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Abstract In this paper, we study the one-way local operations and classical commu-

nication (LOCC) problem. In C
d ⊗ C

d with d ≥ 4, we construct a set of 3⌈
√
d⌉ − 1

one-way LOCC indistinguishable maximally entangled states which are generalized Bell

states. Moreover, we show that there are four maximally entangled states which cannot

be perfectly distinguished by one-way LOCC measurements for any dimension d ≥ 4.

1 Introduction

In compound quantum systems, many global operators can not be implemented using

only local operations and classical communication (LOCC). This reflects the fundamental

feature of quantum mechanics called nonlocality. Meanwhile, the understanding of the

limitation of quantum operators that can be implemented by LOCC is also one of the sig-

nificant subjects in quantum information theory. And local distinguishability of quantum

states plays an important role in exploring quantum nonlocality [1, 2]. In the bipartite

case, Alice and Bob share a quantum system which is chosen from one of a known set of

mutually orthogonal quantum states. Their goal is to identify the given state using only

LOCC. The nonlocality of quantum information is therefore revealed when a set of or-
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thogonal states can not be distinguished by LOCC. Moreover, the local distinguishability

has been found practical applications in quantum cryptography primitives such as secret

sharing and data hiding [3, 4].

The question of local discrimination of orthogonal quantum states has received con-

siderable attentions in recent years [5-19]. It is well known that any two orthogonal

maximally entangled states can be perfectly distinguished with LOCC [2]. In Refs.[8, 9],

the authors proved that a set of d + 1 or more maximally entangled states in d ⊗ d sys-

tems are not perfectly locally distinguishable. Hence it is interesting to ask whether there

are locally indistinguishable sets consisting of d or fewer maximally entangled states in

d ⊗ d. For d = 3, Nathanson has shown that any three maximally entangled states can

be perfectly distinguished [6]. Recently, the authors in [15, 17] considered one-way LOCC

distinguishability and presented sets of d and d − 1 indistinguishable maximally entan-

gled states for d = 5, ..., 10. The problem remains open if there exists fewer than d − 1

indistinguishable maximally entangled states for arbitrary dimension d. More recently,

Nathanson showed that there exist triples of mutually orthogonal maximally entangled

states in Cd ⊗ Cd which cannot be distinguished with one-way LOCC when d is even or

d ≡ 2 mod 3 [16]. In addition, the authors in [18] gave a set with ⌈d2⌉ + 2 maximally

entangled states in C
d ⊗ C

d which is one-way LOCC indistinguishable, where ⌈a⌉ means

the least integer which is not less than a. And in [19], the authors presented sets with

four and five maximally entangled states in C
4m ⊗C

4m which is one-way LOCC indistin-

guishable but two-way distinguishable. Whether there are four or three one-way LOCC

indistinguishable maximally entangled states in arbitrary dimension remains unknown.

In this paper, we give a positive answer to this question when the number of states

in the set is four. First for any dimension d ≥ 4, we give a set of 3⌈
√
d⌉ − 1 one-

way LOCC indistinguishable maximally entangled states. Moreover, we can find four

maximally entangled states which cannot be perfectly distinguished by one-way LOCC

measurements for any dimension d ≥ 4.

2 Preliminaries

We first introduce some basic results that will be used in proving our theorems. Under

the computational base {|ij〉}d−1
i,j=0 of Hilbert space C

d ⊗ C
d, the generalized Bell states
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are defined as follows:

|ψnm〉 = I ⊗ Unm(
1√
d

d−1
∑

j=0

|jj〉), (1)

where Umn = XmZn are generalized Pauli matrices constituting a basis of unitary oper-

ators, and X|j〉 = |j ⊕d 1〉, Z|j〉 = ωj|j〉, ω = e
2π

√
−1

d . We define Vmn = UT
mn, where T

stands for transpose. It is directly verified that ZX = ωXZ.

Lemma 1. Suppose Umn = XmZn, Um′n′ = Xm′
Zn′

, we have

U
†
m′n′Umn = ω(m′−m)n′

U(m−m′ mod d)(n−n′ mod d).

Proof:

U
†
m′n′Umn = (Xm′

Zn′
)†(XmZn)

= (Z†n′

X†m′

)(XmZn)

= (Z(d−1)n′
X(d−1)m′

)(XmZn)

= (Z−n′
X−m′

)(XmZn)

= Z−n′
Xm−m′

Zn

= ω(m′−m)n′
Xm−m′

Zn−n′

= ω(m′−m)n′
U(m−m′mod d)(n−n′ mod d).

For the convenience of citation, we recall the results given in Refs.[16, 17].

Lemma 2. [17] In C
d ⊗ C

d, N ≤ d number of pairwise orthogonal maximally entangled

states |ψnimi
〉, i = 1, 2, . . . , N , taken from the set given in Eq. (1), can be perfectly

distinguished by one-way LOCC A → B, if and only if there exists at least one state

|α〉 ∈ HB for which the states Un1m1
|α〉, Un2m2

|α〉, . . . , UnNmN
|α〉 are pairwise orthogonal.

On the other hand, the set is perfectly distinguishable by one-way LOCC in the

B → A, if and only if there exists at least one state |α〉 ∈ HA for which the states

Vn1m1
|α〉, Vn2m2

|α〉, . . . , VnNmN
|α〉 are pairwise orthogonal.

Lemma 3. [16] Given a set of states S = {|ψi〉 = (I ⊗ Ui)|φ〉} ⊂ C
d ⊗ C

d, with |φ〉 the

standard maximally entangled state. The elements of S can be perfectly distinguished

with one-way LOCC if and only if there exists a set of states {|φk〉} ⊂ C
d and a set of

positive numbers {mk} such that
∑

kmk|φk〉〈φk| = Id and 〈φk|U †
jUi|φk〉 = δij .

In the following, we concentrate ourselves on the set of maximally entangled states.

Any maximally entangled state in C
d ⊗ C

d can be written as |ψ〉 = (I ⊗ U)|ψ0〉, where
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|ψ0〉 = 1√
d

∑d
i=1 |ii〉, and U is a unitary matrix. Since there is a one to one correspondence

between a maximally entangled state |ψi〉 and the unitary matrix Ui, we call the set of

unitary matrices {Ui}di=1 the defining unitary matrices of the set of maximally entangled

states {|ψi〉}di=1.

3 Sets of one-way LOCC indistinguishable states

The authors in [18] presented a set with ⌈d2⌉+ 2 generalized Bell states in C
d ⊗C

d which

is one-way LOCC indistinguishable. In the following, firstly, we also consider the one-way

distinguishability of generalized Bell states.

Theorem 1. In C
d⊗C

d (d > 4), there exists an orthogonal set with 3⌈
√
d⌉−1 maximally

entangled states which is one-way LOCC indistinguishable:

{|ψ00〉, |ψ10〉, . . . , |ψn−1,0〉, |ψ2n−1,0〉, |ψ3n−1,0〉, |ψ4n−1,0〉, . . . , |ψ(n−1)n−1,0〉, |ψd−1,0〉, |ψn−1,1〉,
|ψ2n−1,1〉, |ψ3n−1,1〉, |ψ4n−1,1〉, . . . , |ψ(n−1)n−1,1〉, |ψd−1,1〉}, where n = ⌈

√
d⌉.

The corresponding unitary matrices are given by

{U00, U10, . . . , Un−1,0, U2n−1,0, U3n−1,0, U4n−1,0, . . . , U(n−1)n−1,0, Ud−1,0, Un−1,1,

U2n−1,1, U3n−1,1, U4n−1,1, . . . , U(n−1)n−1,1, Ud−1,1}.
Proof: If {|ψ00〉, |ψ10〉, . . . , |ψn−1,0〉, |ψ2n−1,0〉, |ψ3n−1,0〉, . . . , |ψ(n−1)n−1,0〉, |ψd−1,0〉, |ψn−1,1〉,
|ψ2n−1,1〉, . . . , |ψ(n−1)n−1,1〉, |ψd−1,1〉} can be one-way LOCC distinguished, then by lemma

2, ∃ |α〉 6= 0 ∈ C
d, such that the set {U00|α〉, U10|α〉, . . . , Un−1,0|α〉, U2n−1,0|α〉, U3n−1,0|α〉,

. . . , U(n−1)n−1,0|α〉, Ud−1,0|α〉, Un−1,1|α〉, U2n−1,1|α〉, . . . , U(n−1)n−1,1|α〉, Ud−1,1|α〉} are mu-

tually orthogonal.

From the orthogonality of U00|α〉 and U10|α〉, U20|α〉, . . . , Un−1,0|α〉, we obtain

〈α|U10|α〉 =
d−1
∑

j=0

ωjαjαj = 0,

〈α|U20|α〉 =
d−1
∑

j=0

ω2jαjαj = 0,

...

〈α|Un−1,0|α〉 =
d−1
∑

j=0

ω(n−1)jαjαj = 0.

Then by the orthogonality of U2n−1,0|α〉 and Un−1,0|α〉, . . . , U10|α〉, U00|α〉, taking into
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account with the lemma 1, we get

〈α|U †
n−1,0U2n−1,0|α〉 = 〈α|Un,0|α〉 =

d−1
∑

j=0

ωnjαjαj = 0,

...

〈α|U †
10U2n−1,0|α〉 = 〈α|U2n−2,0|α〉 =

d−1
∑

j=0

ω(2n−2)jαjαj = 0,

〈α|U †
00U2n−1,0|α〉 = 〈α|U2n−1,0|α〉 =

d−1
∑

j=0

ω(2n−1)jαjαj = 0.

Similarly, from the orthogonality of U3n−1,0|α〉, U4n−1,0|α〉, . . . , , U(n−1)n−1,0|α〉, Ud−1,0|α〉
and Un−1,0|α〉, . . . , U10|α〉, U00|α〉, we have:

d−1
∑

j=0

ω(2n)jαjαj =
d−1
∑

j=0

ω(2n+1)jαjαj = · · · =
d−1
∑

j=0

ω(d−1)jαjαj = 0.

Putting the above d− 1 equations together, we have

d−1
∑

j=0

ωjαjαj =

d−1
∑

j=0

ω2jαjαj =

d−1
∑

j=0

ω3jαjαj = · · · =
d−1
∑

j=0

ω(d−1)jαjαj = 0.

Solving these d− 1 equations, we have (α0α0, α1α1, · · · , αd−1αd−1) = λ(1, 1, · · · , 1).
1) If λ = 0, then (α0α0, α1α1, · · · , αd−1αd−1) = (0, 0, · · · , 0), that is, |α〉 = 0.

2) If λ 6= 0, then for ∀i, j, we have αiαj 6= 0. By the orthogonality of Un−1,1|α〉 and

Un−1,0|α〉, . . . , U20|α〉, U10|α〉, U00|α〉 and lemma 1, we have

〈α|U †
n−1,0Un−1,1|α〉 = 〈α|U01|α〉 =

d−1
∑

j=0

ω0jαjαj⊕d1 = 0,

...

〈α|U †
10Un−1,1|α〉 = 〈α|Un−2,1|α〉 =

d−1
∑

j=0

ω(n−2)jαjαj⊕d1 = 0,

〈α|U †
00Un−1,1|α〉 = 〈α|Un−1,1|α〉 =

d−1
∑

j=0

ω(n−1)jαjαj⊕d1 = 0.

By the orthogonality of U2n−1,1|α〉, U3n−1,1|α〉, . . . , U(n−1)n−1,1|α〉, Ud−1,1|α〉 and U00|α〉,
U10|α〉, U20|α〉, . . . , Un−1,0|α〉, we have

d−1
∑

j=0

ωnjαjαj⊕d1 =
d−1
∑

j=0

ω(n+1)jαjαj⊕d1 = · · · =
d−1
∑

j=0

ω(d−1)jαjαj⊕d1 = 0.
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From the above equations, (α0α1, α1α2, · · · , αd−1α0) = (0, 0, · · · , 0) and αiαj 6= 0 are

contradictory. Therefore {|ψ00〉, |ψ10〉, . . . , |ψn−1,0〉, |ψ2n−1,0〉, |ψ3n−1,0〉, . . . , |ψ(n−1)n−1,0〉,
|ψd−1,0〉, |ψn−1,1〉, |ψ2n−1,1〉, . . . , |ψ(n−1)n−1,1〉, |ψd−1,0〉} cannot be one-way LOCC distin-

guished.

Remark: It should be noticed that the above result may be worse than the known ⌈d2⌉+2

result [18] in the case of small d. And 3⌈
√
d⌉ − 1 ≤ ⌈d2⌉+ 2 when d ≥ 30, so our theorem

gives a smaller one-way LOCC indistinguishable maximal entangled states in this case.

In the above discussions, we restrict ourselves on the one-way LOCC indistinguished

generalized Bell states. In the following we consider general orthogonal maximally entan-

gled states that are indistinguishable under one-way LOCC.

Theorem 2. There exist four mutually orthogonal maximally entangled states in C
d⊗C

d

which cannot be distinguished under one-way LOCC for odd d ≥ 7.

Proof : Set d = 2 + r, r > 5. Let P denote the r × r permutation matrix,

P =























0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0























r×r

.

Clearly, P r = I where I denotes the r × r identity matrix. We set U0 = Id,

U1 =





ωX

P



 , U2 =





γZ

P 2



 , U3 =





σY

P
r+1

2



 ,

where ω, γ and σ are phases satisfying |ω| = |γ| = |σ| = 1, γ 6= ±iω2, X,Y,Z are the Pauli

matrices:

X =





0 1

1 0



 , Y =





0 −i
i 0



 , Z =





1 0

0 −1



 .

Let |ψ0〉 be the standard maximally entangled state, |ψ0〉 =
∑d−1

i=0 |ii〉. We construct four

maximally entangled states as follows:

{(I ⊗ U0)|ψ0〉, (I ⊗ U1)|ψ0〉, (I ⊗ U2)|ψ0〉, (I ⊗ U3)|ψ0〉} ⊆ C
d ⊗ C

d.

One can check that these states are mutually orthogonal and maximally entangled.
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Suppose that Alice performs an initial measurement M = {Mk}nk=1 on her system and

gets the measurement outcome corresponding to some operator Mk (1 ≤ k ≤ n) of the

following form:

Mk =





Ak C
†
k

Ck Bk



 > 0,

where Ak is a 2× 2 matrix and Bk a r × r matrix.

By lemma 3, all the measurements of Alice’s can be chosen to be rank one. So we

suppose all the matrices Mk (1 ≤ k ≤ n) are rank one and Mk = |φk〉〈φk| for some

|φk〉 ∈ C
d. In order to distinguish the above four states by one-way LOCC, we must have

0 = 〈φk|U †
jUi|φk〉 = Tr(U †

jUi|φk〉〈φk|) = Tr(Ui|φk〉〈φk|U †
j ) = Tr(UiMkU

†
j ), i 6= j.

That is, Tr(UiMkU
†
j ) = 0, whenever i 6= j. By specify choosing i and j, we obtain the

following equations:

Tr(U1Mk) = ωTr(AkX) + Tr(BkP ) = 0, (2)

Tr(U2Mk) = γTr(AkZ) + Tr(BkP
2) = 0, (3)

Tr(U3Mk) = σTr(AkY ) + Tr(BkP
r+1

2 ) = 0, (4)

Tr(U2MkU
†
1) = −iωγTr(AkY ) + Tr(BkP ) = 0, (5)

Tr(U3MkU
†
1) = −iωσTr(AkZ) + Tr(BkP

r−1

2 ) = 0, (6)

Tr(U3MkU
†
2) = −iγσTr(AkX) + Tr(BkP

r−3

2 ) = 0. (7)

From equations (2) and (5), we have

ω Tr(AkX) + i ω γ Tr(AkY ) = 0. (8)

After easily calculation, we can obtain Tr(AkX) = Ak(1, 2) + Ak(2, 1) and Tr(AkY ) =

iAk(1, 2) − iAk(2, 1). Since Ak is a Hermitian matrix, then both Tr(AkX) and Tr(AkY )

are real numbers. Moving the second term of equation (8) to the right hand side then

taking the norm of each side, we have |Tr(AkX)| = |Tr(AkY )|. If Tr(AkX) 6= 0, then

we have iω2γ = −Tr(AkX)
Tr(AkY ) = 1 or − 1. This is contradicted with γ 6= ±i ω2. Hence

we have Tr(AkX) = Tr(AkY ) = 0. Substituting Tr(AkY ) = 0 into equation (4), we
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obtain Tr(BkP
r+1

2 ) = 0. Due to P r = I and the Hermitian of the matrix Bk, the equality

Tr(BkP
r−1

2 ) = Tr(BkP
r+1

2 ) holds, which gives rise to Tr(BkP
r−1

2 ) = 0. Then by equation

(6), we obtain Tr(AkZ) = 0. Equations Tr(AkX) = Tr(AkY ) = Tr(AkZ) = 0 give that

Ak = tI2 for some tk ∈ R. Noticing that we have assumed rank(Mk) = 1, so rank(Ak) ≤ 1.

Hence Ak = 0 for all 1 ≤ k ≤ n. But now
∑n

k Mk=1 cannot equal to the identity I for the

2× 2 matrix of the left upper corner must equal to zero. This makes a contradiction.

Hence, we can conclude that the four states we construct above can not be distinguished

by one-way LOCC.

Corollary. There exist four mutually orthogonal maximally entangled states in C
d ⊗ C

d

which cannot be distinguished under one-way LOCC for d ≥ 4.

Proof : By the above theorem, we only need to check for the cases: d is even and d = 5.

For all these cases, it has been showed that there exist three mutually orthogonal max-

imally entangled states which cannot be distinguished under one-way LOCC in Ref.[16].

And there exists another maximally entangled state orthogonal to all the three states. So

after adding such a state, these four states cannot be distinguished by one-way LOCC.

4 Conclusion

We study the one-way LOCC problem and present a set of 3⌈
√
d⌉ − 1 one-way LOCC

indistinguishable maximally entangled states which are all generalized Bell states. It

should be noticed that if d is large enough, then the number 3⌈
√
d⌉ − 1 is much smaller

than the number ⌈d2⌉ + 2 in [18]. But for small d (less than 30), our results are not so

good as the known results. In addition to, we have also found four maximally entangled

states which cannot be perfectly distinguished by one-way LOCC measurements for any

dimension d ≥ 4. For some particular dimension d, small one-way indistinguishable sets

that contain only three states has been given in [16]. The question whether there exist

three one-way indistinguishable maximally entangled states for arbitrary d ≥ 4 remains

open.
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