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Simulation of the many-body dynamical quantum Hall effect in an optical lattice
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We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect
with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required
model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable
parameters can be realized in this system. For dynamical response to ramping the external fields, the
quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function
of the effective spin-exchange interaction. The quantization of this response in the parameter space
with the interaction-induced topological transition characterizes the many-body dynamical quantum
Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold-
atom experiments with numerical simulations.

I. INTRODUCTION

The Berry curvature and its associated Berry phase [I] have numerous important applications in physics, particularly
in quantum computation [2HI] and modern condensed matter physics [I0HI5]. A prime example is the celebrated
integer quantum Hall effect (QHE), which is experimentally characterized by the quantized non-diagonal conductivity
with the form of ne?/h. The integer n here is a topological invariant, which can be formulated as the integral of the
Berry curvature over the momentum space and is called as the Chern number [16] [I'7]. Usually, the applications and
experimental measurements of the Berry phase rely on the existence of free or nearly free quasi-particles that can
independently interfere and affect transport properties [2HI7].

Recently, it was theoretically revealed that the Berry curvature and hence the Berry phase in generic systems
(single particle and many-body systems) can be observed from a non-adiabatic response on physical observables to
the rate of change of an external parameter, without involving interference or transport measurements [18, [19]. This
phenomenon can be interpreted as a dynamical QHE in a parameter space, i.e., the quantization of the dynamical
response [I8]. In this general relation, the conventional QHE can be considered as a particular example if one views
the electric field as a rate of change of the vector potential. This work reveals deep connections between quantum
dynamics and equilibrium geometric properties, and provides a new avenue to explore the QHE in the parameter
space and the Berry phase effects in many-body systems [I8]. The proposal of measuring the Berry curvature was
recently realized with a single superconducting qubit and two coupled superconducting qubits [20, 2T]. The further
simulation of the dynamical QHE with a superconducting qubit array was also proposed [22]. However, it is extremely
challenging to experimentally construct a fully-connected network of superconducting qubits with tunable inter-qubit
coupling and long coherence time [20H24], which may prevent the study of interaction-induced topological transition
in the many-body dynamical QHE in these superconducting-qubit systems.

On the other hand, ultra-cold atoms in optical lattices provide an ideal platform for quantum simulation [25] [26]
of various important models and the related effects in condensed matter physics [27H31]. For instance, these systems
have been used to realize the Bose-Hubbard model and observe the quantum phase transition between the superfluid
and Mott insulator phases [32H34], and to mimic quantum spin models and observe different magnetic phases with
non-trivial dynamics [35H39]. Based on the Raman transition method, recent theoretical and experimental advances
have been put forward to create effective spin-orbit coupling and gauge potentials for ultra-cold atoms, and thus the
related topological phases and relativistic quantum effects can be simulated [29H31]. For these cold atom systems
acting as powerful quantum simulators [25] [26], a realistic experimental scheme for simulation of the many-body QHE
is still badly needed and would be of great value.

Here, we propose an experimental scheme to simulate the many-body dynamical QHE with ultra-cold bosonic atoms
in a one-dimensional optical lattice based on a state-of-the-art technique. We first show that the required model
Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized
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in this cold atom system, and then introduce the procedure of implementing the dynamical QHE. For the dynamical
response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting
atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the
parameter space with the interaction-induced topological transition characterizes the many-body dynamical QHE.
By numerical simulations, we also demonstrate that this phenomenon can be observed under practical conditions in
typical cold-atom experiments. The realization of the many-body dynamical QHE in the optical lattice may extend the
current intensive study of topological properties in cold atom systems [29H31], and pave the way to explore intriguing
topological responses with interactions.

The paper is organized as follows. Section II introduces the realization of the model Hamiltonian of an interacting
spin chain in an optical lattice. In Sec. III, we present the implementation procedure and the observation of the
many-body dynamical QHE in this cold atom system with numerical simulations. In Sec. IV, some possible concerns
in practical experiment are briefly discussed and finally a short conclusion is presented.

II. REALIZING THE MODEL HAMILTONIAN

It has been demonstrated that the many-body dynamical QHE can emerge in the model Hamiltonian of a spin-1/2
ferromagnetic spin chain with an external magnetic field, which takes the form as [1§]

N—-1 N
H:Jz:&j'&j+1+2h'&j, (1)
j=1 j=1
where 7; = (U;-“ , aé’, UJZ-) stands for Pauli matrices, J > 0 is the ferromagnetic spin-exchange interaction between the

nearest-neighbor spins, h= (hg, hy, hz) is the magnetic field, and N is the size of the spin chain. In the following, we
will show that this model Hamiltonian with tunable parameters can be realized with ultra-cold atoms in an optical
lattice and the related dynamical QHE can be observed in this system.

We start with an atomic gas of (pseudo) spin-1/2 interacting ultra-cold bosons loaded in a one-dimensional spin-
independent optical lattice. The spin degree of freedom is encoded by two hyperfine states | 1) and | J). Consider
the two hyperfine states are coherently coupled via a two-photon Raman transition with a large detuning Ay and two
Raman lasers denoted by their Rabi frequencies 4 2, as shown in Fig. 1(a). Here we assume that €y o are real and
constants along the x axis. The single-particle Hamiltonian of this system can be written as

. i

Hy = o + 60, 4+ Qo + Vo sin®(kox), (2)
where m is the atomic mass, p is the momentum operator, 20 is the resulting effective Zeeman splitting, Q, = Q1Q2/A4
is the resulting effective Rabi frequency, Vj and kg respectively denote the strength and the wave number of the lattice
potential.

In the second quantization formalism, we can rewrite the single-particle Hamiltonian as

Ho = / da U () Flo W (z). ()

where W' (¥) is the two-component field operator with Ui = [ jd;,Tw;T(x)’ j&;iwii(m)}. Here wj ,(z) rep-

resents the Wannier functions localized at site j, and o =7,] denotes the atomic pseudospin. In the tight-binding
approximation, the summation can be restricted to nearest neighbors only, thus we can obtain

Ho == (1o pitgine + e ) + 007 (@] gas +a] s +037 (@] 450 — a] a5 )
J,o j J
where t, = — [w] ,(2) [% + VosinQ(kox)} wj+1,0(x)dz is the tunneling amplitude. Adding interaction, the total

Hamiltonian of the system is given by H = Hg + Vint, which describes an extended Bose-Hubbard chain of ultra-cold
atoms, with the term Vi, describing interatomic interactions as [33)

1 3 bt
‘/int - 5 U(TO'/aj,o'aj,a‘/aj7l7lajvg7 (5)
j,o0’
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where Uyor = =222 [ |w; () |*|w; o (2)|?da with as,s the scattering length between spins o and o’
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FIG. 1: (Color online) The cold atom system and the procedure for simulating the dynamical QHE. (a) The schematic diagram
of the system for realizing the model Hamiltonian . Two-component cold bosonic atoms in a one-dimensional optical lattice
are subjected to two Raman lasers denoted by their Rabi frequencies 1,2 (here Q1 2 are real and constants along the = axis)
for the two-photon coupling with a large detuning Ay (i.e., Ag > Q12,0) and an effective Zeeman splitting 24, resulting
in the effective Rabi frequency Q, = Q1Q2/Aq. (b) The sequence of the ramp parameters and measurement. The atomic
spin chain undergoes a non-adiabatic evolution during the ramp with the effective magnetic field followed by Eq. . The
magnetization of the final state is then measured. (c¢) The spherical diagram of the effective magnetic field, with the red solid
curve representing the ramp path.

We consider the system with unit filling (one atom per lattice) in the deep Mott insulator regime, i.e. |Uyqr| >
to, |0, |Q|. In this parameter regime, the atoms are localized in individual lattices and the near-neighbor tunneling
can be treated as perturbations. It is convenient to write the lattice effective Hamiltonian in terms of isospin operators
with of = (al,a;, +al a;4)/2, 0¥ = —i(al 1a;, —al a;4)/2 and 07 = (al ,a;4 — al a;,)/2. Up to the second
order of perturbation [40-H43], the resulting effective spin Hamiltonian of the system with N lattice sites (spins) is

N-1 N
Hs = Z (Jm0;0;+1 +Jy0']y(7?+1 +JzO’jO’j_~_1) +Zh5’} (6)
Jj=1 j=1

Here J, = J, = J = —4t4t /Up and J, = =483 /Uy — 483 /Uy + 2(t% +17)/ Uy, are the spin-exchange interactions,
and h = (Q,0,6) acts like an effective magnetic field on the spin chain. In the harmonic approximation for the
ground-state Wannier function [33], the tunneling amplitude and the interaction energy can be derived as t, =t ~
4/ mWVE BN exp(=2/Vo/ER) and Uyser & (8/7)2koaq (EgVe)/4, where Ex = h2k2/2m is the recoil energy.
From these expressions, one can observe that ¢t and U,,/ are tunable by controlling the strength of the optical lattice,
and U,, can also be tuned from positive to negative within a broad range by changing the scattering lengths ay,/
through Feshbach resonances [44]. In our case, one focus on the parameter regime with U, < 0 and t, > 0, which
gives rise to a ferromagnetic spin chain [41]. In addition, the Zeeman splitting § and the Rabi frequency €, can be
independently tuned. For example, one can use a real magnetic field for fixed laser frequencies or vary the Raman
laser frequencies [39] to tune §, and change the intensities of the Raman lasers to tune §2,. Thus one can realize the
interacting spin model described by Hamiltonian @ with tunable parameters for implementation of the many-body
dynamical QHE with ultra-cold atoms in the optical lattice [18§].

Before preceding, we estimate the typical energy scales in practical experiments. We consider 8’Rb atoms and the
two hyperfine states for the effective spin index as | 1) = |F = 1,mp = —1) and | ) = |F = 1,mp = 0) [45]. The
interaction energies can be chosen as Uy = U = U ~ 1.01U;; from the respective scattering lengths with negative
sign [45] [46]. Thus the z-direction spin interaction J, = 0.98J =~ J, which indicates that the spin interactions in this
atomic spin chain can be almost isotropic. For 8’Rb atoms in an optical lattice with the lattice spacing 7/ko = 532
nm and the potential depth ranging from V) = 8ER to 11ER [36H38], the typical tunneling rate is from ¢/h ~ 0.7 kHz
to 0.2 kHz, and the interaction energy can be |U| = —U = 7 kHz, yielding the spin exchange rate from J/h ~ 280
Hz to 23 Hz. In this case, one can choose |€2;| and |0| from zero to several hundreds of Hz, such that the system is
still in the Mott regime in the presence of Raman lasers and a Zeeman field. In the next section, we will see that the
many-body dynamical QHE can be observed within this parameter regime.
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FIG. 2: (Color online) (a) The Berry curvature Fpy as a function of the interaction strength J for the spin systems with N = 8,9.
The ratio between the interaction strength and the filed strength J/h is also shown. (b) The averaged Berry curvature Fy, for

the spin system with N = 6 as a function of J, with the local fluctuations jj = a1J and ilj = aph and the sampling number
Nq = 50. Other parameters in (a) and (b) are h = 200 Hz and t;amp = 0.01 s.

III. SIMULATING THE DYNAMICAL QUANTUM HALL EFFECT

The topological properties of this cold atom system can be characterized by the Berry curvature. As proposed in
Ref. [18], the dynamical QHE can be simulated in this spin chain model by observing the response of the system to
ramping the effective magnetic field h= (h*,h¥, h*). To demonstrate the dynamical QHE in this system, we consider
the ramp progress with the following parameterized form

h? (t) = Q.(t) = hsin b cos ¢,
hY (t) = hsinfsin ¢, (7)
h? (t) = 6(t) = hcos#.

Here the field strength h is tunable but fixed during each ramp progress, the phase parameter ¢(t) = 0 in this system
due to the absence of hY term which requires another Raman process, and the mixing angle 6(¢) is used as the ramp
parameter for observing the dynamical QHE.

Following the general scheme proposed in Ref. [I§], in our system, we can prepare this ultra-cold atomic spin chain
initially in the ground state with 6(t = 0) = 0, and then ramp the system with fixed ¢(¢) = 0 to undergo a quasi-
adiabatic evolution by varying the mixing angle 6(t) = v?t?/2n for a ramp time t;amp = 7/v, where v denotes the
ramp velocity. The condition of fixing ¢ = 0 is spontaneously satisfied in this system without additional operations
in experiments. At the end of such a ramp with 6(t = t,amp) = 7/2 and the velocity of the §-component of the
magnetic field vo(t = tramp) = Q(t = tramp) = U, We can measure the Berry curvature of the interacting spin chain
from its magnetization [I8]. The three components of the effective magnetic field during the whole evolution process
are depicted in Fig. 1(b). The ramp of this system can be easily achieved by independently varying the strength of
the Zeeman field and the intensities of the Raman lasers in time [45]. This choice of ramping field guarantees that
the angular velocity is turned on smoothly and the system will not be excited at the beginning [I8].

The response of the generalized force along the latitude direction for the spin Hamiltonian is measured at ¢ = tyamp-
At this point of the measurement the generalized force My is along the y-axis since 6 = /2, whereas the quench
velocity is along the longitude direction. Then My is given by

MQ = _<8¢HS’> |¢:0,t:7r/v: _hZ<U§J> (8)

j=1

From Eq. , one can observe that the generalized force at the end of the ramping process is expressed by the spin
magnetization along the y axis, which can be measured in cold atom systems [36H38]. Within the linear response
approximation, it has been shown that the Berry curvature of the system Fy4 is connected to the response of the

generalized force with the simple relationship [I8], 19

N
My h

Fypy=——=— a?). 9
bo === =5 2 (o)) (9)

J=1



In other words, the Berry curvature reveals itself from an effective force. To measure the magnetization y <0;-’> in
cold-atom experiments, one can perform a global /2 rotation on the spin chain to transform the measurement in the
transverse spin basis to > j <Uj>, and then probe this magnetization by the in situ (single-site-resolved) and spin-
resolved imaging technique [36H38], which is well-developed with a detection fidelity above 95%. In this way, one can
obtain the Berry curvature from the relationship of Eq. @D The proposed system and procedure are schematically
shown in Fig. 1: The atomic spin chain in the described evolution progress is initially prepared in the ground state
and then is smoothly ramped along the angular direction, finally the magnetization and thus the Berry curvature is
measured as a linear response to the ramp field. The quantization of the response will emerge in the Berry curvature
of this interacting spin system, and in this sense, it is called the many-body dynamical QHE [I8].

Now we turn to show that the dynamical QHE and the interaction-induced topological transition can be observed in
the proposed system with numerical simulations. We numerically calculate the Berry curvature Fpq from Eq. @ as a
function of the spin-exchange interaction for the described ramp process by the time-dependent exact diagonalization
[47). The results for typical parameters and N = 8 9 are shown in Fig. 2(a). As expected [18], for this spin chain
system, the quantization plateaus in Fy, appear in the value n =0,1,2...,N/2 (n =1/2,3/2, ..., N/2) for even (odd)
N with decreasing the spin interaction. This phenomenon comes from the manifold of ground state degeneracies and
the the Hilbert space topology in the parameter space. When the interaction J tend to zero, the Berry curvature is
equal to N/2 which indicates that the ground state behaves as a collective spin of magnitude N/2. When J is large
enough in the ferromagnetic regime, the system behaves as a spin singlet for even N and as an effective spin 1/2 for
odd N. The transition between the spin singlet (for even chain) and the maximally polarized state occurs through
the quantized steps, which reflect the total value of the spin in the initial state [I8]. From Fig. 2(a), we can find
that all the quantized plateaus exhibit within the typical parameter regime of the interaction strength J from 23 Hz
to 280 Hz, with the fixed field strength A = 200 Hz. In general, these plateaus in the dynamical response can be
observed by varying the ratio J/h (see Fig. 2(a) for the regime of ratio), such as changing h with fixed J. Although
our simulations are performed in a small interacting spin system, which are limited by the used time-dependent exact
diagonalization method (that scales poorly with system size) [47], the characterizations of the many-body dynamical
QHE (the quantization of the dynamical response and the interaction-induced topological transition) remain the same
for a large system [48].

To show that the quantization of the dynamical response holds under more generic conditions, we further consider
the control errors which stem from the parameter fluctuations in the system Hamiltonian @ We assume the local
fluctuations jj = J and ﬁj = ash, with a; and as randomly distributing in the region [1 —n, 1+ 7] for each lattice
(spin) j and n > 0 as the fluctuation strength. For each single realization with randomly chosen «; and aq, we repeat
the similar ramp progress and calculate the corresponding Fg, as that in Fig. 2(a), and then we can obtain the
averaged Berry curvature F0¢ =1/Ny > Fgy, where Nq denotes the sampling number. The averaged Berry curvature
for the system with N = 6 as a function of the interaction strength is plotted in Fig. 2(b), with n = 5%, 10%, 20%
and N, = 50. One can find that the plateaus are still stable and the topological transition remains sharp, even when
the parameter fluctuation strength up to 20% and for a small sampling number. This result demonstrates that the
quantized plateaus of the Berry curvature in the dynamical response are very robust against the control errors, making
their observation in experiments more feasible. It is noted that in our simulations, the sharp topological transitions
with the corresponding positions hold for different sampling numbers N, (the simulation sizes), even for the single
sampling case (N, = 1) which is also shown in Ref. [I8]. However, with given fluctuation strengths, the plateaus
become more stable and the quantization becomes more significant for larger N,.

The quantization plateaus implies the topological property of the response. The corresponding topological index is
the first Chern number C, which can be obtained by integrating the Berry curvature over the whole spherical surface
of the parameter space spanned by 6 and ¢. For our case, the Hamiltonian is cylindrically invariant as one can get
the Hamiltonian at arbitrary ¢ from the Hamiltonian at ¢ = 0 by just rotating the spins by an angle ¢ around the
z-axis. Accordingly, the Berry curvature is cylindrically symmetric and is a function of 6 alone. Therefore, one can

obtain the Chern number as
1 27 iy T
C= —/ d(b/ dOFpg :/ Fpedb. (10)
2m Jo 0 0

By simulating the #-ramp progressions from 6(tyamp) = 0 to 7 via changing ¢,amp, we calculate the corresponding
Chern number from Eq. . The results for the spin system with N = 6 are shown in Fig. 3(a), where we also plot
the energy gap between the ground state and the first excited state. As expected, the quantized Chern number is
C =0,2,4,6 as the interaction strength J varies from 23 Hz to 280 Hz, and the energy gap closes at the topological
transition points. Note that the Chern number is more robust and its quantized plateaus will be more significant
due to the averaging over different runs of ¢ ramp with the parameter fluctuations [22]. Figure 3(b) shows the Berry
curvature as a function of the final mixing angle at the end of the ramp progressions, which correspond to the cases
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FIG. 3: (Color online) (a) The quantized Chern number and the energy gap between the ground state and the first excited
state as a function of the interaction strength for the spin system with N = 6 . (b) The Berry curvature Fy, as a function of
the finial mixing angle 6 after ramp progressions, corresponding to the cases with typical parameters J = 40, 60, 100, 250 Hz in
(a). (c) The magnetization (generalized force) My as a function of the final ramp velocity vy for the spin system with N = 8,
showing the linear approximation within vy < 300 rad/s. The inset shows the corresponding Berry curvature Fy, as a function
of the ramp time, which saturates to nearly one when tramp 2 0.01 s. Other parameters in (a) and (b) are h = 200 Hz, and
J =h/2 =100 Hz in (c).

with the parameters J = 40, 60,100,250 Hz in Fig. 3(a). The sine profile in Fy,(6) as shown in Fig. 3(b) is similar
to that for a single spin in a driving magnetic field, and thus indicates the ground state of the system behaves as a
collective spin.

IV. DISCUSSIONS AND CONCLUSIONS

Before concluding, we briefly discuss some possible concerns, the ramp velocity limit and the decoherence effect, in
practical experiments. In our previous calculations, the Berry curvature Fyy is considered to be a linear response to the
ramp velocity vg. In general cases, the magnetization (the generalized force) is determined by My = Mo—Fpgsvg+O(v3)
[18] 19], where the constant term My gives the value of the magnetization in the adiabatic limit and My = 0 here.
The linear response approximation could break down when the velocity vy is too large to neglect the term related
to vg . To check the velocity limit for our proposed system in this linear response theory, we numerically calculate
the magnetization My as a function of the finial ramp velocity vy for the system with N = 8, as shown in Fig. 3(c).
The result shows that the linear response approximation works well within vy < 300 rad/s. In addition, we calculate
the corresponding Berry curvature as a function of the ramp time Fyg(tramp), Which saturates to nearly one when
tramp =, 0.01 s and becomes very stable when ¢;amp 2 0.06 s. Therefore, to observe the quantized plateaus in Fig. 2(a),
one requires the ramp velocity slower than about 300 rad/s, corresponding to the ramp time longer than about 0.01
s. We also simulate the same procedures for the cases with N = 6,7,9 and find that the results are similar to those
in Fig. 3 (c), indicating the velocity limit for observing the quantized plateaus does not change much for systems of
different sizes.

We note that the presented ultra-cold atomic spin chain should be quite robust to the realistic noise. First, since
the atoms only virtually tunnel to the neighboring sites with a small probability about (¢/U)?, the dephasing rate
and the inelastic decay rate are significantly reduced compared with the cold collision case [33] [4T], where the typical
decoherence rate can be about several Hz [34]. In addition, the spontaneous emission noise rate can be made very
small by using a blue-detuned optical lattice or by increasing the detuning. For example, using a blue-detuned lattice
with a moderate detuning rate 5 GHz, the effective spontaneous emission rate is estimated to be several Hz [41]. Under
this condition, the noise-induced decoherence rate in our proposed cold atom system is significantly smaller (about
two orders smaller) than the ramp rate, and thus the topological features of the dynamical QHE can be observed
within the coherence time [22].

In conclusion, we have proposed a realistic scheme to simulate the many-body dynamical QHE and the related
interaction-induced topological transition with ultra-cold atoms in an optical lattice. We have demonstrated that the
typical topological features of this effect can be observed under practical experimental conditions. The realization of
the many-body dynamical QHE in the optical lattice may extend the current intensive study of topological states in
cold atom systems and pave a new avenue to explore intriguing topological responses with interactions.
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