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Abstract In this work, we present a quantum key distribution protocol using
continuous-variable non-Gaussian states, homodyne detection and post-selection. The
employed signal states are the photon added then subtracted coherent states (PASCS)
in which one photon is added and subsequently one photon is subtracted from the field.
We analyze the performance of our protocol, compared with a coherent state-based
protocol, for two different attacks that could be carried out by the eavesdropper (Eve).
We calculate the secret key rate transmission in a lossy line for a superior channel
(beam-splitter) attack, and we show that we may increase the secret key generation
rate by using the non-Gaussian PASCS rather than coherent states. We also consider
the simultaneous quadrature measurement (intercept-resend) attack, and we show that
the efficiency of Eve’s attack is substantially reduced if PASCS are used as signal
states.

Keywords Quantum cryptography · Continuous variables · Non-Gaussian states

1 Introduction

The first quantum key distribution (QKD) protocol, conceived in 1984 (BB84) [1], is
an inherently discrete protocol; it not only requires (discrete) single-photon sources,
but the modulation of the signals is also discrete. Although the ideal BB84 has been

B A. Vidiella-Barranco
vidiella@ifi.unicamp.br

L. F. M. Borelli
borelli@ifi.unicamp.br

1 Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas,
Campinas, São Paulo 13083-859, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-015-1193-8&domain=pdf


894 L. F. M. Borelli et al.

proved unconditionally secure [2,3], there are still practical shortcomings: Reliable
single-photon sources (used by Alice, the sender) are hard to build, and photon coun-
ters (used by Bob, the receiver) limit the key generation rate. Notwithstanding fully
discrete-variable protocols have been successfully accomplished over distances of
more than 250km in ultra-low loss fibers [4].Meanwhile, several alternativeQKDpro-
tocols using other (continuous-variable) light sources have been proposed employing,
for instance, squeezed states [5–8] or coherent states [5,9–11]. In such continuous-
variable protocols, the key may be encoded by Alice in the quadrature variables, and
Bob will be allowed to employ photomultipliers (which are faster than single-photon
detectors) to read the signals via homodyne detection. Continuous-variable protocols
may be classified as: (1) all continuous protocols [9,10], for which Alice prepares,
for instance, Gaussian states such as coherent states, with random amplitudes drawn
from a continuous Gaussian distribution, or (2) hybrid protocols [8,12–14]. In the
hybrid protocols, Alice uses light prepared in continuous-variable light signals, but
the encoding is made using a discrete set of states (e.g., four states). At the same time,
we are witnessing considerable advances concerning the implementation of QKD in
real-world conditions [15,16] which usually requires long-distance communication.
The all continuous-variable protocols are mostly based on coherent states, which are
easier to generate than other quantum states of light. However, coherent state-based
protocols are normally more effective in shorter ranges, due to poor performance in
low signal-to-noise ratio conditions. Recently, though, a record of 80km has been
established for an improved version [17] of the GG02 continuous-variable protocol
[9]. In spite of those advances, it would be interesting to seek other possibilities for
long-distance QKD. A viable alternative are the hybrid continuous/discrete protocols,
which may employ either Gaussian or non-Gaussian states. We would like to remark
that continuous-variable non-Gaussian states (contrary to Gaussian states) may allow
the use of quantum repeaters in order to increase the transmission range of a practical
QKD system [18].

In this paper, we propose a protocol for QKD based on continuous-variable
non-Gaussian states, viz., photon added then subtracted coherent states (PASCS).
The PASCS may be generated in a relatively straightforward way departing from a
Gaussian (coherent) state [19]. We may then formulate a protocol similar to already
existing continuous-variable protocols [8,13] employing homodyne detection and
post-selection [20]. We encode bits 0 and 1 in two pairs of PASCS (each pair contain-
ing states with opposite phases), which are randomly prepared by Alice. Alice sends
light signals to Bob through a lossy line, who will perform homodyne detections on
them. In order to demonstrate the robustness of our protocol against eavesdropping, we
calculate the transmitted secret bit rate, (SAB) [21] for a beam-splitter attack (supe-
rior channel attack), as well as for a kind of intercept-resend attack (simultaneous
measurement quadrature attack). That analysis will allow us to assess the security
of the protocol using two different attacks as well as to establish a comparison with
the performance of other protocols. Our paper is organized as follows. In Sect. 2, we
briefly introduce the PASCS. In Sect. 3, we review the basic structure of the protocol.
In Sect. 4, we analyze the performance of our PASCS-based protocol under the supe-
rior channel attack: We calculate the secret key rate of our protocol and compare the
results with those obtained using a similar protocol using coherent states. In Sect. 5, we
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Quantum key distribution using continuous-variable… 895

consider a intercept–resend attack: the simultaneous measurement quadrature attack.
We evaluate the eavesdropper success rate for both the PASCS and the coherent states.
In Sect. 6, we discuss the results and present our conclusions.

2 Photon added then subtracted coherent states

It is possible to perform quantum-state engineering, via conditional measurements
by adding and/or subtracting photons of a quantized light field, as discussed in [22].
Earlier in the 1990s, there were envisaged the photon-added coherent states (PACS)
[23], which were successfully generated a few years ago [24]. Subsequently, the com-
bination of photon adding and photon subtracting in the electromagnetic field has also
been experimentally explored [19]. In general, the operation of firstly adding k pho-
tons and then subtracting l photons from a coherent state |α〉 results in the following
state (PASCS) [25]:

|k, l, α〉 = [Nk,l(α)]−1/2âl â†k |α〉, (1)

with normalizing constant

Nk,l(α) =
l∑

m=0

(l!)2(l + k − m)!
(−1)mm![(l − m)!]2 Ll+k−m

(
−|α|2

)
, (2)

and where Ll+k−m is the Laguerre polynomial of order (l + k − m).
Of particular interest for our purposes are the PACS and the PASCS having just

one photon added and one photon subtracted (k = l = 1). Thus, from an initial
coherent state |α〉, we first add one photon to it or |φA〉 ∝ â†|α〉 and then subtract
one photon from the resulting state, obtaining the PASCS |1, 1, α〉 ≡∝ â|φA〉. An
interesting feature of the state |1, 1, α〉 is that it may be written as a superposition of
a coherent state and a photon-added coherent state (PACS), i.e., |1, 1, α〉 ∝ ââ†|α〉 ∝
(1 + â†â)|α〉 ∝ |α〉 + α|φA〉. In other words, this specific PASCS may be written as
a superposition of a Gaussian state (coherent state) with a non-Gaussian component
(PACS) weighted by α.

A useful and well-known representation of the field states is theWigner function—
a quasiprobability distribution in phase space [26,27]. For a density operator ρ̂, the
Wigner function may be expressed as a series expansion:

W (ζ ) = 2

π

∞∑

n=0

(−1)n
〈
n|D̂−1(ζ )ρ̂ D̂(ζ )|n

〉
, (3)

where ζ = ζr + iζi , being (ζr , ζi ) the phase space coordinates, and D̂ is Glauber’s
displacement operator, D̂(ζ ) = exp(ζ â†−ζ ∗â). For the PASCS, ρ̂ = |k, l, α〉〈k, l, α|,
the corresponding Wigner function reads [25]

Wk,l(ζ ;α) = 2e(−2|α−ζ |2)

πNk,l(α)

k∑

n=0

(−1)n(k!)2
n!((k − n)!)2 |Hk−n,l [i(2ζ − α), iα∗]|2, (4)
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896 L. F. M. Borelli et al.

Fig. 1 Wigner function and contour plots of: PASCS (left) with one photon added and one photon subtracted
from a coherent state having α = 1 and a coherent state (right) having α′ = 1.5

being Hk−n,l the bivariate Hermite polynomials

Hp,q(ε, ε) =
min(p,q)∑

r=0

(−1)r p!q!
r !(p − r)!(q − r)!ε

p−rεq−r . (5)

For comparison, we have plotted in Fig. 1 theWigner function of the PASCS having
just one photon added and one photon subtracted [Eq. (4) with k = l = 1], together
with theWigner function of the coherent state |α〉, given byW (ζ ;α) = 2

π
exp(−2|α−

ζ |2). TheWigner function of a coherent state is exactly a Gaussian function, while the
PASCS’s Wigner function has a slight deformation as well as a negative part, a clear
indication of the non-classicality of the state. Apart from being useful for identifying
some features of quantum states, the Wigner function may also be used to analyze the
security of our protocol, as we are going to show below.

3 The protocol

The protocol works as follows: Firstly, Alice randomly chooses one of the four PASCS
(for α real): either |ψAS+〉 ≡ |1, 1, α〉 and |ψAS+i 〉 ≡ |1, 1, iα〉 (representing bit 1), or
|ψAS−〉 ≡ |1, 1,−α〉 and |ψAS−i 〉 ≡ |1, 1,−iα〉, (representing bit 0) in the horizontal
and vertical bases, respectively. The plots of the Wigner functions corresponding to
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Quantum key distribution using continuous-variable… 897

Fig. 2 Contour plots of the PASCS with one photon added and one photon subtracted from a coherent state
having α = 0.55, (|ψAS+〉) and α = −0.55 (|ψAS−〉)

|ψAS−〉 and |ψAS+〉 in Fig. 2 give a clear picture of their distinguishability in phase
space. In a second step, Alice sends a light signal prepared in the chosen state to
Bob, who randomly selects either the horizontal or the vertical basis and performs a
homodyne detection on the received signal.We nowdenoteβ = βr+iβi the (complex)
measurement variable corresponding to Bob’s measurement. If Bob chooses, say, the
vertical basis for his measurement, this corresponds to measure the real part of β (βr );
if he chooses the horizontal basis, it corresponds to measure the imaginary part of
β (βi ). Bob also fixes a value for the post-selection threshold, βc, obtained via an
optimization procedure as we will discuss in what follows. If in a given measurement,
he finds βr,i < −βc, Bob assigns value 0 the bit; if he finds βr,i > βc, he assigns value
1 to the bit. Otherwise, Bob tells Alice to neglect the corresponding bit.

4 Beam-splitter attack: superior channel attack

Due to the transmission line losses (imperfect channel), it is possible for an eavesdrop-
per (Eve) to intercept a fraction of the signal without being noticed by the legitimate
users. To do that, Eve uses an asymmetric beam splitter of transmissivity T and reflec-
tivity R, with T 2 + R2 = 1. She keeps the reflected part of the beam (the transmitted
part is sent to Bob via a lossless channel) stored in a quantummemory andwaits for the
announcement of the measurement basis used by Bob. For simplicity, in this security
analysis we consider just the case in which the horizontal basis is announced, as the
discussion is analogous for the vertical basis due to symmetry. To estimate the amount
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898 L. F. M. Borelli et al.

of gain of secret information per transmitted pulse SAB, it is necessary to derive an
upper bound of the information leaked to Eve when she splits the beam, as discussed
in [21,30]. A relevant quantity in the following derivation is the joint measurement
probability, P(βr , εr ), of Bob obtaining the result βr and Eve obtaining εr ,

P±(βr , εr ) =
∫

W̃±(β, ε)dβidεi , (6)

where W̃±(β, ε) is the (two-mode) Wigner function of the beam-splitter output [8,28,
29],

W̃±(β, ε) = W 1,1
ψAS±(Tβ − Rε, α)Wvac(Rβ + T ε). (7)

The ± signs refer to the pair of states we are considering for the security analysis,
namely |ψAS+〉 and |ψAS−〉. In the expression above,W 1,1

ψAS±(Tβ−Rε, α) is the (single
mode) Wigner function [Eq. (4)] of the PASCS resulting from the addition of only one
photon to a coherent state |α〉 and subtraction of one photon from the resulting state.
In the other port of the beam splitter, we have the vacuum as input state, with Wigner
function Wvac(Rβ + T ε).

Because the PASCS is not a coherent state, the two emerging beams from the beam
splitter are normally in an entangled state. Thus, the joint probability distribution does
not factorize, and the results of measurements made by Bob, βr , and Eve, εr , will be
somehow correlated, as shown in Fig. 3. This means that if Bob measures a relatively
large value for his quadrature (βr ), Eve is likely to measure a small value for hers (εr ).
For instance, as shown in Fig. 3, The maximum of P+(βr , εr ) occurs for βr = 1.2,

Fig. 3 Contour plot of the joint probability distribution, P+(βr , εr ), for α = 1 and T 2 = 0.75
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while εr = −0.70. Thus, if we increase the value of the post-selection threshold, the
bit error rate on Eve’s side will also be increased.

After performing an ideal error correction and privacy amplification, wemay obtain
a lower bound for the gain of secret information per transmitted pulse, SAB as discussed
in [8,21,30,31]. Firstly, we define racc, the fraction of accepted bits as racc = [P(0)+
P(1)]/2, with

P(1) =
∫ ∞

βc

P ′+(βr )dβr (8)

P(0) =
∫ −βc

−∞
P ′+(βr )dβr , (9)

and

P ′±(βr ) =
∫

W̃±(β, ε)dβidεidεr . (10)

The Shannon information IAB is defined as

IAB =
∫ ∞

βc

dβr
P ′+(βr ) + P ′+(−βr )

P(0) + P(1)

× {
1 + δ(βr ) log2 δ(βr ) + [1 − δ(βr )] log2[1 − δ(βr )]

}
, (11)

with

δ(βr ) = P ′+(−βr )

P ′+(βr ) + P ′+(−βr )
. (12)

The amount of reduction of the rawkey during the privacy amplificationmay bewritten
as τ = 1 + log2 (Pc), where Pc is the collision probability [8]

Pc = 1

2

∫ P2+ (εr |βc <| βr |) + P2− (εr |βc <| βr |)
P+ (εr |βc <| βr |) + P− (εr |βc <| βr |) dεr , (13)

and where

P± (εr |βc <| βr |) =
∫

βc<|βr |
P± (βr , εr )

P(0) + P(1)
dβr (14)

is Eve’s probability distribution conditioned to the fact that a pulse ± was sent and
that Bob accepted the bit in his post-selection. The collision probability plays a crucial
role in the generation of the secret key, indicating by which amount the raw key must
be reduced in order to eliminate Eve’s knowledge about it. The secret information SAB
is thus given by

SAB = racc (IAB − τ) . (15)

The results are shown in Fig. 4. We have that the maximum of the surface representing
the secret information is Smax

AB ≈ 0.140 for the coherent state, while Smax
AB ≈ 0.167

for the PASCS, i.e., a percent improvement of about 19% if the PASCS are used in
place of coherent states. Moreover, we note that the PASCS-based protocol is more
efficient for smaller values of the amplitude α of the transmitted pulse, compared
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900 L. F. M. Borelli et al.

Fig. 4 Secret key rate SAB versus the coherent state amplitude (α) and the post-selection threshold (βc)

for a coherent state (left) and for a PASCS having just one photon added and one photon subtracted (right).
The channel transmission is T 2 = 0.75
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Fig. 5 Secret key rate SAB as a function of α for the PASCS (solid blue line) and coherent state (dashed
blue line); cross section of the surface plots in Fig. 4 for βc = 0.350 (Color figure online)

with the coherent state case, as shown in Fig. 4. For the coherent state protocol, the
peak of SAB occurs for α = 0.838 and βc = 0.377, while for the PASCS protocol,
α = 0.476 and βc = 0.350. In Figs5 and 6, we have plotted cross sections of the
surface plots in Fig. 4 to make easier a comparison of both cases. We remind that the
PASCS (having just one photon added and one photon subtracted) may be written as
a superposition of the coherent state |α〉 with a PACS, or |ψAS〉 ∝ |α〉 + α|φA〉; thus,
for small α the contribution of the PACS (non-Gaussian state) will also be very small,
and the PASCS will be close to a coherent (Gaussian) state. Nevertheless, it will still
generate an entangled state after crossing the beam splitter. This will introduce anti-
correlations between Bob’s and Eve’s measurements results (see Fig. 3), which favors
the security of the PASCS-based protocol, given that Bob will be able to reduce Eve’s
knowledge about the bits via post-selection. In Fig. 7, we have plotted the secret bit
rate SAB as a function of transmission distance in a standard optical fiber for protocols
using PASCS and coherent states. We note that a PASCS-based protocol outperforms
a protocol based solely on coherent states, in the sense that a secret key could be
generated at higher rates for a given distance.
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Fig. 6 Secret key rate SAB as a function of (βc) for the PASCS (solid blue line) and coherent state (dashed
blue line); cross section of the surface plots in Fig. 4 for α = 0.476 (Color figure online)

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

16

distance km

Lo
g

S A
B

Fig. 7 Secret key rate SAB versus distance for the: PASCS (solid line) and the coherent state (dashed line).
We have considered an optical fiber loss coefficient 0.2dB/km for a wavelength of 1.22µm

5 Intercept-resend attack: simultaneous quadrature measurement
attack

For complementarity, we discuss now a second (intercept-resend) attack performed
by Eve in which she splits the incoming pulses of light in a 50:50 beam splitter and
performs simultaneous quadraturemeasurements on the outgoingbeams. She then tries
to infer (with probability Pcorr) the state of the signal sent by Alice. Here, we consider
the preparation of four possible states by Alice, defined above as |ψAS±(i)〉. If Eve
measures (βr , εi ), she will choose the state of the signal for which the associated joint
probability distribution P±(i) is maximum. For each state, we have a corresponding
region in phase space (each one of area A0), i.e., βr ≥ |εi | for |ψAS+〉; εi > |βr | for
|ψAS+i 〉; −βr ≥ |εi | for |ψAS−〉 and −εi > |βr | for |ψAS−i 〉. Generally speaking, the
associated probability distributions are given by
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Fig. 8 Optimum α as a function of the post-selection threshold βc (upper curves), for the PASCS (solid
blue line) and coherent state (dashed blue line); fraction of accepted bits, racc as a function of βc (lower
curves), for the PASCS (solid red line) and coherent state (dashed red line) (Color figure online)
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Fig. 9 Rate of Eve’s success Pcorr as a function of βc , PASCS (solid line) and coherent state (dashed line)

P±(i)(βr , εi ) =
∫

W̃±(i)(β, ε)dβidεr , (16)

where W̃±(β, ε) is the (two-mode) Wigner function of the beam-splitter output,

W̃±(i)(β, ε) = W 1,1
ψAS±(i)

(Tβ − Rε, α) ∗ Wvac(Rβ + T ε). (17)

As in reference [8], wemay define Eve’s success rate for the attack, Pcorr. For instance,
for a signal in the state |ψAS+〉, we have

Pcorr = 2
∫

A0

P+(βr , εi )dβrdεi . (18)
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The efficiency of such an attackmay then be evaluated. Alice canmake an optimization
of the coherent amplitude α given a fixed error rate δ = 1.15×10−3 for a lossless line
and without the presence of Eve. In Fig. 8, we have the optimum α and the fraction of
accepted bits, racc as a function of the post-selection threshold βc, for both coherent
state and the PASCS. We note that the value of optimum α (for each βc) is in general
smaller in the PASCS-based protocol, compared with the coherent state case. Thus,
even though the rate of accepted bits is smaller for the PASCS, the probability of Eve
obtaining the correct bit becomes also smaller in this case, given that the optimum
value of α (for a given value of threshold βc) is smaller for the PASCS. In Fig. 9,
we have a plot of Pcorr as a function of βc, which clearly shows the advantage of the
PASCS over coherent states in a simultaneous quadrature measurement attack.

6 Conclusions

We have shown that a continuous-variable protocol based on PASCS having just one
photon added and one photon subtracted is more efficient than a coherent state-based
protocol, both of them using homodyne detection and post-selection. We have per-
formed a security analysis based on the superior channel attack and concluded that
the PASCS-based protocol would allow the legitimate users (Alice and Bob) to build
a secret key with transmission rates higher than the ones obtained from coherent state-
based protocols. We have also analyzed the simultaneous quadrature measurement
attack, and we have shown that Eve’s success rate is smaller if PASCS are used in the
place of coherent states. Having verified the better performance of PASCS (compared
to coherent states) for two different attacks is a first step to assess the security of our
protocol. Nevertheless, more general proofs of security are desirable, and we are going
to consider them elsewhere. We are dealing with non-Gaussian, continuous-variable
states, but, as we have already discussed, the PASCS having one added photon and one
subtracted photon may be written as a quantum superposition of a coherent state |α〉
and a PACS multiplied by the coherent amplitude α. This means that in the situation
of small α we are considering here, the PASCS is very close to a coherent state, and a
possible way to investigate collective attacks, for instance, could be done by following
the methodology presented in [14,32]. Our work is an attempt to explore the possibil-
ities of utilization of non-Gaussian states for quantum key distribution purposes, and
this may open up new directions for continuous-variable protocols.
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