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Geometry of quantum state space and quantum correlations
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Quantum state space is endowed with a metric structure and Riemannian monotone metric is an
important geometric entity defined on such a metric space. Riemannian monotone metrics are very
useful for information-theoretic and statistical considerations on the quantum state space. In this
article, considering the quantum state space being spanned by 2x2 density matrices, we determine a
particular Riemannian metric for a state ρ and show that if ρ gets entangled with another quantum
state, the negativity of the generated entangled state is, upto a constant factor, equals to square
root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a
measure of entanglement. Moreover, the result establishes the possibility of understanding quantum
correlations through geometric approach.

PACS numbers:

I. INTRODUCTION

Geometric tools are often used to treat physical prob-
lems. Undoubtedly, these tools have provided advantage
to find out less trivial and robust physical constraints
on physical systems. Differential geometry is one such
mathematical tool which finds a lot of applications in
various disciplines. Information theory is among those
disciplines where the techniques of differential geometry
have been applied. As a result of which a new disci-
pline, called Information Geometry emerged and it got
maturity through the works of Amari,Nagaoka and other
mathematicians in the 1980s[1]. In their works they ap-
plied the methods of differential geometry to the field
of probability theory, which alongwith statistics is the
mathematical base of information theory. Initially,the
goal of Information geometry was to understand the in-
terplay between the information-theoretic quantities and
the geometry of probability space by constructing a Rie-
mannian space corresponding to probability space. Quite
obviously it was of fundamental importance to study the
Riemannian metrics defined on the space of probabil-
ity distributions.Later, motivated by information geome-
try, Morozova and C̆encov [2] initiated the study of Rie-
mannian monotone metrics on the state space(Hilbert
space) of quantum systems which has been gradually
progressed through the works of Petz and other authors
[3–8]. The monotone Riemannian metric corresponding
to Wigner-Yanase-Dyson skew-information [9] was found
out in [6] which vividly expresses the relation between ge-
ometry of space and an information-theoretic quantity of
great importance. And not only limited to information-
theoretic entities, geometric distances(metrics) are also
closely related to the quantum state discrimination prob-
lem [10, 11]. In[12] the authors have demonstrated that
a lower bound for quantum coherence measure can be
found out using Riemannian monotone metric.
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On the other hand, quantum correlation is the physi-
cal quantity responsible for the non-classical phenomenon
exhibited by composite quantum systems. Though there
are different aspects of quantum correlations, entangle-
ment and discord are the two aspects which have been
extensively studied due to their immense importance in
quantum information processing tasks. However, till
date, quantum correlation is not fully understood. So,
the study of quantum correlations demands importance
in quantum information theory. Here we consider en-
tanglement because of the fact that all the measures of
entanglement are monotonic in nature.

Quantum entanglement[13–15] is one of the bizzare
phenomena exhibited by composite quantum systems
and a resource for quantum information processing tasks,
such as teleportation [16], dense coding [17], quantum
cryptography [18], state merging[19], quantum computa-
tion and many more. A composite quantum system ρAB

consisting of subsystems A and B is said to be entangled
if it can not be written as ρAB =

∑

i piρ
i
A ⊗ ρiB, where

pi are probabilities, ρA and ρB are respectively the de-
sity matrices of subsystem A and B. If the subsystems
are two-level quantum states then these are termed as
qubits [21] in analogy with classical bits and qubits are
the fundamental units in quantum information theory.

In this article we ask the question; Is there any con-
nection between the geometry of quantum state space and
entanglement? To find the answer of the question we
consider the negativity(N ) [22, 23]measure which is also
connected to some other measures [24]. Without loss of
generality, we consider a generic two-level quantum state
ρS(qubit). Quite obviously the dimension of the Hilbert
space associated to such a state will be 2. It is known
that entanglement can be generated between the qubit
and another ancillary qubit by applying a global unitary
interaction. We consider a particular global unitary and
find the generated entangled state. The amount of en-
tanglement present in the composite state is calculated
through negativity measure. We also determine a par-
ticular Riemannian metric for the state ρS using a the-
orem proposed by Morozova and C̆encov. Interestingly,
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we find that there is an explicit relation between the neg-
ativity of the generated entangled state and the partic-
ular monotone Riemannian metric on the state space of
qubits. More precisely to say, the negativity of the two
qubit entangled state is, upto a constant factor, equals
to the square root of the monotone metric. The result
clearly demonstrates the fact that monotone Riemannian
metrics on quantum state space are not only connected
to information-theoretic quantities but also to entangle-
ment. Alternatively, we can say that the geometry of
quantum state space finds connection with a non-classical
property of the quantum states

The rest of the article is arranged as follows. In
Section(II) we provide an overview on Riemannian metric
and Riemannian metrics on matrix space(quantum state
space). Section(III) contains a brief description about
entanglement generation in qubit scenario. Section(IV)
is dedicated to show our results and finally in Section(V)
we conclude our work with discussions.

II. RIEMANNIAN METRIC AND MONOTONE

RIEMANNIAN METRICS ON MATRIX SPACE

Riemannian space(M ,g) is a differentiable mani-
fold(topological space) M embedded with an inner prod-
uct gx on the tangent space TxM at each point x and
gx varies smoothly from point to point. More precisely
if X and Y are two vectors on the tangent space passing
through x the x 7→ gx{X(x), Y (x)} is a smooth function.
Riemannian metric on a manifold M is the family of gx.

Morozova and C̆encov initiated the study of mono-
tone Riemannian metrices on the space of matrices with
the motivation to extend the geometric approach to
quantum setting. They proposed the problem to find
monotone Riemannian metrices on the quantum state
space which is endowed with a metric structure. The
quantum state space is a complex matrix space Hn of
dimension n, usually termed as Hilbert space. The op-
erators in such a space is designated by n x n complex,
Hermitian and self-adjoint matrices. Whereas, the quan-
tum states are defined by positive definite n x n matrices
with trace 1, also termed as density matrices. Hilbert
space is an inner product space and the simplest inner
product is certainly the Hilbert-Schmidt one, defined as

〈X,Y 〉 = Tr(X∗Y ) (1)

where, Tr is the usual matrix trace and X,Y ∈ Hn. The
inner-product in Hilbert space is indeed unitarily invari-
ant, i.e. 〈X,Y 〉 = 〈UXU †, UY U †〉 and this property is
so strong that it determines the Hilbert-Schmidt inner-
product upto a constant multiple.

Now, by making the inner-products depending on
quantum states(ρ), Riemannian metrics can be deter-
mined on the quantum state space in the following way.
Let for every A,B ∈ Hn, for every ρ ∈ Mn, and for ev-
ery n ∈ N , a complex quantity Kρ(A,B) is given, where
Mn is the set of all positive definite matrices with trace

1. The complex quantity Kρ(A,B) will be a metric if the
following conditions hold [3]:

(a) (A,B) 7→ Kρ(A,B) is sesquilinear.

(b) Kρ(A,A) ≥ 0, and the equality holds iff A = 0

(c) ρ 7→ Kρ(A,A) is continuous on Mn for every A

The family of the metrics Kρ(A,B) with the above
mentioned properties constitute a Riemannian metric on
the differentiable manifold formed by the density matri-
ces. The Riemannian metric will be monotone if

(d) Under completely positive trace preserving(CPTP)
map Kρ(A,A) is contractive, i.e. KΛ(ρ)(A,A) ≤
Kρ(A,A) for every Λ, ρ and A; Λ(.) being the
CPTP map.

For clear illustration of the metric Kρ(A,B), it is impor-
tant to focus on the geometry of the quantum state space.
Kρ(A,B) is basically the inner product on the tangent
space Tρ and A,B are the two tangent vectors. Consid-
ering the Hilbert space Hn to be finite dimensional, let
us denote the set of all Hertmitian operators on Hn by

A = {A|A = A∗} (2)

and according to definition of Mn;

Mn = {ρ|ρ = ρ∗ ≥ 0 and Trρ = 1} (3)

The tangent space Tρ(Mn) of each point ρ may then be
identified with

A0 = {A|A ∈ A and TrA = 0} (4)

It can be shown that if K is an operator and K ∈ A,
then i[ρ,K] will be an ordinary element of the tangent
space, that is, i[ρ,K] ∈ A0[1]. So, by identifying tan-
gent vectors Riemannian metric can be defined on the
differential manifold formed by the density matrices and
upon satisfying the condition (d) the metric will be called
monotone Riemannian metric.

Though Morozova and C̆encov were unable to find
any monotone Riemannian metric, they provided a
useful theorem. Later, Petz and other authors were
able to find monotone metrics by introducing operator
montone functions and their works showed that there
is an abundance of montone metrics on the space of
self-adjoint matrices [4, 5]. For our purpose we will make

use of the theorem provided by Morozova and C̆encov,
which can be stated as,

THEOREM[2, 3]:Assume that for every D ∈ Mn

a real bilinear form K ′
D is given on the n-by-n self-

adjoint matrices such that the conditions (b),(c) and
(d) are satisfied for self-adjoint A. Then there exists a
positive continuous function c(λ,µ) and a constant C
with the following property: If D is diagonal with respect
to the matrix units Eij , i.e. D =

∑

i λiEii, then
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K ′(A,A) = C

n
∑

i=1

λ−1
i A2

ii + 2
∑

i<j

|Aij |2c(λi, λj). (5)

for every self-adjoint A = (Aij). Moreover if c is
symmetric in its two variables, c(λ, λ) = Cλ−1 and
c(tλ, tµ) = t−1c(λ, µ)

The function c(λ, µ) is generally termed as Morozova-

C̆encov function. It can be concluded from the above
stated theorem that when Mn is considered as a
differentiable manifold, the Riemannian metric must be
a linear bilinear form and the tangent vectors may be
indentified with self-adjoint matrices. Also K ′(A,A)
for all D and all self-adjoint A can be derived from the
theorem.

III. ENTANGLEMENT GENERATION IN

QUBIT SCENARIO

Let us consider a generic qubit ρS , generally expressed
as:

ρS =
1

2
(12 + ~n.~σ) (6)

where, ~n ≡ (nx, ny, nz) is a vector in R
3 with |~n|2 ≤ 1

and ~σ := (σx, σy, σz) with σi|i = x, y, z being the Pauli
matrices. Taking another ancillary qubit, say |0〉A, which
is an eigen state of σz, a unitary interaction is switched
on over the product state ρS ⊗ |0〉A. The global unitary
USA acts on the initial product state as:

USA(|0〉S ⊗ |0〉A) = |0〉S ⊗ |0〉A
USA(|1〉S ⊗ |0〉A) = |1〉S ⊗ |1〉A. (7)

So, after the application of the unitary the resulting state
becomes

ρSA = USA

(

1

2
(1+ ~n.~σ)s ⊗ |0〉M 〈0|

)

U
†
SA

=
1 + nz

2
|0〉S〈0| ⊗ |0〉M 〈0|

+
nx + iny

2
|1〉S〈0| ⊗ |1〉M 〈0|

+
nx − iny

2
|0〉S〈1| ⊗ |0〉M 〈1|

+
1− nz

2
|1〉S〈1| ⊗ |1〉M 〈1|. (8)

The unitary operator corresponding to the evolution of
the product state ρS ⊗ |0〉A can be expressed in terms of

the total Hamiltonian (Htot) as U(t) := exp(−i
Htott

~
) and

Htot = HS ⊗ 1M + 1S ⊗HM +Hint. So it is clear that
the initial composite product state will retain its product
form if Hint = 0.

We are interested to find out the amount of entan-
glement in the state ρSA and among different measures
of entanglement we consider the negativity measure for
our purpose. Negativity is given by [22, 23]:

N (ρAB) =
||ρTA

AB||1 − 1

2
. (9)

where TA denotes partial transpose with respect to the
subsystem A, λi’s denote the eigenvalues of ρTA

AB and

||X ||1 = Tr|X | = Tr
√
X†X be the trace-norm of an op-

erator. Using Eqn(9)the negativity of the state in Eqn(8)
is found to be

N (ρSA) =
(

1−
√

2M(ρS)
)− 1

2 (1 −
√

1− |~n|2) 1

2 (n2
x + n2

y)
1

2

2
(10)

for |~n| 6= 0 and

N (ρSA) = 0, if, |n|= 0. (11)

where, M(ρS) is the mixedness of the state ρS and is
given by:

M(ρinS ) = Tr(ρinS )− Tr(ρinS )2

=
1

2
(1 − |~n|2). (12)

From Eqn(11) it is clear that negativity of the state
will be zero if ρS is maximally mixed, i.e. ρ = 12

2 .

IV. RESULTS

Now we show that the negativity N of the state ρSA

is, upto a constant, equal to a Riemannian metric on the
quantum state space of dimension 2. Let us consider the
self-adjoint, Hermitian operator σz . Then the operator
i[ρS, σz ] is also a Hermitian, self-adjoint operator and it
is an element of the tangent space of density matrices
differentiable manifold [8]. Our aim is to find the metric
KρS

(A,B), where A = B = i[ρS , σz].
The state ρS can be represented in the diagonal form

as:

ρS =
1

2
(1+ |~n|n̂.~σ)

=
1 + |~n|

2

1

2
(1+ n̂.~σ) +

1− |~n|
2

1

2
(1− n̂.~σ). (13)

where, n̂ = ~n
|~n| . Moreover, the matrix representation of

self-adjoint operator i[ρS, σz ] will be:

i[ρS , σz] = |~n|
(

0 (−ny − inx)
(inx − ny) 0

)

. (14)

It is easy to verify that for the operator represented in
Eqn(14) the first summation term in Eqn(5) will be zero,
i.e,

C

2
∑

i=1

λ−1
i A2

ii = 0 (15)
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where, Aii represent the diagonal elements of the matrix
corresponding to the operator i[ρS , σz]. Therefor,

KρS
(i[ρS , σz ], i[ρS, σz ]) = 2

∑

i<j

|Aij |2c(λi, λj) (16)

Aij being the off-diagonal elements of the matrix given

in Eqn(14) and c(λi, λj) is the Morozova-C̆encov function
[2, 3]. For our purpose we consider one of the functions

proposed originally by Morozova and C̆encov [2]; we take

c(λi, λj) =

(

2√
λi +

√

λj

)2

. (17)

Therefore, using Eqns[13,14] and Eqn(17), we get

KρS
(i[ρS , σz], i[ρS , σz ]) = 2.|A12|2





2
√

1+|~n|
2 +

√

1−|~n|
2





2

= 32|A12|2
(1−

√

1− |~n|2)
|~n|2

= 32(n2
x + n2

y)(1 −
√

1− |~n|2)(18)

It is to be noted that we have considered the general
density matrix ρS and determined the Riemannian
metric for diag[λ1, λ2]; where λ1 and λ2 are the eigen-
values of ρS . Nevertheless, the evaluated metric is
the one which we want and the unitary covariance
KρS

(A,A) = KU∗ρSU (U
∗AU,U∗AU) confirms the fact

[3].

Finally, using Eqn(10) and Eqn(18) we get;

N (ρSA) = A
√

KρS
(i[ρS , σz ], i[ρS, σz ]). (19)

where, A = 2
√
2
(

1−
√

2M(ρS)
)− 1

2

The above equation is the main result of this arti-
cle. It is worth noticing that the above equation vividly
depicts a relation between a geometric entity of the
differential manifold formed by density matrices and a
measure of entanglement. Now, as the above equation
is a manifestation of equality relation between two
different entities, it is necessary to check the validity of
the equality and this can be verified with the following
arguments;

• Negativity(N ) is unitarily invariant, i.e. N (ρSA) =

N (USAρSAU
†
SA) and it is also a monotonic func-

tion; N (ρSA) ≥ N (Λ(ρSA)), where Λ is a CPTP
map.

• Riemannian metric KρS
(i[ρS , σz ], i[ρS , σz]) is a

monotone metric due to fulfilment of conditions (d)
provided in Sec[II] and monotonocity includes the
unitary covariance of the metric.

From the two arguments it can be concluded undoubtedly
that our result provides an elegant relation between the
geometry of the quantum state space and a non-classical
phenomena exhibited by composite quantum system.

It is important to highlight that Eqn(19) encom-
passes some important facts directly. The Riemannian
metric Kρ(A,A) = 0 iff A = 0. So, i[ρS , σz ] = 0 im-
plies KρS

(i[ρS , σz], i[ρS , σz ]) = 0, which in turn gives
NSA = 0. All these are in agreement with the physical
fact that if the state ρS is a mixture of the eigen states
of the observable σz then no entanglement can be gen-
erated between the state and the ancilla by applying σz

interaction. The metric that we have calculated was iden-
tified as Wigner-Yanase(WY) skew information and WY
skew-information is a good measure of coherence[25, 26].
Hence, our result identifies a relation between entangle-
ment and coherence, thereby reconfirming the fact that
in order to generate entanglement between two qubits,
at least one qubit must be in coherent state[27].

Though we have considered a special global unitary
USA in the entanglement generation scenario, as well as
two specific tangent vectors(self-adjoint operators), i.e.
A = B = i[ρS , σz] to determine the monotone Rieman-
nian metric on the quantum state space, nevertheless,
the relation given in Eqn(19) is not restricted to be a
special case. Consider A = B = i[ρS, σx] as the tangent
elements and the ancillary qubit to be 1√

2
(|+〉 + |−〉)A.

Further assume that the global unitary acts as :

USA(|+〉S ⊗ |+〉A) = |+〉S ⊗ |+〉A
USA(|+〉S ⊗ |−〉A) = |−〉S ⊗ |−〉A. (20)

Now, if the Riemannian monotone metric is determined
and negativity of the generated entangled state is calcu-
lated then we can have a similar relation between these
two quantities just like in Eqn(19), i.e.

N (ρSA) = A
√

KρS
(i[ρS , σx], i[ρS, σx]) (21)

V. CONCLUSIONS

Quantum state space is endowed with a metric struc-
ture and monotone Riemannian metrics are important
candidates for quantum-information-theorectic consider-
ations on such a space. In this article we consider
2-dimensional Hilbert space and show that a particu-
lar Riemannian metric is, upto a constant, equals to a
measure of entanglement. To express more precisely,
if a general qubit is considered and entanglement is
generated between the qubit and an ancilla by apply-
ing interaction, then the negativity of entanglement is,
upto a constant, equals to a Riemannian metric. The
metric that we have considered was shown to be the
Wigner-Yanase skew-information. Moreover, Wigner-
Yanase skew-information is a good measure of coherence.
So, our result also establishes a connection between co-
herence and entanglement. It is important to emphasize
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that so far Riemannian metrics on quantum state space
found relation with information-theoretic quantities only,
whereas, our result vividly shows that a monotone Rie-
mannian metric in a manifold of dimension 2 can also
be related to negativity of entanglement, which is also a
monotone function. The result established in this article

positively illustrates the fact that quantum correlations
can be studied using geometric approach.
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[12] D. P. Pires, Lucas C. Céleri and Diogo O. Soares-Pinto

Phys. Rev. A 91, 042330 (2015).
[13] E. Schrodinger, Naturwissenschaften 23, 807 (1935).
[14] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[15] R. Horodecki, P. Horodecki, M. Horodecki and K.

Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[16] C. H. Bennett, G. Brassard, C. Crpeau,
R. Jozsa, A. Peres and W. K. Wootters,
Phys. Rev. Lett. 70, 1895 (1993).

[17] C. H. Bennett and S. J. Wiesner,
Phys. Rev. Lett. 69, 2881 (1992).

[18] A, K. Ekert, Phys. Rev. Lett. 67, 661 (1991). C.
H. Bennett, G. Brassard, and N. D. Mermin,
Phys. Rev. Lett. 68, 557 (1992).

[19] M. Horodecki, J. Oppenheim, A. Winter,
Nature 436, 673(2005)

[20] L. Henderson and V. Vedral,
J. Phys. A: Math. Gen 34, 06899 (2001).

[21] Michael. A Nielsen and Issac. L Chuang, Quantum Com-

putation and Quantum Information,
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