣∣), thus F(ρ, σ) > A(ρ, σ) for

any two states ρ, σ, then we have

Gmax(ρ, σ) > max
Ui∈U(Hi):i=1,2

A(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†)

>

∫

U(d1)

∫

U(d2)
A(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)

†)dµ(U1)dµ(U2)

=
Tr
(√

ρ
)

Tr
(√

σ
)

d1d2
. (3.12)

We have denoted the uniform normalized Haar measure by µ(U) over the unitary group. On the other

hand, the inequality [45]

S(ρ||σ) > −2 log F(ρ, σ) (3.13)

where S(ρ||σ) := Tr (ρ(log ρ − log σ)) is the quantum relative entropy, implies

min
Ui∈U(Hi):i=1,2

S(ρ||(U1 ⊗ U2)σ(U1 ⊗ U2)
†) > −2 log Gmax(ρ, σ). (3.14)

So we have obtained a lower bound of (1.1)

Gmax(ρ, σ)

> max

{
Tr
(√

ρ
)

Tr
(√

σ
)

d1d2
, exp

(
− 1

2
min

Ui∈U(Hi):i=1,2
S(ρ||(U1 ⊗ U2)σ(U1 ⊗ U2)

†)

)}
. (3.15)
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3.2 Bounds of Gmin

Clearly

Gmin(ρ, σ) 6 min
U2

∫

U(d1)
F(ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)

†)dµ(U1)

6 min
U2

F(ρ, 1d1
/d1 ⊗ U2σ2U†

2 )

6
1√
d1d2

Tr (
√

ρ) , (3.16)

where the last inequality follows from the integral over U(d2). By exchanging ρ and σ in the inequality,

we obtain an upper bound of (1.2)

Gmin(ρ, σ) 6
1√
d1d2

min
{

Tr (
√

ρ) , Tr
(√

σ
)}

. (3.17)

Next, we study the lower bound of Gmin. Let S(ρ) := −Tr (ρ log ρ) be the von Neumann entropy with

the natural logarithm log and 0 log 0 ≡ 0. It is obtained in [46] that for full-ranked states ρ, σ ∈ D
(

Cd
)

,

we have

F(ρ, σ) > Tr (
√

ρ)× exp

(
1

2 ∑
j

λ
↓
j (ρ) log λ

↑
j (σ)

)
, (3.18)

where λ↓(ρ) denotes the set of eigenvalues of ρ in the decreasing order and λ↑(σ) denotes the set of

eigenvalues of σ in the increasing order. It is known that the fidelity is unchanged under the exchange

of arguments. Assuming ρ = ρ, σ = (U1 ⊗ U2)σ(U1 ⊗ U2)
† and exchanging them in (3.18), we obtain a

constant lower bound of (1.2)

Gmin(ρ, σ) > max

{
Tr (

√
ρ)× exp

(
1

2 ∑
j

λ
↓
j (ρ) log λ

↑
j (σ)

)
,

Tr
(√

σ
)
× exp

(
1

2 ∑
j

λ
↓
j (σ) log λ

↑
j (ρ)

)
,

exp

(
−1

2
max

Ui∈U(Hi):i=1,2
S(ρ||(U1 ⊗ U2)σ(U1 ⊗ U2)

†)

)
,

}
(3.19)

where the last argument follows from (3.13).

4 Discussion

In this section we investigate the power of local unitaries for the commutativity of quantum states, the

quantification of the commutativity, and the equivalence of the two optimization problems. They general-

ize the previous discussion.

Commutative quantum states can be prepared in the same pure state basis. They not only share

operational mathematical properties, and also can save resources in experiments. One might expect that,

under local unitary dynamics we could make two non-commutative quantum states become commutative.

That is, given two mixed states ρ and σ with [ρ, σ] 6= 0, are always there local unitaries U1 and U2 such
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that [ρ, (U1 ⊗ U2)σ(U1 ⊗ U2)
†] = 0? Unfortunately The answer is negative. Indeed, let ρ = ∑i pi|ai〉〈ai|

and σ = ∑j qj|bj〉〈bj| be their respective spectral decomposition, and pi, qj > 0 for all i, j. If the answer is

yes, then there exist two sets {|ai〉} and {|bj〉}, such that up to overall phases they are from the same o.

n. basis of H1 ⊗H2. Below we construct a counterexample to this statement. Hence the answer is no. We

consider two two-qubit states

ρ =
1

2
|Ψ+〉〈Ψ+|+ 1

3
|Ψ−〉〈Ψ−|+ 1

6
|Φ+〉〈Φ+|, (4.1)

σ =
2

3
|00〉〈00|+ 1

3
|11〉〈11|, (4.2)

where |Ψ±〉 = 1√
2
(|00〉 ± |11〉) and |Φ±〉 = 1√

2
(|01〉 ± |10〉) are the standard EPR pairs. Since the pos-

itive eigenvalues all have multiplicity one, the eigenstates of them of ρ and σ are respectively equal to

{|Ψ±〉, {|Φ+〉} and {|00〉, |11〉}, up to overall phases on these states. If the answer is yes, then there are

local unitaries U1, U2 such that {|Ψ±〉, {|Φ+〉} and {(U1 ⊗U2)|00〉, (U1 ⊗U2)|11〉} are from the same o. n.

basis of C2 ⊗ C2. Since the former consists of entangled states and the latter consists of separable states,

they have to be pairwise orthogonal. It is impossible because the former and latter respectively span a

3-dimensional and 2-dimensional subspace in C2 ⊗ C2.

Another interesting problem is whether the two optimization problems are equivalent for general ρ

and σ. The equivalence would imply the sufficiency of solving only one of them. We propose to study

two related functionals

max
Ui∈U(Hi):i=1,2

Tr
(

ρ(U1 ⊗ U2)σ(U1 ⊗ U2)
†
)

and

min
Ui∈U(Hi):i=1,2

Tr
(

ρ(U1 ⊗ U2)σ(U1 ⊗ U2)
†
)

,

as they also measure the similarity between mixed states ρ and σ. The computation of the two functionals

is equivalent, because if we can compute the former for any ρ and σ, then we can also compute the latter

by replacing σ by 1 − σ; and vice versa. So it suffices to compute

max
Ui∈U(Hi):i=1,2

Tr
(

ρ(U1 ⊗ U2)σ(U1 ⊗ U2)
†
)

.

Next, it is known that |Tr(UA) | 6 Tr(
√

A† A) for any unitary U and any matrix A. We have

max
Ui∈U(Hi):i=1,2

Tr
(

ρ(U1 ⊗ U2)σ(U1 ⊗ U2)
†
)
6 Gmax(ρ

2, σ2). (4.3)

So the two functionals are not only physically, but also mathematically related to Gmax and Gmin.

5 Conclusions

In this paper we have studied two optimization problems that are related to many quantum-information

problems. The problems are generally solvable by the SDP, and we manged to work out the analytical

formulae for some states. For mixed states we have constructed many upper and lower bounds of the

two functionals. We have shown that the entanglement of Werner states might be a more unaccessible

quantum correlation than the separability in terms of the local unitary dynamics. We have investigated

10



the power of local unitaries for the commutativity of quantum states and the equivalence of the two

optimization problems. Apart from the problems proposed in last section, studying the relation between

the distillability of Werner states and their distance to the separable states may shed new light to the

distillability problem.
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Appendix

Isotropic state

The isotropic state is the convex mixture of a maximally entangled state and the maximally mixed state:

ρiso(λ) =
1 − λ

d2 − 1

(
1d ⊗ 1d − |Ψ+〉〈Ψ+|

)
+ λ|Ψ+〉〈Ψ+|,

where λ ∈ [0, 1] and |Ψ+〉 = 1√
d

∑
d
j=1 |jj〉. By Theorem 2.1, we have

max
|u〉,|v〉

∣∣〈uv|Ψ+〉
∣∣2 =

1

d
and min

|u〉,|v〉

∣∣〈uv|Ψ+〉
∣∣2 = 0.

Thus

〈uv |ρiso(λ)| uv〉 = 1 − λ

d2 − 1
+

d2λ − 1

d2 − 1

∣∣〈uv|Ψ+〉
∣∣2 . (5.1)

To further characterize the maximum and minimum of this function, we discuss two subcases.

(1). If 1
d2 6 λ 6 1, then max|u〉,|v〉 〈uv |ρiso(λ)| uv〉 = dλ+1

d(d+1)
and min|u〉,|v〉 〈uv |ρiso(λ)| uv〉 = 1−λ

d2−1
;

(2). If 0 6 λ <
1
d2 , then min|u〉,|v〉 〈uv |ρiso(λ)| uv〉 = dλ+1

d(d+1)
and max|u〉,|v〉 〈uv |ρiso(λ)| uv〉 = 1−λ

d2−1
. In

summary, we have

Gmax(ρiso(λ), |uv〉〈uv|) = max

(√
dλ + 1

d(d + 1)
,

√
1 − λ

d2 − 1

)
, (5.2)

and

Gmin(ρiso(λ), |uv〉〈uv|) = min

(√
dλ + 1

d(d + 1)
,

√
1 − λ

d2 − 1

)
. (5.3)

Proof of Proposition 3.1

For any semi-definite positive matrix X, the following inequality is easily derived via the spectral decom-

position of X:

√
rank(X) · Tr (X) > Tr

(√
X
)
>

√
Tr (X), (5.4)
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where the first equality holds if and only if X has identical nonzero eigenvalues, and the second equality

holds if and only if X has rank one. Let X = A1/2BA1/2 for any two semi-definite positive matrices A, B.

Then (5.4) implies

√
rank(A1/2B1/2) · Tr(AB) > F(A, B) >

√
Tr(AB), (5.5)

where the first equality holds if and only if A1/2BA1/2 has identical nonzero eigenvalues, and the second

equality holds if and only if A1/2BA1/2 has rank one. To prove the first inequality in (3.1), let W1 ⊗W2 =

arg Gmax(ρ, σ). We have

Gmax(ρ, σ)2 + (d1d2 − 1)Gmin(ρ, σ′)2

6 F(ρ, (W1 ⊗W2)σ(W1 ⊗ W2)
†)2 + (d1d2 − 1)F(ρ, (W1 ⊗W2)σ

′(W1 ⊗W2)
†)2

6 rank(ρ1/2(W1 ⊗W2)σ
1/2(W1 ⊗W2)

†) Tr
(

ρ(W1 ⊗ W2)σ(W1 ⊗W2)
†
)

+ rank(ρ1/2(W1 ⊗W2)(σ
′)1/2(W1 ⊗ W2)

†)(d1d2 − 1) Tr
(

ρ(W1 ⊗W2)σ
′(W1 ⊗W2)

†
)

6 rank(ρ)[Tr
(

ρ(W1 ⊗W2)σ(W1 ⊗W2)
†
)
+ (d1d2 − 1) Tr(ρ(W1 ⊗W2)σ

′(W1 ⊗W2)
†)]

= rank(ρ), (5.6)

where the first inequality follows from the definition of Gmax and Gmin, and its equality is equivalent

to condition (i). The second inequality in (5.6) follows from the first inequality in (5.5) by assuming

A = ρ, B = (W1 ⊗W2)σ(W1 ⊗W2)
† and (W1 ⊗W2)σ

′(W1 ⊗W2)
†, respectively. Its equality is equivalent to

condition (ii) by the first inequality in (5.5). The third inequality in (5.6) follows from the fact rank(A) >

rank(A1/2B1/2). Its equality holds if condition (iii) holds. So we have proved the first inequality, and the

three conditions by which the equality holds in (3.1).

To prove the second inequality in (3.1), let V1 ⊗ V2 = arg Gmin(ρ, σ′). We have

Gmax(ρ, σ)2 + (d1d2 − 1)Gmin(ρ, σ′)2

> F(ρ, (V1 ⊗ V2)σ(V1 ⊗ V2)
†)2 + (d1d2 − 1)F(ρ, (V1 ⊗ V2)σ

′(V1 ⊗ V2)
†)2

> Tr(ρ(V1 ⊗ V2)σ(V1 ⊗ V2)
†) + (d1d2 − 1) Tr(ρ(V1 ⊗ V2)σ

′(V1 ⊗ V2)
†)

= 1, (5.7)

where the second inequality follows from (5.5) by assuming A = ρ, B = (V1 ⊗ V2)σ(V1 ⊗ V2)
† and

(V1 ⊗ V2)σ
′(V1 ⊗ V2)

†, respectively. So we have proved the second inequality in (3.1). The equality in

(3.1) holds if and only if the first two equalities in (5.7) both hold. The first equality is equivalent to

condition (iv) by the definition of Gmax and Gmin, and the second equality is equivalent to conditions (v)

and (vi) by (5.5). This completes the proof.
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