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Sympathetic cooling in a large ion crystal
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We analyze the dynamics and steady state of a linear ion array when some of the ions are contin-
uously laser cooled. We calculate the ions’ local temperature measured by its position fluctuation
under various trapping and cooling configurations, taking into account background heating due to
the noisy environment. For a large system, we demonstrate that by arranging the cooling ions
evenly in the array, one can suppress the overall heating considerably. We also investigate the effect
of different cooling rates and find that the optimal cooling efficiency is achieved by an intermediate
cooling rate. We discuss the relaxation time for the ions to approach the steady state, and show
that with periodic arrangement of the cooling ions, the cooling efficiency does not scale down with
the system size.

I. INTRODUCTION

Trapped ions constitute one of the leading systems for
implementation of quantum computation. Numerous ad-
vances have been achieved in this system, including re-
alization of faithful quantum gates [1–7], preparation of
many-body quantum states [8–15], and quantum telepor-
tation [16, 17]. There are also developments to scale up
this system, based on either ion shuttling [18–20] or quan-
tum networks [21–26]).

In a typical ion trap, the ions are first Doppler cooled
and form a crystal. Most of the quantum computation
experiments use a one-dimensional ion crystal. The ions
may be subjected to further sub-Doppler cooling, such
as sideband cooling. However, the difficulty of sideband
cooling scales up with the number of phonon modes,
which increase with the number of ions [27–29]. It has
been shown that in principle high-fidelity quantum com-
putation can be achieved even at the Doppler temper-
ature by employing the ions’ transverse phonon modes
[29, 30]. In a real experimental setup, the ions are subject
to substantial background heating. For long-time quan-
tum computation, to have the ions constantly remain at
a certain temperature, it requires sympathetic cooling
[31, 32], in which case a subset of ions (cooling ions) are
continuously laser cooled, bringing down the tempera-
ture of other ions (the computational ions) through the
heat propagation enabled by the Coulomb interaction in
the ion crystal. Sympathetic cooling has been studied for
small systems with a few ions [33–35].

In this paper, we study the effectiveness of sympathetic
cooling in a large one-dimensional ion crystal. Although
in general temperature is not well defined for this sys-
tem as it does not reach a thermal equilibrium state, as
a relevant indicator for quantum computation, we mea-
sure the local “temperature” of the ions through their

average position fluctuation (PF) δxξ
i ≡

√

〈xξ2
i 〉 (for the

ith ion) with ξ = x, y for the transverse phonon modes
and ξ = z for the the axial modes. This position ther-
mal fluctuation is an important indicator for fidelity of

quantum gates. We discuss two different arrangements of
the cooling ions: edge cooling and periodic-node cooling.
In the former case, the ions at the two edges of an ion
array are continuously laser cooled. In the latter case,
the cooling ions are distributed evenly and periodically
in the ion chain. We show that the periodic-node cooling
is much more effective than the edge cooling. For a large
crystal, the edge cooling becomes very inefficient. We
then discuss the nontrivial dependence of the local tem-
perature of the computational ions on the cooling rate of
the cooling ions. A large cooling rate does not necessarily
lead to more efficient cooling of the computational ions.
Instead, there is an intermediate optical cooling rate, in
agreement with our previous observation [36]. We finally
investigate the time scale for the system to reach the
steady state, which in general differs from the thermal
equilibrium state [36].
This paper is organized as follows. In Sec. II, we

present the Heisenberg-Langevin equations to describe
the driven dynamics of a many-ion array and provide
their formal exact solutions. In Sec. III, we discuss
the motional steady states of the ions under background
heating and continuous sympathetic cooling on the cool-
ing ions. In Sec. IV, we study different cooling configu-
rations and discuss the corresponding cooling efficiency.
In Sec. V we investigate how the cooling performance
of the sympathetic cooling depends on the laser cooling
rate. In Sec. VI, we study the relaxation dynamics of the
cooling process, and discuss the time scale of relaxation
as well as its scaling with the system size. Finally, we
summarize the major findings in Sec. VII.

II. FORMALISM

Consider an ion string confined in an RF trap with an
effective static potential V(r) = 1

2mω2
x(x

2 + y2) + V (z).
For a small crystal, the axial confinement is usually ap-
proximated by V (z) = 1

2mω2
zz

2 with ωz ≪ ωx so that the
one dimensional alignment is stabilized. For a large crys-
tal, the axial potential might take an anharmonic form
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[29]. Trapped ions have collective motion around their
classical equilibrium positions. Assuming that each ion
is coupled to its respective thermal bath (corresponding
to either cooling or background heating), we describe the
driven ion array by the following Heisenberg-Langevin
equations:

{

ẋξ
i = pξi

ṗξi = −∑j A
ξ
ijx

ξ
j − γξ

i p
ξ
i +

√

2γξ
i ζ

ξ
i (t)

, (1)

where i, j = 1, ..., N are ion indices, ξ = x, y,z stands

for the mode directions, and Aξ
ii = βξ

i −
∑

j( 6=i)
Cξ

|z0

j
−z0

i |3
,

Aξ
ij =

Cξ

|z0

j
−z0

i |3
(i 6= j) with βx,y

i = ω2
x, β

z
i = ∂2V/∂z2i ,

Cx,y = 1, Cz = −2, and z0i denotes the ith ion’s ax-
ial equilibrium position. We take the ion spacing d0
as the length unit[37], e2/d0 as the energy unit, and

ω0 ≡
√

e2/(md30) as the frequency unit so that the
quantities in Eq. (1) is dimensionless. For the conve-
nience of discussion, we drop the superscript ξ. Since the
transverse and axial modes are decoupled, the deriva-
tion simply applies to any direction. A random kick
ζi(t) associated with the driving rate γi can be ex-

pressed as ζi = −i
∑

k

√

ωk

2 Gik(bk − b†k) (in units of√
h̄mω0), where G is the canonical transformation ma-

trix which diagonalizes A, i.e. G⊤AG = AD is diago-
nalized, and bk is the bosonic field operator of the kth
motional mode with frequency ωk. For a Markovian

bath, bk(t) satisfies
〈

b†k(t1)bk′(t2)
〉

= nB
k (T )δkk′δ(t1 − t2)

with nB
k (T ) ≡ [exp(ωk/T )− 1]−1 the phonon number of

the kth mode for a given temperature T (in units of
h̄ω0/kB). It is then straightforward to show that the
correlation of the driving force is given by

〈

ζi(t)ζj(t
′)
〉

=

δijδ(t − t′)
∑

k ωkG
2
ik

(

nB
k (T ) +

1
2

)

. In our current case,
where each ion couples to an independent reservoir Ti,
it is reasonable to assume that the ion i feels a local
bath with

〈

ζi(t)ζj(t
′)
〉

= δijδ(t− t′)Θi(Ti) and Θi(Ti) ≡
∑

k ωkG
2
ik

(

nB
k (Ti) + 1

2

)

. The solution to Eq. (1) is

given by q(t) = e−Ωtq(0) +
´ t

0 dτe
Ω(τ−t)η(τ), where q ≡

(x1, x2, ...; p1, p2, ...)
⊤ =

[

{xi}
{pi}

]

, η(t) ≡
[

{0}
{√

2γiζi
}

]

,

and Ω ≡
[

0 −I
[

Aij

] [

γiδij
]

]

is a 2N × 2N matrix which

can be diagonalized as
[

U−1ΩU
]

αβ
= λαδαβ. We then

obtain the variation of operators xi and pi:

〈

q2µ
〉

=

N
∑

s=1

2N
∑

α,β=1

UµαUµβ

(

e−(λα+λβ)t

[

〈

x2
s(0)

〉

U−1
βs U

−1
αs

+
〈

p2s(0)
〉

U−1
β,s+NU−1

α,s+N

]

(2)

+
(

1− e−(λα+λβ)t
) 2γsΘs

λα + λβ
U−1
β,s+NU−1

α,s+N

)

,

where µ = 1, 2, ..., N correspond to x-operators, µ = N+
1, N + 2, ..., 2N correspond to p-operators.

FIG. 1: (a)(b) The thermal-equilibrium distributions of the
averaged ion PF in units of d0 and (c)(d) the associated com-
putational infidelity corresponding to the axial and transverse
motion at the Doppler temperature kBTD/h̄ = 2π × 9.9MHz
for 20 171Yb+ ions. Other parameters: ωx = 2π × 5.1MHz,
ωz = 2π×34kHz, |∆k|d0 = 157 with d0 = 10µm, the minimal
ion spacing in the middle of the chain.

For trapped ion quantum computing, the computa-

tional fidelity is determined by the ion PF δxξ
i ≡

√

〈

xξ2
i

〉

(denoted by δxi and δzi for transverse and axial mo-
tion, respectively). When the quantum gate is operated
by means of the transverse modes, the estimated infi-
delity is δF x

i ∼ π2η4i /4 [3, 29, 30], where the Lamb-Dicke
parameter ηi ∼ |∆k| δxi with ∆k ‖ x̂ the wavevector
difference of the two Raman beams. Another possible
source of error comes from the spatial non-uniformity
of the laser intensity when a single beam addresses a
specific ion; the ion’s axial motion results in variation
of the actual Rabi frequency. This error is estimated
by δF z

i ∼ π2(δzi/w)
4/2 given that the laser beam’s

Rabi frequency is approximated by a Gaussian profile

Ω(z) ∝ e−((z−z0

i )/w)2 with width w [29]. Both of the gate
errors are determined by the position thermal fluctuation
δxi or δzi of the ions. So, in the following discussion we
focus on the distribution of the ion position fluctuation
δxi or δzi in the array.

III. STEADY-STATE DISTRIBUTION

A. Thermal equilibrium

We first look at the thermal-equilibrium distribution
of the ion chain when the whole system is driven by
a thermal field with a well-defined temperature. From

xi = α
∑

k Gik

√

1
2ωk

(a†k + ak) where α ≡
√

h̄/(mω0)/d0

is the length conversion factor and ak (a†k) is the annihi-

lation (creation) operator of mode k, we obtain
〈

x2
i

〉

=



3

α2
∑

k
G2

ik

ωk

(

nB
k (T ) +

1
2

)

= α2
∑

k
G2

ik

2ωk
coth

(

ωk

2T

)

. In Fig.

1 we show the distribution of δxi and δzi in a harmonic
trap for both the axial and transverse motion at the
Doppler temperature TD, and their contribution to the
corresponding gate infidelities [29]. In this case, the axial
fluctuation δzi varies in space, suggesting that the longi-
tudinal motion of the whole ion chain is “more collective”
and relies on the global geometry. Supposing that a single
ion is subjected to a different temperature, its longitu-
dinal movement does not directly reveal information of
the temperature associated with the local bath because
neighboring ions subjected to their own baths may in-
terfere through collective modes. On the contrary, its
transverse movement directly reflects the local tempera-
ture. This is because the axial and transverse modes are
decoupled, and for each ion the energy scale set by the
transverse confinement h̄ωx is dominant over other scales.
Note that the diagonal terms of Ax are more signifi-
cant than the off-diagonal ones, meaning that the “local
modes” defined by xi and pxi can be discussed separately
from those at different sites, with only small corrections
due to inter-ion coupling. This is where the concept of a
“local temperature” for a single ion starts to make sense.
Such consideration has also motivated our investigation
about the validity of classical thermal transportation for
the trapped ion system [36]. Each ion can then be ap-
proximated as an harmonic oscillator weakly coupled to
others, whose “local” phonon occupation number is given

by ni =
α−2

2 (ωx〈x2
i 〉 + ω−1

x 〈px2i 〉 − 1) ≈ α−2ωx〈x2
i 〉 − 1

2 .

In the case shown in Fig. 1, PF= 10−3d0 corresponds to
ni = 8.5 with α = 2.0× 10−3.[38]

B. Steady-state profile under sympathetic cooling

If different parts of the system make contact with reser-
voirs at different temperatures, as relevant for sympa-
thetic cooling, the local temperature of the ions in the
steady state will in general have a non-uniform spatial
profile. In this section, we investigate this steady-state
profile.

We first examine an example where the two edge por-
tions of the ion chain are continuously laser cooled (we
assume Doppler cooling, although the formalism also ap-
plies to other kinds of sympathetic cooling). The rest of
the ion chain is driven by a hot bath corresponding to
the background heating. According to Eq. (2), in the
long-time limit a steady state should be reached, provid-
ing a time-invariant profile of the position fluctuation δxi

or δzi over all the ions.

To model the effect of background heating, we as-
sume a small value for the background driving rate γbg
with respect to the associated environment temperature
Tbg. The value of Tbg is hard to quantify; the ac-
tual experimentally accessible parameter is the creation
rate of phonons for a given motional mode k, that is,
γbgn

B
k ∼ γbgTbg/ωk. To simplify our discussion, we treat

FIG. 2: (Color online) The steady-state distributions of the
ion PF in a harmonic trap under different background tem-
perature for a given constant heating rate. As a comparison,
the ideal (no background heating, γbg = 0) curves are shown
in red dotted lines.

the generated phonon numbers approximately the same
around the range of all transverse (axial) modes. In other
words, the background heating is now only characterized
by κ ≡ γbgTbg. Nevertheless, for a given value of κ we
still have the freedom to vary Tbg (and hence γbg) while
keeping κ a constant parameter. As an example, we here
consider an N = 20 chain with 5 ions on both ends as
cooling ancillas. By denoting the set of the cooling an-
cillary ions by C and rest of the chain by H , we take
Ti = Tbg, γi = κ/Tbg for i ∈ H and Ti = TD, γi = 0.1
for i ∈ C. We then compare the resultant steady-state
profile of δxi and δzi under various Tbg in Fig. 2 with
constant κ = 10−4, which amounts to a heating rate of
about 60 phonons per second per ion for the lowest ax-
ial mode of 2π × 34kHz. Note that in a real ion trap,
a typical heating rate is about 100 ∼ 1000 photons per
second. As expected, the PF of the ancillary ions coin-
cides with their supposed thermal-equilibrium values at
the Doppler temperature TD while δxi and δzi show a
hump in the middle part of the distribution due to the
background heating. For Tbg set to larger values, the
hump grows but asymptotically converges to a fixed pro-
file, providing an upper bound of the profile. This corre-
sponds to the “worst” case with the largest contribution
to the gate infidelity. In the following, we only show such
upper bounds for all the circumstances and investigate
the discrepancy between these bounds and the fluctua-
tion profile at the Doppler temperature (corresponding
to the perfectly cooled case).

IV. COMPARISON OF DIFFERENT COOLING

CONFIGURATIONS

In this section, we compare the efficiency of sympa-
thetic cooling under two cooling configurations: edge
cooling and periodic-node cooling. For each case, we
show the results under both harmonic and anharmonic
axial traps. For a large ion crystal, the inhomogeneous
ion spacing under a harmonic trap complicates the gate
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FIG. 3: (Color online) The distributions of the axial and
transverse PF (in units of d0) for various trap geometries un-
der the edge cooling: (a)(b) a uniform array, (c)(d) a har-
monic trap, (e)(f) a quartic trap. (N − Nh)/2 ions on each
end of the ion chain are Doppler cooled with a driven rate
γ = 0.1. For the uniform array, the spacing is d0 = 10µm; for
the harmonic case, ωz = 2π× 8.4kHz and ωx = 2π× 5.1MHz,

and for the quartic case ω2 ≡
√

|α2|/m = 2π × 5kHz and

|α2/e
2|2/3(α2/α4) = −6.2 such that

∑

110

i=11
(z0i+1 − z0i )/100 =

d0. The background heating rate κ = 10−4 amounts to, for
instance, generating 240 phonons per second for the lowest
harmonic mode ωz. Other parameters are the same as used
in Fig. 1.

design and reduces its fidelity for quantum computation.
To overcome this problem, as suggested in [29], it is bet-
ter to use anharmonic traps which can give equal or al-
most equal spacing for the ions in the chain. We con-
sider two kinds of anharmonic trap: the one (called the
uniform trap for simplicity of terminology) which gives
perfect uniform spacing for the ions and the quartic trap
with potential V (z) = 1

2α2z
2 + 1

4α4z
4 which gives ap-

proximate uniform ion spacings. The parameters α2 and
α4 in V (z) are chosen to minimize the variation of the
distribution of the ion spacings in the chain [29].

A. Edge cooling

First, we show the result with the edge segments of the
ions are Doppler cooled. Fig. 3 shows the final distribu-

FIG. 4: (Color online) The cooling efficiency (in terms of the
normalized PF) as a function of the number of heat-driven
ions for (a) the axial and (b) the transverse motion.

tions of δxi and δzi under three different traps. As a
comparison, the corresponding thermal-equilibrium pro-
files at T = TD are shown as red dotted curves. To con-
sider how many ions can be cooled effectively through
sympathetic cooling, we show the curves under different
number Nh ≡ n(H) of the computational ions which are
subject to the background heating. The axial distribu-
tion is shown in Fig. 3(a), (c) and (e). In the uniform
case, the curves almost coincide with the ideal thermal
equilibrium one under the Doppler temperature, indicat-
ing that the system is almost perfectly cooled by sym-
pathetic cooling. In our example with the system size
N = 121, the edge cooling for a uniform ion chain can
afford Nh up to 100 ions, with the maximal δzi (occur-
ring at the middle ion with i = 61) increased by about
4% compared with the ideal case. In the harmonic trap,
the affordable Nh is significantly reduced; the ion PF δzi
grows very fast near the chain center as Nh exceeds a cer-
tain value (∼ 25). A considerable improvement can be
found in the quartic case, which supports up to Nh ∼ 85
ions with negligible discrepancy in the distribution. With
even larger Nh, humps start to form on two sides instead
of being at the chain center. As for the transverse motion,
as shown in Fig. 3(b), (d), and (f), the cooling efficiency
is in general more vulnerable than that of the axial mo-
tion. Because the transverse motion is typically more
localized, the ancillary ions have vanishing influences on
the ions of increasing distance. It can be observed that
although δxi for the edge ions are fixed by the Doppler
temperature, the ions away from the laser cooled ions
soon get large δxi. Therefore, we expect that it is ineffi-
cient to cool the transverse modes with the edge cooling.
The dependence of the cooling efficiency on the number

of computational ions Nh is plotted in Fig. 4. To quan-
tify the cooling efficiency, here we look at the maximal
axial (transverse) position fluctuation δz> (δx>) among
all the ions belonging to H normalized by the middle
one’s fluctuation δz0m (δx0

m) at the Doppler temperature
TD (m = 61 for the system size N = 121). With this
definition, the normalized characteristic fluctuation ap-
proaches the unity when the system reaches the Doppler
temperature. With this setup, the sympathetic cooling
works better for the axial modes than the transverse ones
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FIG. 5: (Color online) The distributions of the axial and
transverse PF (in units of d0) under the periodic cooling for
(a)(b) a uniform array, (c)(d) a harmonic trap, (e)(f) a quar-
tic trap. The total number of ions N = 121. All parameters
are the same as in Fig. 3 except for the ancilla arrangement.
The curve legend for all six panels is the same and is given in
(e).

in terms of the gate infidelities δF z and δF x, which are

proportional to
(

δz>

δz0

61

)4
and

(

δx>

δx0

61

)4
, respectively. For in-

stance, the infidelity δF z is roughly increased by 16% for
δz>

δz0

61

∼ 1.04 but δF x is increased by 16 times for δx>

δx0

61

∼ 2.

It is interesting to observe that for both the axial and
transverse directions, the curves for the quartic trap rise
more slowly than those for the uniform trap before they
suddenly jump up around Nh ∼ 85.

B. Periodic-node cooling

As discussed above for the edge cooling, if we impose
an efficiency threshold, there must be a limit on Nh be-
yond which the system cannot be effectively cooled. For
long ion chains, therefore, a different spatial arrangement
of the cooling ions must be considered. Here, we dis-
cuss an improved configuration where the ancillary cool-
ing ions are distributed periodically and evenly in the
ion chain. We investigate how the period (the num-
ber of computational ions between two adjacent cool-
ing ions/nodes) influences the performance of sympa-

FIG. 6: (Color online) The efficiency of the periodic cooling
with different periods of ancilla arrangement for (a) the axial
and (b) the transverse motion.

thetic cooling. We still take the ion number N = 121
as an example and only Doppler cool the 1st, (1 + P )th,
(1 + 2P )th, ..., Nth ions with a period P that factorizes
120. In Fig. 5 we show the resultant distribution of δxi

and δzi under three different trapping potentials. Unlike
the edge cooling case, a uniform chain has no good per-
formance under the periodic-node cooling. As the reason
will be revealed later in Sec. V, this is because the cool-
ing rate γ = 0.1 is not an optimal choice. As for the
axial motion in the harmonic and quartic cases shown
in Fig. 5(c) and (e), the curves are almost identical to
the ideal ones even with a large period P = 24 (about
5% of the ions are used for sympathetic cooling in this
case). For the transverse direction shown in Fig. 5(b),
(d), and (f), δxi is significantly suppressed compared to
those under the edge cooling configuration. Although the
detailed distribution depends on the trapping potential,
the maximum δxi is no more than two (1.25) times of δxi

for the ideal case under a large period P = 24 (P = 10).

We plot the cooling efficiency against the period P in

Fig. 6. Here the efficiency is characterized by δzi
δz0

i

≡
1

n(H)

∑

i∈H
δzi
δz0

i

(similarly for δxi

δx0

i

). Note that in the uni-

form case, the efficiency becomes worse due to the im-
proper choice of γ = 0.1. For the axial modes shown
in Fig. 6(a), the efficiency in the harmonic case is as
good as that in the quartic case except at P = 20, where
the ion PF suddenly jumps out of the good range in the
harmonic case. For the transverse modes (Fig. 6(a)),
the three trap potentials do not show dramatic differ-
ences for P < 15, but in general the quartic curve still
shows the slowest increase in the ion PF as P gets larger.
The exception with a sudden jump of the PF at P = 20
is somewhat related to a particular phonon eigenmode
structure for the harmonic trap. Such a eigenmode hap-
pens to have a few nodal points coincident with the sites
of cooling ions. Therefore this mode cannot be cooled
effectively. This can be circumvented by arranging cool-
ing ions asymmetrically with respect to the trap center.
On the other hand, if some of the ions happen to be of
large PF in one normal mode, cooling these ions effec-
tively cools this mode. So it might be ideal to choose to
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FIG. 7: (Color online) The cooling efficiency for (a) the axial
modes and (b) the transverse modes under edge cooling; (c)
the axial modes and (d) the transverse modes under periodic-
node cooling. The system size N = 121. In (a) and (b), these
curves correspond to Nh = 41. In (c) and (d), the curves
correspond to P = 10. Other parameter are the same as
previously discussed.

cool those ions whose amplitudes are large in most of the
eigenmodes.

V. INFLUENCE OF COOLING RATES

In this section, we discuss the significance of the driv-
ing rate γ of the Doppler cooled ions. Intuitively, we
would expect that the system can be cooled more effi-
ciently when the driving rate γ gets larger. Our calcula-
tion shows that this is however not the case. We study
the efficiency with varied γ under the same background
heating rate κ. The efficiency characterized by the cor-
responding (normalized) position fluctuation is plotted
in Fig. 7 as a function of γ. Surprisingly, for all the
circumstances we consider, the ion position fluctuation
first decreases as the driving rate rises in the small γ
regime, approaching to a minimum when γ is moderate,
and then increases again when γ becomes strong. This
suggests that the driving rate has an optimal window for
cooling. The fact that the efficiency does not go better
with strong cooling rates seems counter-intuitive in the
first place. But this finding is consistent with our pre-
vious work [36]. The reason is that, when the driving
rate is larger than the inverse of the timescale needed for
propagation, the ion is kicked from random directions so
frequently that the effects of succeeding kicks cancel out
before the first kick is about to “transfer” to its neigh-
bors. If the rate matches the propagation timescale in
order of magnitude, the cooling efficiency gets optimal.
Furthermore, these curves do not reach the minima at

the same γ; the optimized cooling rate depends on the
trapping potentials, cooling configurations, and which di-

rection of the motion is considered. For the edge cool-
ing (Fig. 7(a) and (b)), the most efficient window of γ
for cooling axial modes lies in the range from 0.1 to 1,
both for the uniform and the quartic potentials. With
the same rate, the (normalized) transverse PF becomes
significantly larger than unity for these two geometries.
For the periodic-node cooling (Fig. 7(c) and (d)), both
the curves for the harmonic and the quartic potentials
are nearly identical, with the optimal window lies in the
range from γ ∼ 0.1 to 10 for the axial direction and from
γ ∼ 0.02 to 0.05 for the transverse direction. By com-
promising the optimal windows for both the directions,
γ ≃ 0.1 sounds a suitable choice.

VI. RELAXATION DYNAMICS TO THE

STEADY STATE

So far we have only discussed the steady-state solution
to Eq. (2). In this section we discuss the relaxation time
scale towards the steady state, which is also an important
factor concerning the feasibility of employing the sympa-
thetic cooling in experiments. To illustrate the general
feature, we first calculate the dynamics of an N = 20
ion chain in a harmonic trap under the edge cooling. We
assume Doppler cooling is applied to 5 ions on each end
of the chain and the whole chain is initially in thermal
equilibrium with temperature T = 2TD. We then plot
the curves of δxi and δzi with i = 6 (right next to the
cooling ions) and i = 10 (the middle ion) as indicators
in Fig. 8(a) and (b). Note that for the axial motion the
two solid lines have been coarse grained by a small time
interval. This is because the actual profiles have very
fast oscillations (see the insets of Fig. 8(a)). We also
show the upper and lower envelopes of such oscillations
by the dotted lines. The coarse-grained curves asymptot-
ically approach constant values as time increases, along
with the fast oscillations dying away gradually. We define
a relaxation time τR, beyond which the upper envelope
falls within 1% of the coarse-grained value. So we find
τR/t0 ∼ 105 for the system to approach the steady state,
where t0 ≡ 2π/ω0 (∼ 7µs for most of the cases discussed
here). For the transverse direction, the amplitude of the
fast oscillation is small, but it takes τR/t0 ∼ 106 to reach
the steady state.
Now we consider the case with background heating at a

rate κ = γbgTbg = 10−4. Different curves corresponding
to this case are plotted in dashed lines. Different γbg
change the final distribution of δxi and δzi, but do not
lead to significant variation of the relaxation time scale.
Fig. 8(c) and (d) shows the snapshots of the distribution
of δxi and δzi (coarse graining also applied to the axial
mode) at different times. The cooling ions immediately
reach their steady states (in a short time scale γ−1 which
is not visible from the curve). The cooling then starts to
propagate to the inner part of the ion chain.
Previous discussion has shown that the relaxation time

of edge cooling is still quite long (0.1 to 1 second). We
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FIG. 8: (Color online) (a)(b) The temporal profiles of the
ion PF for the 6th (blue curves) and 10th (green curves) ions
without considering background heating. In (a), two solid
lines represent coarse-grained values since the actual profiles
contain fast oscillations as seen in the two insets at t = 104t0
(left) and t = 105t0 (right), respectively. The coarse graining
interval is ∆t/t0 = 20. Note that in both insets the time
span is ∆t′/t0 = 10, and the wavy (green) behavior belongs
to the 10th ion while the PF of the 6th ion stays nearly a
constant (blue). To show the effect of background heating,
the PF profile of the 10th ion is also plotted for comparison
(with κ = 10−4). That of the 6th ion is not explicitly shown
because it is almost identical to the blue solid (no-heating)
curve. In (b), the fast oscillation amplitude is in the order of
10−9d0 so the dotted curves appear to be on top of the solid
ones. A thick and a thin (magenta) dotted lines representing
the 10th and 6th ions, respectively, with background heating
are also shown for comparison. (c)(d) The snapshots of the
time-averaged distributions. The relevant parameters are the
same as Fig. 2.

then turn to the more efficient periodic-node cooling for
a large ion chain. We here consider a quartic trap and
examine the relaxation time τR as a function of the pe-
riod P . As expected, Fig. 9(a) shows that τR is in gen-
eral an increasing function with P . For an N = 121
chain, we find the time scale can be controlled within
τR/t0 ∼ 104 (tens of milliseconds) while the axial re-
laxation takes roughly 10 times shorter than the trans-
verse one. These results show a timescale comparable to
usual Doppler cooling (of order of a few milliseconds). If
the background heating is included, the transverse curve
drops slightly but the axial curve is hardly affected. As
more ions are added into the system, it is important to

make sure that the relaxation time does not scale up too
fast with N . We show in Fig. 9(b) the scaling curves of
τR with increasing N by fixing P = 10. The axial relax-
ation time tends to decrease as the system size increases
and meets a lower bound in the large N limit. On the
contrary, the transverse relaxation time appears to be in-
dependent of N . This is because the transverse motion

FIG. 9: (Color online) The relaxation time τR as a function
of (a) the period P in the periodic-node cooling for N = 121,
and (b) the total length N of the ion chain for a given P = 10.
The solid curves correspond to no background heating cases
and the dotted lines correspond to background heating cases
with κ = 10−4. For (a), the relevant parameters are the same
as Fig. 5. For chains of different sizes in (b), the quartic trap

is determined by minimizing
∑N−16

i=16
(z0i+1−z0i )

2/(N−31) and

setting
∑N−16

i=16
(z0i+1 − z0i )/(N − 31) = d0.

tends to involve only nearby ions. So a longer chain is
nothing but a simple repetition of segments of a size P .

VII. CONCLUSION

To conclude, we have presented a detailed investigation
on the sympathetic cooling in a large ion chain. Many
findings discovered in this paper are instructional for ex-
perimental implementation. First, a steady state can
be reached for a system subject to constant background
heating under continuous sympathetic cooling. By ar-
ranging cooling ancillary ions in different ways, the cool-
ing performance can be improved and optimized. In our
calculation, although the transverse motion is relatively
harder to be cooled than the axial one, by inserting ancil-
lary ions evenly over the chain it can be cooled down to
a satisfactory level. We have studied the effect of cool-
ing rates and found the optimal window of the cooling
rates. We have also discussed the relaxation dynamics
and showed that the required time scale is within the
reach of experiments.

[1] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971
(1999).

[2] G. Milburn, S. Schneider, and D. James, Fortschritte der
Physik 48, 801 (2000).

[3] A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311
(2000).

[4] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Bar-
rett, J. Britton, W. M. Itano, B. Jelenković, C. Langer,
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