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Abstract

Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been
proposed using n-qubit entangled states (n € {5,6,7}) as quantum channel. Here, we propose a general method
of selecting multi-qubit (n > 4) quantum channels suitable for BCST and show that all the channels used in the
existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum
channels used in the existing protocols of BCST forms only a negligibly small subset of the set of all the quantum
channels that can be constructed using the proposed method to implement BCST. It is also noted that all these
quantum channels are also suitable for controlled bidirectional remote state preparation (CBRSP). Following
the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such
as controlled bidirectional joint remote state preparation (CJBRSP) and controlled quantum dialogue, are also
provided.

Keywords: Bidirectional controlled state teleportation, controoled quantum communication, multi-qubit quantum
channel.

1 Introduction

The idea of quantum teleportation was introduced by Bennett et al. [1] in 1993. Since this pioneering work, a large
number of modified teleportation schemes (such as, schemes for quantum information splitting (QIS) or controlled
teleportation (CT) [2 B], quantum secret sharing (QSS) [], hierarchical quantum information splitting (HQIS)
[5 [6], remote state preparation [7], etc.) have been proposed (see [8] for a review). Teleportation and its modified
versions drew considerable attention of the quantum communication community because of two main reasons:
firstly, teleportation is a purely quantum phenomenon having no classical analogue and secondly, teleportation and
modified teleportation schemes have potential applications in secure quantum communication and remote quantum
operations [9].

Bennett et al.’s original teleportation scheme [I] enables the sender (Alice) to transmit an unknown single qubit
quantum state to the receiver (Bob) by using two bits of classical communication and a pre-shared Bell state. This
unidirectional scheme was subsequently generalized by Huelga et al. [9, [10] and others by introducing protocols
for bidirectional quantum state teleportation (BST) which permit both Alice and Bob to simultaneously transmit
unknown quantum states to each other. Interestingly, Huelga et al. had also shown that nonlocal quantum gates can
be implemented using BST. Actually, the existence of a BST scheme ensures the existence of a nonlocal quantum
gate or a quantum remote control (for a clearer discussion see our earlier works [I1] [12]). This specific feature
of BST attributed much importance to the study of BST in context of both quantum computation and quantum
communication. In the recent past, the idea of BST has been further extended, and a few schemes for bidirectional
controlled state teleportation (BCST) have been proposed [12] [13] [I4] [I5] [16, (17, 18, 19, 20]. A standard BCST
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Initial state shared by Alice and Bob
) ™) [¢7) [9~)
SMO Receiver’s Receiver’s Receiver’s Receiver’s
operation operation operation operation
00 I Z X 1Y
01 X Y I Z
10 Z I Y X
11 1Y X Z I

Table 1: The relation between the entangled states shared by the receiver and sender, the measurement outcome
of the sender, and the unitary operations to be applied by the receiver to realize perfect teleportation. Here SMO
stands for the sender’s measurement outcome.

scheme is a three party scheme, where implementation of BST is possible iff the controller (Charlie) allows the
other two users (Alice and Bob) to execute a protocol of BST [12]. A careful review of all the recently proposed
BCST schemes [13] [14] [15] [16] [17] 18] 19 20] that do not use permutation of particles (PoP) [211 22| 23] technique
reveals that different n-qubit (with n > 5) entangled states are used in these protocols. In contrast, the same task
can also be achieved using Bell states and PoP as shown by some of the present authors in Ref. [24]. Clearly,
PoP-based schemes for BCST require lesser quantum resource as that require only Bell states, whereas all the
existing non-PoP based schemes for BCST require at least 5 qubit entangled states. However, no prescription for
experimental realization of PoP exists until now. Keeping this in mind, in the present paper, we restrict ourselves
to non-PoP based schemes for BCST. In an earlier work [12], some of the present authors explored the intrinsic
symmetry of the 5-qubit quantum states that were used to propose the protocols of BCST until then. In Ref. [12],
following general structure of the quantum states that can be used for BCST was provided:

|1/}> = (|1/}1>A131 |¢2>A232|a>01 + |1/}3>A131 |¢4>A232|b>01) ) (1)

1
V2
where single qubit states |a) and [b) satisy (alb) = dap, [¥5) € {[¥7),[¥7),[67),[67) : 1) # [3), [¥2) # [¥4) },
|pT) = |00 \7'11 |pt) = w, and the subscripts A, B and C indicate the qubits of Alice, Bob and Charlie,

respectively. To illustrate that |¢)) can be used to implement a BCST scheme, we may consider that Charlie prepares
the state |¢)) and sends 1st and 3rd (2nd and 4th) qubits to Alice (Bob) and keeps the 5th qubit with himself. The
condition

1) # [3), [t2) # |1a) (2)

ensures that Charlie’s qubit is properly entangled with the remaining 4 qubits, and this in turn ensures that Alice and
Bob are not aware of the entangled (Bell) states they share until Charlie measures his qubit using {|a), |b)} basis and
announces the outcome of his measurement. After Charlie’s disclosure of the measurement outcome, Alice and Bob
know with certainty which two Bell states they share, and that knowledge empowers them to use the conventional
teleportation scheme to teleport unknown quantum states to each other by using classical communication and the
unitary operations described in Table [l

In the above scheme for BCST, we require at least 5-qubit entanglement and in that case we have to choose |a)
and |b) as single qubit states. However, we are allowed to take |a) and |b) as multi-qubit states and that leads to 6
or more qubit quantum states capable of performing BCST. For example, in Refs. [I7, I8 [19], BCST is reported
using 6-qubit entangled states, and in Ref. [20], BCST is reported using a 7-qubit entangled state. These recent
papers [I7, I8, 19, 20] on n-qubit (n > 5) implementation of BCST scheme, and the fact that not all of them can
be expressed in the form () motivated us to extend our earlier work and to look for a general structure of the
n-qubit (n > 5) entangled states that can be used to implement BCST. Keeping this in mind, here we construct
a general method for selecting quantum states for implementation of multiqubit BCST schemes and subsequently
extend the method to construct suitable quantum states for other quantum communications tasks, such as controlled
bidirectional remote state preparation (CBRSP), controlled joint bidirectional remote state preparation (CJBRSP),
controlled quantum dialogue, etc. In brief, we establish that there is a general structure of the quantum states
that are suitable for controlled quantum communication tasks and there is not much merit in investigating specific
quantum channels in isolation.



Remaining part of the present paper is organized as follows. A general method for selecting a quantum channel
for multiqubit BCST is introduced in Section Pl In Section Bl all the existing states used so far for BCST schemes
are shown as the special cases of the general structure introduced in the previous section. In Section [ methods for
selecting quantum channels for different controlled quantum communication tasks (such as RSP, CBRSP, CJBRSP,
controlled quantum dialogue, etc.) are discussed. Finally, the paper is concluded in Section

2 A general method for selecting a quantum channel for BCST

The general structure of 5-qubit states used for BCST can further be extended to the case where |a) and |b) in Eq.
(I are multiqubit states, and we can write the general structure as

=3 % (6165, lam)) 3)

m=1

where |a,,) are n mutually orthogonal [-qubit states with 2! > n > 2, and [¢);) and [);) are the elements of a
multiqubit basis set whose elements are maximally (nonmaximally) entangled states capable of performing perfect
(probabilistic) teleportation (such as the set of Bell states or GHZ states) and ([v:)[v;)),, = (|1i)|¥;)),, iff m =m/.

Further, if [¢;) and |t;) are p-qubit entangled states, then we can easily observe that n < (27)*. Thus, for the Bell
states n < 16, which implies that [ > 4 or more than 8-qubit quantum states |1)) used for the implementation of
BCST scheme involving Bell states for transmission of unknown qubits in both the direction will not yield any new
information (will not represent a new quantum state in the perspective of information theory).

Now, the states |¢;) and |1);) are chosen in such a way that unless Charlie measures his qubits in {|a,,)} basis
and discloses the measurement outcome, Alice and Bob (in general the receivers and the senders) do not know
which entangled states they share. This control of Charlie should exist in both the directions of communication
(i.e., prior to Charlie’s disclosure the receiver and the sender neither know the entangled state to be used for Alice
to Bob teleportation, nor they know the entangled state to be used for Bob to Alice communication). A systematic
method for obtaining quantum states suitable for BCST may be described using the following steps:

Step 1: As [¢;) and |¢);) are the elements of a basis set whose elements are p-qubit entangled states we describe
the basis set as {|¢;) : 4 € {1,2,---,2P}} and use that to construct a 2P x 2P matrix S such that s;; = [1;)[¢);)
is the i*" row ' column element of the matrix

[oi)1) ) abe) - Y1) |wee)
[a) 1) b2 aba) - |2)|wher)

SE . . .. . (4)
T 10 L MR VA

Step 2: To counstruct a quantum state of the form (@) that can perform BCST we choose n > 2 elements of S as
(|1a)|4b4)),,, with the following restrictions.

Rule 1: We cannot pick all the n elements from the same row or the same column of the matri{] @.
Rule 2: We cannot pick one element more than oncd as ([0 l¥i)),, = (Vi)|¥5)),,, i =m/.

Let us now elaborate the method described above using a simple example. Consider that {|¢;)} is a set of Bell
states and |¢pT) = [11), |¢7) = |2), |¢T) = |13), and |¢~) = |b4). Thus, the matrix @) reduces to

[T W) [Whet) [ hleT)
Spp = | [T WTRT) [WeT) [WT)eT) (5)
PET ety o) leh)let) let)len) |

67T 6T T)  1oT)eT)  loT)eT)

Mf we choose all the elements from the i*" row (j* column) of S, then the desired quantum channel of the form (B) will become
separable, and Charlie will loose control in one direction of the BST. Thus, the scheme will not remain BCST.

2This condition ensures the required bijective mapping between Charlie’s measurement outcome and the entangled states shared by
Alice and Bob. In the absence of this unique mapping, the receivers will not be able to decide which unitary operation is to be applied
to achieve teleportation.



Now, counsider that Charlie keeps a single qubit, and he measures his qubit in {|4),|—)} basis. Thus, to construct a
quantum state of the form (@) we may consider |a;) = |[+) and |az) = |—). Further, following the rules listed above,
we may choose (|1:)[1;)); = sBeny, = [¢7)[¥F) and ([¢i)|1h5))y = SBeln, = [¥7)[¥7) &S SBely; # SBells,, and they
are not elements of the same row or the same column. This choice would reduce the quantum state described by
@) to |[v) = % (™) a, B V) asBa|+) ey + 107 ) 4,8, 10 ) 4sBs|—) ). This is the quantum channel used by Zha et
al. in their proposal of BCST [I3].

Let us consider another example in which n = 4 and |a1) = |04), az = |0-), ag = |14+), ags = —|1—). In order
to construct a quantum state of the form (B]), we have to select 4 elements of Sgey in such a way that Rules 1 and
2 are not violated. Keeping Rules 1 and 2 in mind, let us select the elements of Sge;; shown in rectangular boxes

below as (|1:)[¢;)),,

et | [ H)l )| whlet) e

son= | O Y w)let)  [wlle) | ©)
6Dty 1eDw) [lehle)] [16h)1e)
e S - B 3 M | )

Note that neither all the elements shown in rectangular boxes belong to the same row nor they belong to the same col-
umn. Thus, they satisfy the rules. Further, if we arrange the selected elements as (|¢;) (1)), = |[W 1) [0 T), (|¢3)[¥;)), =

W), (Wa)lws)y = [67)6F), (Ii)lbs))y = [¢7)|¢7), then we obtain

|1/}> = % (|¢+>A1Bl|¢+>A232|0+>0102 + |1/}+>A131|1/)7>A2Bz|0_>0102 (7)
+|¢+>A131|¢+>A232|1+>0102 - |¢+>A131|¢_>A232|1_>0102)

which is the quantum state used in Ref. [I8] to implement BCST (cf. Eq. (1) of [18]). Now, we may choose the
same |ay), |az), |as), and |a4) as used in this example and select 4 other elements of Sgey that are not from the same
row/column to obtain a new 6-qubit quantum channel (one possible quantum channel for each selection) that can
be used to realize BCST. Thus, we observe that if we follow the method prescribed here, we can easily generate
several new quantum states that can be used to implement BCST. In what follows, we will show that the number
of possible quantum channels is extremely high and only a few possibilities have been studied in the existing works
on BCST.

In the first example above, Charlie keeps only one qubit with himself, and consequently we were required to
choose two elements of Spe; without violating rules 1 and 2 stated above. A specific example is shown above.
However, the rules allow us to choose any of the 16 elements of Sgen as (|1;)|¢;)); . The moment we make a specific
choice, Rule 1 allows us to choose (|¢;)[1);)), only from 9 elements of Sgen (i.e., for the second choice, the row
and column of the first choice are exempted). Thus, the total possible choices of 5-qubit quantum states that can
implement BCST is 16 x 9 = 144 for a specific choice of Charlie’s measurement basis {|a.,)} . This coincides exactly
with the results reported in Ref. [12]. Extending this logic to more general cases, we may note that a simple
algebraic analysis reveals that for a specific choice of a subset of order n of a basis set {|a,,)}, the total number of
possible states (N;) of the form (B]) that can be constructed using S without violating the rules mentioned above is

227
NS _ m forn > 2P ' (8)
9pn (207 — 90+ 1) forn < 2P

Using (8)), we may quickly obtain the possible number of quantum channels for Bell-state based BCST for a specific
16!

choice of {|a,,)} using p = 2. Specifically, in this case, if n > 4, then Ny = T and consequently, for n = 2,3 and
4, we can construct quantum states of the form () in 144, 3648 and 63744 ways, respectively. These numbers clearly
show that until now BCST is investigated using a very small subset of all possible states that can be used to realize
BCST. Here, we have obtained a quantitative measure of N; for a specific choice of an nth order subset of {|a,)}
without considering the following: (i) the relative phases of the superposition in (B]), (ii) possible permutations of
{lam)} and (iii) the number of ways in which subset of order n can be constructed. Inclusion of these factors will
further enhance the number of ways in which BCST can be done. Specifically, if Charlie keeps [ qubits with himself,

then the inclusion of the last two factors listed above will further increase the total number of possible states by
(2%!")! times for specific value of n. Our intention is not to obtain the total number. We are interested to establish
that there exists a systematic way to obtain quantum states that can implement BCST, and the set of all the states
that are shown to be useful in implementing BCST only forms a small subset of the set of all possible states that

can be used to implement BCST. Above discussion firmly establishes the fact we intended to establish.



3 Existing states as the special cases of the general structure

In Section[Il we have already mentioned that schemes for BCST have been proposed in the recent past using various
quantum states. Here, we show that all the states used till date can be expressed in the general form (). This fact
is explicitly shown in Table 2] where following notation is used to express GHZ states:

where x is the decimal value of binary number iij with 7,5 € {0,1}, and + denotes the relative phase between the

two components of the superposition. For example, if we consider i = j = 0, we obtain GHZ* = %\5‘111)).
Quantum states How to express the quantum states used in the existing work in the Remarks
used in existing generalized form described in the present paper?
works

Eq. (1) in Ref. “Iﬂ LQ (|¢+>A131 |1/}+>A2B2|+>Cl + |1/}7>A131|1/)7>A232|_>C1)

Eq. (8) in Ref. m % (|¢+>A181|¢+>A232|0>Cl - |¢_>A131|¢_>A232|1>Cl)

Eq. (3) in Ref. m \/ig (|¢+>A131 |+>Cl + |¢_>A131 |_>Cl) |¢+>A232 Charlie’s
control is
limited to

Eq. (3) in Ref. m ﬁ (|¢+>Asz|0>Cl + |w_>14232|1>01) |¢+>A131 one side of
teleporta-

tion.
Eq. (12) in Ref. % (|w+>AlBl |¢+>A232|00>0102 + |¢+>A131 |w+>A232|11>0102)

7]

% (|1/}+>A131 |1/)+>A232|0+>0102 + |1/}+>A131 |/¢)7>A2B2|0_>Clc2

Eq. (1) in Ref.
4 ( )1n ¢ m +|¢+>A131|¢+>A232|1+>0102 - |¢+>AIBI|¢7>A2B2|1_>Clc2)
~ S0V a, 5, 0T ) aaBs | T H)crcs + 10T B, [0 ) aum| + —)eic
Eq. (3) in Ref. [19] 2N e et 1oz It T e A These are
+1|¢ >A131|w >A232| +>01020—Ii‘_|¢ >A131|¢ >A232| >Clc2) shown in
2 (|w+>AlBl|¢+>A2B2|O+>Clc2 + |w+>AlBl|¢+>AZB2|O_>CICQ Ref. lﬂ“ as
+|¢+>A131|w+>A232|1+>Clcz - |¢+>A131|w+>A232|1_>0102) EqS((l:;)
and (13).

5 ([0 a8, [07) 4,8, IGHZ T ) 0y 000y — [V ) 4,81 [07) 4,8, |GHZ T ) 0
Eq. (4) in Ref. 2 151 252 10203 151 252 1C2C3
! ( ) " m _|¢+>A131|¢+>A232|GHZ3+>010203 - |¢_>A131|w_>Asz|GHZ1+>CngCg)

Table 2: Quantum channels used in different proposals for BCST as special cases of the generalized structure shown
here.

4 The condition for selecting a quantum channel for other controlled
quantum communication tasks

Several schemes of controlled quantum communication have been discussed in the recent past ([ITl 12| 24} 25| 26]
27, 28] 29] and references therein). To be precise, schemes for controlled bidirectional remote state preparation
[11} 25], controlled joint bidirectional remote state preparation [I1], controlled quantum dialogue [26] 27], etc., have
been proposed using various quantum states. Extending the argument above, in what follows, we provide a general
method for selecting quantum states for these tasks. Here, we limit ourselves to the explicit discussion of the general
structure for the quantum states required for (i) controlled bidirectional remote state preparation, (ii) controlled
joint bidirectional remote state preparation and (iii) controlled quantum dialogue, but the logic can be extended
easily to other controlled quantum communication tasks.



4.1 How to select a quantum channel for Controlled Bidirectional Remote State
Preparation?

In Ref. [11], some of the present authors have shown that the quantum states suitable for BCST are also suitable
for CBRSP. This is reasonable for the obvious reason that the capability of transportation of an unknown state
automatically implies the capability of transporting a known quantum state. Further, it is well known that a shared
Bell state and one bit of classical communication is sufficient for probabilistic RSP [7], whereas a shared Bell state
and two bits of classical communication is sufficient for deterministic RSP. This fact and our discussion above in
the context of the choice of quantum states for controlled BCST imply that the quantum states of the form (@) are
sufficient for CBRSP if |4/;), |1;) are chosen using the rules described above.

4.2 How to select a quantum channel for Controlled Joint Bidirectional Remote
State Preparation?

For CJBRSP, the structure of quantum state to be used would remain same (i.e., the states described by Eq. (@)
and element selection rules described after that) with the only difference that |1;) and |¢;) must be the elements of
a basis set whose elements are at least tripartite entangled and capable of performing joint remote state preparation.
Specifically, |1;) and |¢;) can be GHZ or GHZ-like states.

4.3 How to select a quantum channel for Controlled Quantum Dialogue?

In case of quantum dialogue protocols of Ba-An type [30, [31], the quantum communication happens in both direc-
tions using the same quantum state, hence we do not require product of two entangled states after the measurement
of controller Charlie. Here, it is sufficient to choose a quantum state such that unless the controller measures
his/her qubit and announces the outcome, other two users (Alice and Bob) will be unaware of the quantum state
they share. Thus, any quantum state of the form

=3 % (9s)am)) (10)

m=1
where |a,,) are n mutually orthogonal [-qubit states with 2! > n > 2, and [¢;) is an element of a set of entan-
gled quantum states that are capable of performing quantum dialogue using the same set of unitary operators
and that are unitarily connected with each other. Such that after the encoding operation of Alice (say U;) and
that of Bob (say U;) the final states must also be a member of the set of mutually orthogonal states to ensure
the deterministic discrimination of the state and thus to decode the encoded message, where U; and U; are the
unitary operators which forms a group under multiplication. To be precise, |¥) rinat = U;Uilpo) = Ujldi) €
{ldo), [¢1), - 1di), -+ s |g2n—1) Vi, j € {0,1,---,2" =1} = UpUa € {Up, U1, Uz, -+ ,Un_1}. A list of quantum
states that can be used for quantum dialogue protocol with corresponding unitary operators are given in Table 4
in Ref. [31I]. Superpositions of such states with mutually orthogonal states in the control part |a,,) can be used for
the generalized protocol of controlled quantum dialogue.

5 Conclusions

The general structures of the quantum states suitable for BCST and other controlled quantum communication
protocols are provided, and a method for obtaining all such states is proposed. Further, it is shown that all the
quantum channels used in the existing protocols of BCST can be easily obtained using the general method proposed
here. In fact, all the quantum states that are used in the existing protocols are explicitly expressed in the general
form proposed here (cf. Table 2]). The states described in Table [ i.e., the states used in the existing literature,
only forms a negligibly small subset of all possible states that can perform BCST. It is easy to visualize that there
are infinitely many possible states that can be used to perform BCST. To elaborate this point we may note that
there is no constraint on the choice of the set of controllers multiqubit orthogonal states. The infinitely many
possible choices for the set of controllers multiqubit orthogonal states imply availability of infinitely many possible
quantum channels for BCST. Even if we restrict Charlie to prepare and measure his qubits in a specific basis (say,



computational basis) and Alice and Bob to use Bell states for quantum communication, there exist a large number
of ways in which quantum states of the form (B) can be constructed. This point is firmly established in Section [2

We have already seen that the general structure provided here for BCST scheme gives an infinitely many
possibilities for the choice of the suitable quantum channels to experimentalists. The generation of this kind of
quantum states suitable for BCST scheme requires easily available resources, such as CNOT gate, Hadamard gate,
etc. A multiqubit quantum states of the form given here (i.e., of the form (@) have already been experimentally
realized in the recent past [32], and further discussion on the possibilities of experimental preparation of the quantum
states of the structure similar to the structure given here can be found in our earlier work [IT]. Further, if we consider
that |¢;) and [¢);) are Bell states, then after the measurement of the controller’s (Charlie’s) qubits in suitable basis,
the remaining qubits reduce to a product state [¢;) ® |1;), which is the product of two entangled states (product
of two Bell states in the case of Bell state based BCST scheme) shared between Alice and Bob, and which can be
used for simultaneous teleportation of two unknown quantum states, one from Alice to Bob and the other from
Bob to Alice. The resources required in BCST after the Charlie’s measurement are just two copies of the resources
required for teleportation of the unknown quantum state using the entangled state shared by Alice and Bob.

Acknowledgment: AP and KT thank Department of Science and Technology (DST), India for support pro-
vided through the DST project No. SR/S2/LOP-0012/2010.
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