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Abstract

We study the remote creation of the polarization and intensity of the first-order coherence (or

coherence intensity) in long spin-1/2 chains with one qubit sender and receiver. Therewith we use

a physically motivated initial condition with the pure state of the sender and the thermodynamical

equilibrium state of the other nodes. The main part of the creatable region is a one-to-one map

of the initial-state (control) parameters, except the small subregion twice covered by the control

parameters, which appears owing to the chosen initial state. The polarization and coherence

intensity behave differently in the state creation process. In particular, the coherence intensity can

not reach any significant value unless the polarization is large in long chains (unlike the short ones),

but the opposite is not true. The coherence intensity vanishes with an increase in the chain length,

while the polarization (by absolute value) is not sensitive to this parameter. We represent several

characteristics of the creatable polarization and coherence intensity and describe their relation to

the parameters of the initial state. The link to the eigenvalue-eigenvector parametrization of the

receiver’s state-space is given.

PACS numbers:
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I. INTRODUCTION

The problem of remote state creation is one of the problems attracting attention of

many scientists. It goes back to the problem of arbitrary state transfer [1]. Being simply

formulated, this problem faces many obstacles for its practical realization, such as the noise,

the interaction with environment (in particular, with the remote nodes which are not taken

into account in many proposed algorithms). Because of these obstacles, the characteristics

obtained in the original algorithms of state transfer along the either fully engineered [2–

4] or boundary-controlled [5, 6] spin-1/2 chain are hard reachable in practical realizations

[7–11]. In particular, the state-transfer probability becomes significantly less then one.

Therefore, it is reasonable to replace the perfect state transfer by the high probability state

transfer [12] (in particular, using the optimized boundary-controlled chain [11, 13]), which

is much simpler for realization. Using this concept, a set of effects has been studied in both

homogeneous and engineered spin chains, for instance, the thermal effect on a state transfer

[14], the mixed state transfer [15]. Moreover, being simply realizable, the homogeneous

chains acquire significance in the algorithms of the multidimensional state transfer [16, 17],

long-time high probability state transfer [18, 19], multiple-channel state transfer [20, 21].

Among other models, we mention the quantum state transfer in an engineered chain of

superconducting quantum bits [22].

Nevertheless, the algorithms of perfect state transfer (allowing us to restore exactly the

initial state of sender at the receiver site) are very attractive due to the simple and illus-

trative ideas they are based on. The first idea is the realization of the transfered state as

a superposition of functions oscillating in time with rational (integer) frequencies [2–4], so

that the transfered state reproduces exactly the initial sender’s state at some time instant.

The second one is the selective choice of the active modes (i.e., only a few of the above

mentioned oscillating functions have large amplitudes, therewith their frequencies are not

rational numbers) realizing the state transfer [5, 6, 11, 13]. Both these effects are used

(either explicitly or implicitly) in many contemporary state transfer algorithms [23–25].

However, working with the high-probability state transfer stimulates the intention to get

advantages from the apparently destructive effects of spin dynamics. A way to realize this

intention is based on the observation that the non-unit probability of a pure state transfer

means that we deal with the mixed state of the receiver rather then with the pure one.
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This fact prompts us to replace the pure state transfer with the mixed state creation thus

establishing a map between the parameters of the initial sender state and those of the receiver

state, which was first realized in photon systems [26–33]. Therewith, all the parameters of

the mixed receiver’s state are the parameters of potential interest in realization of quantum

algorithms. In some sense, the remote state creation can be referred to as the information

transfer along a chain [34–36].

In the recent papers, a new algorithm of the remote state creation in a spin-1/2 chain

with an either mixed tensor product [37] or pure [38] initial state is considered, where the

creatable region of the whole state-space of the one-qubit receiver is explicitly shown. In

that state-creation algorithm, the parameters of sender’s initial state cover the whole sender’s

state space and can take any value from their domain. These parameters are referred to as

the control parameters (which sometimes are supplemented by the time instance) and can be

associated with the parameters of a local unitary transformation of the sender. Similarly, the

parameters of the receiver’s state parametrize the whole state space. However, in general,

the creatable values of these parameters are not arbitrary but they are defined by the both

control parameters and evolution of a quantum system. As a result, the whole receiver

state-space can not be covered in general. Thus, the state creation is considered as the

following map:

control parameters → creatable parameters. (1)

The choice of a preferable parametrization of the both sender’s initial state and receiver’s

creatable state is an important step in characterization of the state creation algorithm. In

the above references, the parameters of a local unitary transformation of the sender are

considered as control ones, while the list of creatable parameters is composed by the inde-

pendent eigenvalues and eigenvector-parameters. But the disadvantage of those creatable

parameters is that they are not directly measurable. This prompts us to turn to a physically

detectable parametrization. In our case of the one-qubit receiver this parametrization is

rather evident. First of all we notice that the phase of the non-diagonal element is simply

creatable by choosing the proper control phase-parameter. Thus, disregarding this phase,

the receiver’s state becomes a two-parametric one, so that the polarization and the intensity

of the first-order coherence (or coherence intensity for the sake of brevity) [39–43] can be

taken as suitable quantities parameterizing the receiver state-space.
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In addition, along with the physically detectable parametrization of the creatable region,

we use the physically motivated initial state of a chain, which is a pure state of the one-qubit

sender along with the thermodynamic-equilibrium state of all the other spins. Thus, the set

of control-parameters consists of the two types of parameters. The first type involves two

independent parameters of a pure sender’s one-qubit state (the overall phase is disregarded

in advance), which can be represented in terms of the parameters of a local unitary transfor-

mation of the sender. The second type is the inverse temperature characterizing the above

thermodynamic-equilibrium state, this parameter can not be embedded into the parameters

of the sender’s local unitary transformation. Although it is not a local parameter of the

sender, this macro-parameter can be used as a control parameter governing the state of a

system of relatively small size, which usually holds in working with spin systems (thus, there

is no need to transfer the value of this parameter to the receiver side using any additional

(classical) communication channel).

As usual, by the state of the receiver we mean the density matrix reduced over all the

nodes except for the receiver’s node, which is the last node in our model. By definition, the

polarization is responsible for the diagonal part of the created state (the classical part) while

the coherence intensity is associated with the non-diagonal part of the state (the quantum

part). It is demonstrated that these quantities may vanish independently in certain cases.

For instance, there is a line of states in the creatable region with non-zero polarization and

zero coherence intensity. There is also another line with zero polarization and non-zero

coherence intensity. However, in long chains, the significant value of coherence intensity

can be created only together with the large value of polarization. We emphasize that the

opposite is not true and the large polarization can appear together with the zero coherence

intensity in long chains. We also study the dependence of the discussed properties on the

control parameters, in particular, on the temperature responsible for the thermodynamic

equilibrium state of a spin system.

Among the features of our model we point out the following one. Owing to the chosen

initial condition, there is a creatable sub-region twice covered by map (1). This means that

any state from this subregion can be created using the two different pairs of the control pa-

rameters. Although a similar phenomenon was observed in [37], it was not closely considered

therein. In this paper we analyze this twice-covered subregion (in particular, we describe its

boundary) though it is rather small in our model.
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The paper is organized as follows. In Sec.II we give the general description of the con-

sidered model involving the interaction Hamiltonian, the initial state and the associated list

of control parameters. The physically motivated parametrization of the creatable region

in terms of the polarization and coherence intensity is studied in Sec.III. We describe the

boundary of the creatable region, the one-to-one and two-to-one mapped creatable subre-

gions and the features of mutual relations between the creatable parameters. In Sec.IV, we

consider the parametrization in terms of the eigenvalue and eigenvectors of the creatable

state, thus establishing the link to the models considered before. Basic results are collected

in Sec.V.

II. MODEL FOR NUMERICAL SIMULATIONS OF REMOTE STATE CRE-

ATION

For the purpose of a remote state creation, we chose the homogeneous chain of N spin-1/2

particles with a pure initial state of the sender (the first node) and the thermal-equilibrium

state of the rest system, i.e.,

ρ0 =

(

2 cosh
b

2

)1−N

(a0|0〉+ a1|1〉)(a0〈0|+ a∗1〈1|)⊗ ebIz2 ⊗ · · · ⊗ ebIzN , (2)

where the parameter b is an inverse temperature (more exactly, b = ~w
kT

, where ~ is the Planck

constant, w is the Larmor frequency, k is the Boltzmann constant and T is the temperature),

Ijα (j = 1, . . . , N , α = x, y, z) is the projection of the jth spin momentum on the α-axis,

and

a0 = sin
απ

2
, a1 = e2iπφ cos

απ

2
, 0 ≤ φ, α ≤ 1. (3)

Initial state (2) has two features to be clarified. The first one is a pure initial state of the

first qubit. One could assume that the mixed initial state (being a more general one) has to

lead to a bigger variety of the receiver’s states. However, it was numerically demonstrated in

[37] that the maximal creatable region corresponds to the pure sender’s state, because this is

a state with the maximal possible eigenvalue (which equals one). That observation prompts

us to use a pure initial state in our case as well. Nevertheless, we keep in mined that a

mixed initial state might be preferable for some particular problems especially if we intend

to handle the position and area of the creatable region. The second point is the initial state
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of the rest chain which is a uniformly polarized state corresponding to the equilibrium initial

state of the spin chain in the strong external magnetic field before the spin-spin interaction

is turned on. Alternatively, the equilibrium initial state of spins interacting by means of

the Hamiltonian (4) could be of interest, but this should not yield the qualitatively different

results.

Let the dynamics of this chain be governed by the nearest-neighbor XY-Hamiltonian

H =

N−1
∑

i=1

D(IixI(i+1)x + IiyI(i+1)y), (4)

where D is the coupling constant between the nearest neighbors. We do not include the

interaction with the external magnetic field in this Hamiltonian, because the term responsible

for this interaction can be eliminated passing to the rotating reference frame [44], which is

possible because our Hamiltonian commutes with the z-projection operator of the total spin

momentum (the external magnetic field is z-directed).

Below we consider the dimensionless time τ = Dt and write the evolution of the density

matrix as ρ(τ) = e−iH
D
τρ0e

iH
D
τ . Using the Jourdan-Wigner transformation [45, 46], we cal-

culate the state of the last qubit, i.e., the reduced density matrix ρN (τ) = Tr1,...,N−1ρ(τ),

which reads (see Appendix A for details)

ρN(τ) =





ρN11 rN12e
−2iΦ̃N (τ)π

rN12e
2iΦ̃N (τ)π 1− ρN11



 , (5)

where

ρN11 =
1

2

(

1− R2
N cos(απ) + (1− R2

N) tanh
b

2

)

, (6)

rN12 =
1

2
RN sin(απ)

(

tanh
b

2

)N−1

, (7)

Φ̃N (τ) = ΦN(τ) + φ+
1

2
(N − 1). (8)

Here the functions RN and ΦN are the scalar evolution characteristics of the whole trans-

mission line. The derivation of formula (5) is given in Appendix A, eqs.(94,95), where the

functions RN and ΦN are obtained as the amplitude and the phase of some function fN(τ)

coinciding with the transition amplitude for the model of a pure state transfer along a ho-

mogeneous chain [2]. Emphasize that the both RN and ΦN do not depend on the parameters
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of the system’s initial state α, b and φ. These parameters appear explicitly in formulas (5-8)

and are referred to as the control parameters. They can take arbitrary values, unlike the

creatable parameters, which characterize the receiver’s state and are defined by both the

control parameters and evolution of the system.

Apparently, eq.(8) means that any phase Φ̃N at the required instant τ can be created

taking a proper value of the control parameter φ: φ = Φ̃N(τ)−ΦN (τ)− 1
2
(N−1). Thus, the

Φ̃N -creation becomes a trivial task and is disregarded below. In other words, we consider

the creation of ρN11 and rN12 in the density matrix (5) using the two control parameters α and

b. Therefore, matrix (5) should be replaced with the following one:

ρ̂N(τ) =





ρN11 rN12

rN12 1− ρN11



 . (9)

Instead of describing the receiver’s creatable region directly in terms of the elements of

density matrix (9), we use a proper parametrization of the density matrix, i.e., we introduce

a pair of so-called creatable parameters whose domain covers the whole receiver’s state

space. The requirement to this parametrization is that it must clearly separate the part of

the whole state space, which can be created varying the control parameters (the creatable

region) from the part, which can not be created in this way (the unavailable region). In

addition, the preference should be given to the parametrization by the physically detectable

parameters. Accordingly, in Sec.III we concentrate on the parametrization in terms of the

polarization and coherence intensity [40–43]. Both of these parameters can be measured in

an experiment (physical parametrization) and allow us to separate the creatable region from

the unavailable one.

III. POLARIZATION AND COHERENCE INTENSITY AS MEASURABLE PA-

RAMETERS OF CREATABLE STATE

Hereafter we consider the physically motivated parametrization of the one-qubit receiver’s

state in terms of the polarization I and the coherence intensity J . These parameters are
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related with the elements of the density matrix ρ̂N (9) as follows:

I(τ) = Tr(ρ̂N(τ)IzN ) = ρ11(τ)−
1

2
=

1

2

(

(1− R2
N(τ)) tanh

b

2
− R2

N(τ) cos(απ)

)

, (10)

J(τ) = |ρ12(τ)|2 =
1

4
R2

N (τ) sin
2(απ)

(

tanh
b

2

)2(N−1)

. (11)

In terms of I and J , the density matrix ρ̂N (9) reads

ρ̂N (τ) =
1

2
E +





I(τ)
√

J(τ)
√

J(τ) −I(τ)



 , (12)

where E is the 2× 2 identity matrix. The positivity of the density matrix ρ̂N gives the only

constraint on the admissable values of I and J ,

I2 + J ≤ 1

4
. (13)

Inequality (13) specifies the whole receiver’s state-space. The parameters I and J in formula

(12) characterize the two quite different types of deviation of the density matrix from the

state 1
2
E, which are called the classical (the polarization I) and the quantum (the coherence

intensity J) deviations. Both depend not only on the control parameters α and b, but also

on the absolute value RN of the transition amplitude governing the time evolution of the

creatable region. We assume the positivity of b, which is physically justified. The case of

negative b is equivalent to the replacement (I, α) → (−I, α± 1) and is not considered here.

Before proceeding to study of the creatable region, it is worthwhile to describe the am-

plitude RN as a function of the chain length N in more details.

A. Amplitude RN as a global evolution characteristics of transmission line

Essentially, it is the function RN(τ) that is responsible for the creatable region. In fact,

one can verify that the creatable region increases with an increase in RN and the whole

receiver’s state space can be created if RN = 1. This situation is realized only for the case

N = 2 and N = 3 [2], when R2(τ) = sin τ
2
and R3(τ) = sin2 τ

2
√
2
, so that R2(π) = 1 and

R3(π
√
2) = 1. In this case the whole receiver’s state space can be created. For N > 3,

the transition amplitude is a combination of the τ -oscillating functions with non-rational

frequencies resulting in RN → 1 only over the very long time interval. So, over a reasonable

time interval, we always have RN < 1 and the creatable region does not cover the whole
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receiver’s state space. This conclusion is justified below in Fig.2. But, to maximize the

creatable region, we can pick up the time instant corresponding to the largest RN . In this

regard we notice, that the function RN(τ) (at fixed N > 3) has a well-formed decreasing

sequence of maxima separated by the rather long time intervals, which can be approximated

by the linear combination of the Bessel functions as shown in Appendix B. Thus, we consider

the state creation at the time instant τmax(N) corresponding to the first maximum (the

biggest one over the time interval 0 < τ . 2N in our numerical simulations) of the function

RN(τ). We denote this maximum by R(N) or just by R and rewrite formulas (10) and (11)

as

I =
1

2

(

(1− R2) tanh
b

2
−R2 cos(απ)

)

, (14)

J =
1

4
R2 sin2(απ)

(

tanh
b

2

)2(N−1)

, (15)

which we refer to in describing the creatable region. The maximum R(N) and the appro-

priate time instant τmax(N) are shown in Fig.1 as functions of N . We see that τmax(N)

is essentially a linear function of N . One should note that the points R(2) and R(3) in

this figure form a small plateau, reflecting the fact that the whole receiver’s state space is

creatable in the cases N = 2, 3. For N > 3, the maximum R(N) is a rapidly decreasing

function of N .

B. Map of control-parameter space into creatable-parameter region

Apparently [38], the spin dynamics in long chains compresses the creatable region so

that the whole receiver’s state-space is divided into two parts: the creatable and unavailable

regions. To visualize the creatable region, we represent the map

(α, b)
(14,15)→ (I, J) (16)

(which is explicitly given by formulas (14) and (15)) in Fig.2 for the chains of different lengths

N . As was mentioned in Sec.IIIA, the whole state space of the one-qubit receiver can be

created using the chain of two (or three) nodes, Fig.2a. If N > 3, then the unavailable region

appears, which is shown in Figs.2(b-d) (where the surrounding solid line is the boundary of

the whole receiver’s state space (13)). In Fig.2, the dash-lines correspond to the constant
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FIG. 1: The maximum R of the amplitude RN (solid decreasing line) and the appropriate time

instant τmax (solid increasing straight line) as functions of N . The plateau in the beginning of

the decreasing line reflects the fact that R(2) = R(3) = 1. The similar plateau appears in other

figures below. The critical length Nc = 34 is defined through the critical value Rc =
1√
2
(see eq.43):

R(Nc + 1) = 0.704 < Rc < R(Nc) = 0.709. This is the maximal chain length allowing us to create

the states with zero polarization and non-zero coherence intensity for any value of the inverse

temperature b, see Sec.IIID 1. The value R(Nc) and the appropriate value τmax(Nc) = 37.279 are

indicated in this figure.

values of the parameter α, while the solid lines correspond to the constant values of the

parameter b, therewith we use the following gridding throughout this paper:

α = 0.1n, n = 0, 1, . . . , 10 dash-lines,

b = 0, 0.1, 0.5n, n = 1, 2, 3, . . . solid lines.
(17)

We see that the solid lines nestle to the either line b → ∞ or line b = 0, which is most

clearly shown in Fig.2c,d where only a few solid lines are well separated from the top and

from the bottom of the bell-shaped creatable region. The shrinking to the line b = 0 means

that, increasing the chain length, we must decrease the temperature (or increase b) to create

the valuable coherence intensity. As N → ∞, the creatable region compresses to the right

corner of the receiver’s state space, which, consequently, is the most reproducible area of

the state space. On the contrary, the states in the left corners of the receiver’s state space

become unavailable already in short chains, see Fig.2b.
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The common feature of the creatable regions in Fig.2 is the tail (vanishing in chains of

length N = 2, 3) of states with negligible coherence intensity situated to the left of the bell-

shaped creatable region. This tail represents the ”classical” part of polarization, i.e., such

polarization that causes negligible quantum effects described by the coherence intensity.

Notice, although the creatable region is mainly the one-to-one image of map (16), there

is a small subregion which is the two-fold image of map (16). This feature is discussed in

Sec.IIIC.

C. One-to-one and two-to-one mapped creatable sub-regions

As mentioned in the Introduction, the whole creatable region is divided into the two

subregions. One of them is the large subregion under the curve b → ∞ in the plane (I, J).

This is the one-to-one image of map (16) (there is no intersections of solid lines inside of

this region in Fig.2) with the control parameters inside of the following sub-domain:

αbr(b) < α ≤ 1, 0 ≤ b ≤ ∞ sub-domain of the one-to-one map (16). (18)

Another subregion is the small area above the curve b → ∞ (including the tail). This is the

two-fold image of map (16) (in other words, the function J(I) is a two-sheet function in this

subregion) with the control parameters inside of the other sub-domain:

0 ≤ α ≤ αbr(b), 0 ≤ b ≤ ∞ sub-domain of the two-to-one map (16), (19)

Any point (I, J) from this subregion can be created using two different pairs of the control

parameters (α, b). This means, in particular, that two different values of temperature (pa-

rameter b) can create the same polarization and coherence intensity if the parameter α of

the sender’s pure initial state properly depends on b. The boundary line αbr(b) in the plane

of control parameters (separating the two above sub-domains (18) and (19)) is defined below

in eq.(36).
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1. One-to-one mapped subregion

First of all we observe that there is a curve covering the top of the bell-shaped creatable

region, see Fig.2. It corresponds to the limit b → ∞:

I∞ =
1

2

(

(1− R2)−R2 cos(απ)
)

, (20)

J∞ =
R2

4
sin2(απ), 0 ≤ α ≤ 1. (21)

Formula (21) gives us the maximal value of J , Jmax
∞ , at α = 1

2
:

Jmax
∞ =

R2

4
, (22)

therewith, the appropriate polarization IJmax
reads

IJmax
=

1− R2

2
≥ 0. (23)

In particular, for N = 2 and 3, we have R(2) = R(3) = 1 and Jmax
∞ = 1

4
, IJmax

= 0. Notice

that J∞ vanishes at α = 0, 1, therewith

I∞|α=0 ≡ Ic =
1

2
− R2, I∞|α=1 =

1

2
. (24)

We must emphasize that the parametrically represented curve (20,21) is the upper boundary

of the image of one-to-one map (16,18).

2. Creatable two-to-one mapped subregion

The two-to-one mapped subregion is a new feature of the remote state-creation process,

which was not investigated before and thus deserves a special consideration. This subregion

includes the tail to the left of the bell-shaped region and the close neighborhood of the left

corner of this region in Fig.2. Since the scale of Fig.2 does not allow us to observe this

subregion, we represent this subregion for the case N = 6 using a suitable scale in Fig.3.

Notice that the two-to-one mapped subregion disappears if R = 1, i.e., N = 2, 3.

Now we derive the boundaries of the two-to-one mapped subregion. Apparently, map

(16) is the one-to-one map at a point (I, J) if J |I=const is a monotonic function of b at this

point. In the case of the two-to-one mapping, J |I=const as a function of b loses its monotonic
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behavior and acquires the extremal point (a maximum). The appearance of such a maximum

can be used as an indicator of the two-to-one mapping.

The upper boundary of this two-to-one mapped subregion can be parametrically described

as follows. First, we solve eq.(14) for α,

cos(απ) =
1

R2

(

(1−R2) tanh
b

2
− 2I

)

, (25)

and substitute α from eq.(25) into eq.(15) obtaining J as a function of parameters I and b,

which now are considered as independent ones:

J(I, b) =

(

tanh b
2

)2(N−1)

4R2

(

R4 −
(

2I − (1− R2) tanh
b

2

)2
)

. (26)

Next, we calculate the partial derivative of J with respect to b and equate it to zero (we

cancel positive factors and use the superscript ”br” to mark quantities associated with the

two-sheet subregion):

4(Ibr)2(N − 1)− 2Ibr tanh
bbr

2
(2N − 1)(1− R2) + (27)

tanh2 b
br

2
N(1− R2)2 − R2(N − 1) = 0.

The lhs of eq.(27) is a quadratic expression in both Ibr and tanh bbr

2
. Let us solve it for the

polarization Ibr:

Ibr± =
1

4(N − 1)

(

(2N − 1)(1− R2) tanh
bbr

2
∓
√

4(N − 1)2R4 + (1− R2)2 tanh2 b
br

2

)

.(28)

Substituting this polarization into eq.(26) we obtain the following expression for the coher-

ence intensity:

J br
± =

(1−R2)R2
(

tanh bbr

2

)2N−1

2
(

(1−R2) tanh bbr

2
±
√

4(N − 1)2R4 + (1− R2)2 tanh2 bbr

2

)
. (29)

However, one can see that J br
− in formula (29) is negative, which is physically impossible.

Thus, there is only one extremum point (Ibr+ , J br
+ ) which is the maximum. The right hand

sides of eqs.(28) and (29) are defined for all N and bbr, i.e., any pair of values of these

parameters uniquely defines the polarization Ibr+ such that the coherence intensity J(Ibr+ , b)

given in eq.(26) increases with b till b = bbr, where J takes its maximal value J br
+ , and

then decreases either to its limit value J(Ibr+ ,∞) > 0 or to zero. Thus, for a given Ibr+ , the
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interval of coherence intensity max
(

0, J(Ibr+ ,∞)
)

≤ J < J br
+ is twice covered by map (16).

Therewith,

0 ≤ J < J br
+ , if Ibr+ ≤ Ic, (30)

where Ic is defined in (24) as a polarization corresponding to J∞ = 0. In addition, the states

with I < Ic can be created only at finite b (finite temperature) and can not exists as b → ∞
(zero temperature). The polarization Ic is marked in Fig.3 for N = 6.

To estimate the size of the two-to-one mapped subregion, we calculate the maximal value

of J br
+ for a given N . It is clear that this maximum corresponds to b → ∞:

J br
∞ =

(1−R2)R2

2
(

(1− R2) +
√

4(N − 1)2R4 + (1− R2)2
) . (31)

The appropriate expression for Ibr∞ reads:

Ibr∞ =
1

4(N − 1)

(

(2N − 1)(1−R2)−
√

4(N − 1)2R4 + (1−R2)2
)

. (32)

Thus, the upper boundary is parametrically defined by eqs.(28) and (29) (with the parameter

bbr, 0 ≤ bbr < ∞) over the interval

− R2

2
≤ I ≤ Ibr∞. (33)

This boundary for the 6-node chain is represented in Fig.3 by the bold-solid (violet) line.

Notice that Ibr∞ changes its negative sign to the positive one in passing from N = 33 to

N = Nc = 34. The point (J br
∞, Ibr∞) can be referred to as a branch point because, passing

through this point, the function J(I, b) becomes a two-sheet function of b. This point is

marked in Fig.3 (N = 6). Notice also that, by construction, the upper boundary itself is

ones covered by the control parameters.

Regarding the right boundary of the two-to-one mapped subregion (see the right boundary

of the shaded area in Fig.3), it is described by the part of the curve b → ∞ (20,21) over the

interval

Ic ≤ I ≤ Ibr∞. (34)

This boundary is an image of the boundary αbr(b) in the control parameter plane (separating

the preimages of the one-to-one and two-to-one mapped subregion), which was used in
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eqs.(18,19). This boundary consists of the intersection points of the curves b = const with

the curve b → ∞, i.e, αbr satisfies the following system

I(αbr, b) = I(α̃,∞), (35)

J(αbr, b) = J(α̃,∞)

for some α̃. Here, I(α, b) and J(α, b) are given in eqs.(14) and (15). Solving this system we

obtain

cos(αbrπ) =
(1− R2)(1− tanh b

2
) tanh2 b

2
−
√
D

R2
(

(

tanh b
2

)2N − tanh2 b
2

) , (36)

D = R4
(

tanh4 b

2
+ tanh4N b

2

)

+

(

tanh
b

2

)2(N+1)
((

1− tanh
b

2

)2

(1− 2R2) +R4(tanh2 b

2
− 2 tanh

b

2
− 1)

)

.

3. Interval of creatable polarization and tail with vanishing coherence intensity

The interval of creatable polarization at a given b is defined by the boundary values of

the parameter α. Thus, at α = 0 and α = 1, we obtain, respectively, the lower and upper

boundaries of polarization as functions of b from eq.(14):

Ilow(b) =
1

2

(

(1− R2) tanh
b

2
− R2

)

(37)

Iup(b) =
1

2

(

(1−R2) tanh
b

2
+R2

)

. (38)

Therewith the minimal value of Ilow corresponds to b = 0, while the maximal value of Iup

corresponds to b → ∞; thus the maximal variation interval of I is the following one:

− R2

2
= Ilow(0) ≤ I ≤ Iup(∞) =

1

2
(39)

In the case N = 2, 3, we have R ≡ 1, so that inequality (39) reaches the boundary of the

receiver’s state space: |I| ≤ 1
2
.

Considering the polarization at the fixed temperature, Ilow(b) ≤ I ≤ Iup(b), we point out

the two following limit intervals:

1

2
(1− 2R2) ≤ I ≤ 1

2
, b → ∞ (40)

−R2

2
≤ I ≤ R2

2
, b = 0. (41)
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As N → ∞ (consequently, R → 0), each of the above intervals shrinks into a point, and

formulas (14) and (15) show that the creatable polarization is completely defined by the

temperature (the parameter α of the sender’s pure initial state disappears in this limit):

I → 1
2
tanh b

2
, and J → 0. Thus, the variation interval of the polarization tends to 0 ≤

I ≤ 1
2
covering the whole positive interval of the creatable polarization, while the coherence

intensity tends to zero for any temperature. This is a principal difference between the

polarization and the coherence intensity. Notice that the above limit interval coincides

with the limit N → ∞ of the tail of polarization (see Fig.2), which covers the interval

−R2

2
≤ I ≤ Ibr∞ in the case of finite N .

D. Mutual relations between creatable polarization and coherence intensity

Although the parameters of the creatable region discussed in Sec.IIIC can be referred

to as characteristics of the creatable region, they describe mainly the boundary of this

region. Now we introduce some characteristics reflecting mutual relation between creatable

polarization and coherence intensity inside of the creatable region.

1. States with zero polarization

In this subsection, we consider the case I = 0, when the coherence intensity (which is

associated with quantum effects) is created without polarization (classical effect). In this

case, eq.(10) yields ρ11 =
1
2
, and eq.(14) results in the following relation between the control

parameters α and b (we use the superscript ”(0)” to differ the quantities of this subsection

from those of the general position):

cos(α(0)π) =
1−R2

R2
tanh

b(0)

2
> 0. (42)

This relation holds for any b(0) if

1− R2

R2
≤ 1, ⇔ R2 ≥ 1

2

def
= R2

c . (43)

The direct calculation shows (see also Fig.1) that

R(35) = 0.704 < Rc < R(34) = 0.709. (44)
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Consequently, inequalities (43) hold if

N ≤ Nc = 34. (45)

Otherwise, if N > Nc, then eq.(42) yields the following constraint for b(0):

tanh
b(0)

2
≤ R2

1− R2
. (46)

Substituting eq.(42) into eq.(15) we obtain

J (0) =

(

tanh b(0)

2

)2(N−1)

4R2

(

R4 − (1− R2)2 tanh2 b
(0)

2

)

, ∀ b(0), N ≤ Nc or (47)

for b(0) satisfying (46), N > Nc.

Considering J (0) in (47) as a function of b(0), we find its maximum at

tanh
b
(0)
max

2
=







1, N < Nc

R2

1−R2

√

N−1
N

, N ≥ Nc

. (48)

In deriving eq.(48), we take into account that
∣

∣

∣
tanh b

(0)
max

2

∣

∣

∣
≤ 1 and

R2

1− R2

√

N − 1

N

∣

∣

∣

∣

∣

N=34

= 0.993 < 1 <
R2

1− R2

√

N − 1

N

∣

∣

∣

∣

∣

N=33

= 1.021. (49)

Thus, substituting eq.(48) into eq.(47), we obtain

J (0)
max =







2R2−1
4R2 , N < Nc

(N−1)N−1R2(2N−1)

4NN (1−R2)2(N−1) , N ≥ Nc

. (50)

In addition, substituting eq.(48) into eq.(42), we have

cos(α(0)
maxπ) =







1−R2

R2 , N < Nc = 34
√

N−1
N

, N ≥ Nc

. (51)

The dependence of J
(0)
max, b

(0)
max and α

(0)
max on N is depicted in Fig.4. All graphs have break-

points at N = Nc. Fig.4 demonstrates that, for N ≥ Nc, the parameter J
(0)
max vanishes very

rapidly with increase in N . Thus,

J (0)
max|N=34 = 2.367 10−3, J (0)

max|N=40 = 1.782 10−8, J (0)
max|N=50 = 3.012 10−18. (52)

This means that the significant value of the coherence intensity can not be created without

the supplementing polarization in long chains. The minimal polarization needed for creation

of the measurable coherence intensity is studied in the next subsection.
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2. States with detectable coherence intensity

Since the coherence intensity can not be created without the polarization in long chains,

important characteristics of the state creation are such minimal I
(1)
− and maximal I

(1)
+ values

of the polarization I (at a fixed b) that the creatable coherence intensity J is valuable (i.e.,

exceeds some conventional value Jmin) inside of the interval I
(1)
− ≤ I ≤ I

(1)
+ .

For a given b, the intensity J reaches its prescribed (registrable) value Jmin for the two

values of α:

cos(α
(1)
± π) = ∓

√

1− 4Jmin

R2

(

tanh
b

2

)2(1−N)

. (53)

Apparently, the expression under the square root must be non-negative, which holds for

b ≥ b(1), where the critical value b(1) corresponds to zero under the square root in expression

(53):

tanh
b(1)

2
=

(

4Jmin

R2

)
1

2(N−1)

. (54)

Next, substituting eq.(53) into (14), we eliminate dependence on α obtaining

I
(1)
± =

1

2



(1−R2) tanh
b

2
±R

√

R2 − 4Jmin

(

tanh
b

2

)2(1−N)


 (55)

The maximal I
(1)
+ and minimal I

(1)
− values correspond to, respectively, the upper and lower

signs in formula (55) (these parameters are related to, respectively, the right and left corners

of the bell-shaped region). Apparently, at b = b(1), the minimal and maximal values of

coherence intensity coincide: I
(1)
− = I

(1)
+ = I

(1)
c , where

I(1)c =
(1−R2)

2

(

4Jmin

R2

)
1

2(N−1)

, (56)

and the appropriate parameter α equals α
(1)
c = 1

2
, which follows from eq.(53) at b = b(1).

Parameters I
(1)
− , I

(1)
+ together with the associated values of the control parameters α

(1)
− , α

(1)
+

as functions of the chain length N for different values of b in the list

b = b(1)(10n), n = 1, 2, . . . , (57)

and Jmin = 0.01 are depicted in Fig.5. The critical intensity I
(1)
c and the critical parameter

α
(1)
c are shown, respectively, in Figs.5a and 5b by the dash-lines. Parameters b(1) and I

(1)
c
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can be considered as the minimal required value of b (or the maximal allowed temperature)

and the associated minimal value of the polarization required for creating the conventional

value Jmin of the coherence intensity.

The interpretation of Fig.5 is evident. The vertical line corresponding to the given chain

lengthN (see the vertical dot-lines in Figs.5a and 5b forN = 40) crosses each line b ≥ b(1)(N)

at the two points: I
(1)
+ (b) and I

(1)
− (b) in Fig.5a and α

(1)
+ (b) and α

(1)
− (b) in Fig.5b (these points

are not marked in Fig.5). These cross-points give the intervals of the polarization and the

appropriate intervals of the parameter α allowing us to create the measurable coherence

intensity J ≥ Jmin.

E. Integral characteristics: fidelity of remote state creation

1. Fidelity of remote state creation

As characteristics of the remote state creation, we propose the following integral char-

acteristics, which we refer to as the fidelity of the remote state creation F (N) (by analogy

with the similar characteristics of the state transfer [1]) and define by the following general

formula:

F (N) =
Screatable

Sreceiver

(58)

where Screatable is the area of the creatable region and Sreceiver is the area of the receiver’s state

space. In turn, Screatable can be splitt into two parts: the area of the one-to-one mapped

creatable sub-region S1−to−1 and the area of the two-to-one mapped creatable sub-region

S2−fold, so that

F (N) = F1−to−1(N) + F2−fold(N), (59)

F1−to−1(N) =
S1−to−1

Sreceiver

, F2−fold(N) =
S2−fold

Sreceiver

.

In our case, Sreceiver can be calculated analytically using the boundary of region (13) J =

1
4
− I2 and integrating it over the interval −1

2
≤ I ≤ 1

2
:

Sreceiver =
1

6
. (60)

The function S1−to−1 can be also calculated analytically eliminating α from eq.(21) by means

of eq.(20) and integrating the obtained coherence intensity J∞ as a function of polarization
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I∞,

J∞ =
1

4R2
(1− 2I∞)(2I∞ + 2R2 − 1), (61)

over the interval Ic ≤ I∞ ≤ 1
2
:

S1−to−1 =
R4

6
. (62)

Finally, the function S2−fold(N) can be calculated numerically using the formulas (28) and

(29) for the upper boundary of this region (over interval (33)) and (61) for the right boundary

(over interval (34)):

S2−fold =

Ibr
∞
∫

−R2

2

dI J br
+ (I)− 1

4R2

Ibr
∞
∫

Ic

dI (1− 2I)(2I + 2R2 − 1), (63)

where Ic and Ibr∞ are defined in eqs.(24) and (32) respectively. Expression for J br
+ (I) in integral

(63) follows from eq.(29) after eliminating tanh bbr

2
by means of eq.(28). The fidelities F1−to−1

and F2−fold as functions of N are depicted in Fig.6. This figure shows the smallness of the

two-to-one mapped sub-region in comparison with the one-to-one mapped one in our model.

We can also see the maximum of the fidelity F2−fold(N) at N = 12.

2. Average creatable polarization and coherence intensity as functions of temperature

The interesting characteristics are the polarization and the coherence intensity averaged

over the initial pure state of the sender:

Ī(b) =

1
∫

0

I(α, b)dα =
1− R2

2
tanh

b

2
, (64)

J̄(b) =

1
∫

0

J(α, b)dα =
R2

8

(

tanh
b

2

)2(N−1)

. (65)

where I and J are defined in eqs.(14) and (15), respectively. Equations (64) and (65)

show that both the mean polarization and the mean coherence intensity increase with b.

Therewith, the mean polarization increases also with N , while the mean coherence intensity

decreases with N . The families of curves Ī(b) and J̄(b) are represented in Fig.7 for different

N .
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IV. PARAMETRIZATION OF RECEIVER’S DENSITY MATRIX IN TERMS OF

INDEPENDENT EIGENVALUE-EIGENVECTOR PARAMETERS

Although the physically motivated parametrization considered in Sec.III allows us to give

a comprehensive description of the creatable region together with its physical interpretation

in terms of polarization and coherence intensity, we consider another parametrization in

terms of the receiver’s eigenvalues and eigenvectors. The motivation for this parametrization

is the comparison of our model of remote state creation with that described in [38], where

the homogeneous chain with the pure initial state of the two-qubit sender and ground initial

state of the rest system was considered, therewith the receiver was a one-qubit subsystem

as well.

Thus, we represent state (5) of the receiver in the following factorized form:

ρN = UNΛB(UN )+, (66)

where ΛN is the diagonal matrix of eigenvalues and UN is the matrix of eigenvectors, which

read as follows in our case:

ΛN = diag(λ, 1− λ), (67)

UN =





cos β1π
2

−e−2iβ2π sin β1π
2

e2iβ2π sin β1π
2

cos β1π
2
.



 (68)

with λ and βi (i = 1, 2) varying inside of the intervals

1

2
≤ λ ≤ 1, (69)

0 ≤ βi ≤ 1, i = 1, 2. (70)

Comparing eq.(66) with eq.(5) we establish the relation between the control parameters

(α, b, φ) and the creatable parameters (λ, β1, β2):

λ =
1

2

(

1 +
√

(2ρN11 − 1)2 + 4|ρ12|2
)

= (71)

1

2

(

1 +
√

1 + ∆0

∣

∣

∣
R2 cos(απ)− (1− R2) tanh

b

2

∣

∣

∣

)

,

cos(β1π) =
2ρN11 − 1

2λ− 1
= (72)

− 1√
1 + ∆0

sign(R2 cos(απ)− (1− R2) tanh
b

2
)

β2 = ΦN (τ) + φ+
1

2
(N − 1), (73)
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where

∆0 =
R2 sin2(απ)

(

tanh b
2

)2(N−1)

(R2 cos(απ)− (1− R2) tanh b
2
)2

(74)

Intervals (69) and (70) cover the whole state-space of the receiver. We see that any parameter

β2 can be created at the fixed time instant τ using the control parameter φ: φ = β2(τ) −
ΦN (τ)− (N−1)

2
. For this reason, similar to Sec.III, we consider density matrix (9) instead of

(5) and thus, studying the map (control parameters) → (creatable parameters), we turn to

the reduced map

(α, b)
(71,72)→ (λ, β1) (75)

instead of the complete map (α, b, φ)
(71,72,73)→ (λ, β1, β2).

Notice that two independent pairs of the control parameters {I, J} and {λ, β1} are related
by the following one-to-one map:

λ = 1
2
+
√
I2 + J

cos β1π = I√
I2+J

⇔
I =

(

λ− 1
2

)

cos(β1π)
√
J =

(

λ− 1
2

)

sin(β1π)
. (76)

Formulas in (76) suggest us to combine all these parameters in single relation introducing

the following complex function Ξ:

Ξ ≡ I + i
√
J =

(

λ− 1

2

)

eiβ1π. (77)

A. Creatable regions for homogeneous chains of different lengths

Here we describe the creatable regions in chains of different lengths. The maximal region

corresponds to N = 2 or 3, as shown in Fig.8a. The common feature of the creatable regions

in Fig.8 is the tail of states with β1 → 0, 1 appearing in chains of the length N > 3, similar

to the case of physical parametrization shown in Fig.2. But now the tail is ”crooked” for

large N , as shown in Fig.8c,d.

Formulas (76) allow us to rewrite all characteristics of the creatable region found in Sec.III

in terms of the parameters λ and β1. In particular, using formulas (76), we conclude that

β1 → 0 ⇔ I > 0, J → 0, (78)

β1 → 1 ⇔ I < 0, J → 0.
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Therewith there is a particular case I = 0 yielding

βcr
1 =

1

2
⇔ I = 0. (79)

Now, eq.(72) with β1 =
1
2
yields eq.(42), while eq.(71) results in

λ(0) =
1

2

(

1 +

√

R4 − (1−R2)2 tanh2 b
(0)

2

(

tanh
b(0)

2

)N−1
)

. (80)

Eq.(42) holds for all b if condition (43) is satisfied, which leads to the critical value Nc = 34

obtained in Sec.IIID 1 and in Ref.[38]. Thus, inequality (46) holds for all b if N ≤ N c. For

N > N c, condition (46) is satisfied if

b ≤ b(0) = 2 atanh
R2

1−R2
. (81)

This means that the curves b = const > b(0) on the graphs do not reach the upper boundary

β1 = 1, while the other curves (b = const ≤ b(0)) reach it. Notice also that the state with

λ = 1
2
assumes arbitrary β1. Thus, the whole vertical line λ = 1

2
in Figs.8 represents the

same state.

Similarly to Fig.2, the whole creatable region is divided into two parts: the image of

one-to-one map (75,18) (the main part of the creatable region) and the image of two-to-one

map (75,19), which is the tail together with the close neighborhood of the corner where this

tail attaches to the main part of the creatable region. These two subregions are separated

one from another by the curve b → ∞ (see Fig.8):

λ|b→∞ =
1

2

(

1 +
√

(R2(cos(απ) + 1)− 1)2 +R2 sin2(απ)

)

, (82)

cos(β1π|)|b→∞ = − R2(cos(απ) + 1)− 1
√

(R2(cos(απ) + 1)− 1)2 +R2 sin2(απ)
. (83)

With an increase in N , the creatable region vanishes. Here we shall emphasize the

important difference between the model of Ref.[38] and our one. Unlike that model, any

eigenvalue can be simply created in our case as the parameter associated with the classical

limit. On the contrary, the parameter β1, characterizing the eigenvector, has restrictions for

its creatable values in both models.

V. CONCLUSION

We consider the remote creation of the polarization and the intensity of the first-order

coherence in a spin-1/2 chain with the physically motivated initial condition: the pure
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state of the one-qubit sender and the thermodynamic equilibrium state of the rest nodes.

Therewith, the polarization is basically responsible for the classical effects (the diagonal

part of the density matrix) while the coherence intensity is responsible for the quantum

effects (the non-diagonal part of the density matrix). Using this physical parametrization,

we obtain the following properties and characteristics of the creatable region of the receiver

state-space in our model.

1. At the fixed temperature (parameter b), we can use the parameter α of the sender’s

initial state as the control parameter varying the values of the polarization and the

coherence intensity (i.e, the parameter α moves the state (I, J) along the chosen solid

curve in Fig.2)). Thus, the temperature is not the only parameter responsible for the

remotely creatable polarization and coherence intensity (Sec.III B).

2. The creatable region is divided into two subregions covered by, respectively, one-to-one

map (16,18) and two-to-one map (16,19), therewith the biggest subregion is created

by the one-to-one map, which is, essentially, the bell-shaped regions in Fig.2. The

boundaries of these subregions are described, see Secs.III C 1 and IIIC 2.

3. Any state (I, J) from the two-to-one mapped subregion (except the upper boundary

(Ibr+ , J br
+ ) given in (28,29)) can be created using the two different pairs of the control

parameters (α, b). In particular, this can be achieved fixing α (i.e., the pure state of

the one-node sender) and varying the temperature or vise-versa (Sec.IIIC 2).

4. The tail of states with vanishing coherence intensity and large polarization is well

formed to the left of the bell-shaped region. This tail is referred to the two-to-one

mapped subregion, see Sec.IIIC 3.

5. The states with zero polarization I and large coherence intensity J are described in

Sec.IIID 1. Such states are creatable only in short chains. With an increase in N , the

significant value of the coherence intensity can be created only together with the large

polarization.

6. On the contrary, the large polarization can be created without the coherence intensity

in the long chains, which justifies the classical origin of the polarization, see Sec.IIID 2.

Moreover, as N → ∞, the creatable intensity shrinks to the interval 0 ≤ I ≤ 1
2
.

24



7. For a given N and b > b(1), the measurable value of the coherence intensity J ≥
Jmin can be achieved only for α chosen inside of the interval α

(1)
− ≤ α ≤ α

(1)
+ (and

consequently, the value of creatable polarization I is inside of the interval I
(1)
− ≤ I ≤

I
(1)
+ ), Sec.IIID 2.

8. We introduce the integral characteristics of the remotely created region (as well as of

the both one-to-one and two-to-one mapped subregions) as the ratio of the area of

the creatable (sub)region to the area of the whole receiver state-space, see Sec.III E.

By analogy with the pure state transfer, we refer to this characteristics as the state-

creation fidelity. The polarization and coherence intensity averaged over the sender’s

initial state are also found as functions of the inverse temperature b and chain length

N .

9. To simplify the comparison of our model with the state creation model proposed in

[38], we also consider the alternative parametrization in terms of the eigenvalue and

eigenvectors of the receiver state in Sec.IV. A principal distinctions of our model is the

possibility to transfer any eigenvalue over the homogeneous spin chain of any length

N , while this length is restricted by the critical value Nc = 34 in [38].

Thus we represent the analysis of the creatable polarization and coherence intensity, which

are uniquely related with the state of one-qubit receiver. In turn, the state of multi-qubit

receiver can be (partially) characterized by the intensities of multiple quantum coherences,

for which the detection methods are well developed [41, 43].

Now we underline several problems of interest prompted by our results.

First of all, the study of the possibility to use a local tool on the receiver site with the

purpose to increase the creatable space of the receiver (i.e., fidelity). Since any eigenvalue

can be transfered, then, in principle, this problem can be solved using the local unitary

transformation on the receiver side. However, the local transformations independent on the

control parameters (the parameters α and b in our case) would be of general interest. The

way realizing such the local transformations is not evident.

Next, we must keep in mind the problem of remote control of quantum operations based

on mixed states. In this regards, the two-to-one mapped subregion might be useful. In

particular, an ambiguity of the control parameters creating the given state would be of
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possible interest in quantum cryptography [48], which is another applicability direction of

quantum information devises [49, 50].

In addition, one should remember that the parameter b (the inverse temperature) is one

of the control parameters, which is not a sender’s local parameter, but the characteristics

of the chain as a whole. Thus, we must be able to provide the constant temperature in the

whole sample containing our spin chain.

Notice also that the temperature is a global parameter of the whole chain. This means

that the remote state creation in our model partially loses its control exclusively by the local

parameters of the sender. However, since the chain’s established temperature is a known

parameter on the receiver’s site, we do not need to transfer this parameter through any

classical communication channel.
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VI. APPENDIX A: AMPLITUDE RN (τ) AS A CHARACTERISTICS OF TRANS-

MISSION LINE

The nearest neighbor Hamiltonian (4) can be diagonalized using the Jordan-Wigner trans-

formation method [45, 46]:

H =
∑

k

εkβ
+
k βk, εk = cos(k), k =

πn

N + 1
, n = 1, 2, . . . , N, (84)

where βj are the fermion operators, introduced in terms of the other fermion operators cj

using the Fourier transformation

βk =
N
∑

j=1

gk(j)cj, (85)

where the fermion operators cj read

cj = (−2)j−1I1zI2z . . . I(j−1)zI
−
j . (86)

Here

gk(j) =

(

2

N + 1

)1/2

sin(kj). (87)
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The projection operators Ijz can be represented as

Ijz = c+j cj −
1

2
, ∀ j. (88)

Before proceed to the derivation of the density matrix evolution, we rewrite initial density

matrix (2) in the following operator form

ρ0 =
1

Z
(
1

2
E + (|a0|2 − |a1|2)Iz1 + a0a

∗
1I

+
1 + a1a

∗
0I

−
1 )e

−bIz1ebIz = (89)

1

Z
(A1E + A2Iz1 + A3I

+
1 + A4I

−
1 )e

bIz ,

where E is the 2× 2 unit operator,

Z =

(

2 cosh
b

2

)N−1

, Iz =

N
∑

i=1

Izi, (90)

A1 =
1

2
e−

b

2 + |a1|2 sinh
b

2
, A2 = e−

b

2 − 2|a1|2 cosh
b

2
,

A3 = a0a
∗
1e

b

2 , A4 = a∗0a1e
− b

2 .

Since [H, Iz] = 0, the evolution of the density matrix can be written as

ρ(τ) =
1

Z

4
∑

i=1

ri(τ)e
bIz , (91)

with

r1(τ) = A1, (92)

r2(τ) = A2

(

−1

2
+

N
∑

k,k′=1

e−iτ(εk−ε
k′
)g1kg1k′β

+
k βk′

)

,

r3(τ) = A3

N
∑

k=1

e−iτεkg1kβ
+
k , r4(τ) = A4

N
∑

k=1

eiτεkg1kβk.

Reducing this matrix with respect to all the nodes except for the Nth one and writing it in

the basis |0〉, |N〉, we obtain the state of the last node:

ρN (τ) =













e
b

2

2 cosh b
2

+
1

2

(

e−
b

2

cosh b
2

− 2|a1|2
)

|fN(τ)|2 (− tanh
b

2
)N−1a0a

∗
1f

∗
N(τ)

(− tanh
b

2
)N−1a∗0a1fN (τ)

e−
b

2

2 cosh b
2

− 1

2

(

e−
b

2

cosh b
2

− 2|a1|2
)

|fN(τ)|2













,(93)

where

fN(τ) =

N
∑

k=1

eiεkτg1kgNk. (94)
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In our calculations, we use fN as a global characteristic of the transmission line and represent

it in the form

fN(τ) = RN(τ)e
2iπΦN (τ), (95)

where RN and ΦN are the amplitude and the phase of fN , respectively. Then, eq.(93)

reduces into eq.(5). The maximal creatable region corresponds to the maximum of RN (τ).

This maximum R(N) together with the appropriate time instant τmax(N) are found as

functions of the chain length N in Sec.IIIA, see Fig.1.

VII. APPENDIX B: THE ASYMPTOTIC BEHAVIOR OF FUNCTION RN (τ) AS

N → ∞.

Let us rewrite the function fN (τ) for odd N as (the case of even N can be treated

similarly)

fN (τ) =
2

N + 1

∑

k

eiǫkτ sin(kN) sin(k) =
2

N + 1

N
∑

n=1

sin2

(

πn

N + 1

)

cos

[

τ cos

(

πn

N + 1

)]

(96)

We can introduce the Bessel functions into eq.(96) using the following well known relation

[47]:

cos

[

τ cos

(

πn

N + 1

)]

= J0(τ) + 2
∞
∑

m=1

(−1)mJ2m(τ) cos

(

2πmn

N + 1

)

. (97)

Substituting eq.(97) into eq.(96) we obtain:

fN(τ) = (98)

−
∞
∑

p=0

(−1)(2p+1)N+1
2

(

2J(2p+1)(N+1)(τ) + J(2p+1)(N+1)−2(τ) + J(2p+1)(N+1)+2(τ)
)

.

It can be simply verified using the numerical simulation that the behavior of fN(τ) over the

time interval 0 < τ . 2N with N > 2 is governed by the first term in the above sum over

p. In other words, we have for the amplitude of fN :

R
appr
N (τ) =

∣

∣

∣
JN+3(τ) + JN−1(τ) + 2JN+1(τ)

∣

∣

∣
. (99)

Being derived for odd N , this formula holds for even N as well, giving the maximum R in

formulas (14) and (15) with the accuracy increasing with N . Thus, |R(3)−Rappr(3)| ∼ 0.001
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and |R(5) − Rappr(5)| ∼ 10−5. Consequently, although formula (99), generally speaking,

assumes large N , it is applicable to the short chains as well.
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FIG. 2: The creatable regions in the plane (J, I) for the chains of different lengths: (a) N = 2, (b)

N = 6, (c) N = 60 and (d) N = 120. Here, as well as in all the figures below, we use gridding

(17), therewith the solid- and dash-lines correspond to, respectively, b = const and α = const.

The curves b = const concentrate near the line b → ∞. With an increase in N , their density near

b = 0 increases as well. The region of the receiver’s state space between the surrounding solid

(violet) line (the parabola representing the boundary of the whole receiver state-space) and the

bell-shaped creatable region is the unavailable region of the receiver state-space, which disappears

for N = 2, 3. The well-formed tail of states with the vanishing coherence intensity is depicted

in the cases N = 6, 60 and 120 (figs. (b)-(d)) to the left of the bell-shaped region. In terms of

the control parameters, this tail corresponds to the limit α → 0 (any b). The polarization of the

tail’s end-point can be calculated by the formula I = −R2

2 , see eq.(39). With an increase in N ,

the creatable region shrinks to the point (I, J) = (0, 0), while the tail’s polarization becomes the

interval 0 ≤ I ≤ 1
2 covering the whole possible positive interval of the creatable polarization, see

Sec.IIIC 3.
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FIG. 3: The left corner of the bell-shaped creatable region for the chain of N = 6 nodes. The

shaded area above the curve b → ∞ (the boundary of the one-to-one mapped region) is covered

by the two-to-one map (16,19), except for the upper boundary (one-to-one mapped), described

by the points (Ibr+ , Jbr
+ ) given in formulas (29) and (28) (the upper bold-solid (violet) line in the

figure). The branch point (Ibr∞, Jbr
∞) = (−0.407, 0.004) is the cross-point of this boundary line with

the boundary of the one-to-one mapped region. The left point of the boundary line, corresponding

to b = 0, is (−R2

2 , 0)
∣

∣

∣

N=6
= (−0.456, 0) (this point is not shown in the graph). Therewith, the

creatable area to the left of Ic = −0.412, I < Ic, corresponds to the two-sheet function J(I)

defined for all creatable values of J . Moreover, this subregion is creatable only at finite b (non-zero

temperature). We use gridding (17), so that only one dash-line α = 0.1 appears in this figure.
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FIG. 4: The characteristics of the states with zero polarization. The creatable coherence intensity

J
(0)
max (solid line) and the appropriate control parameters (in the form of tanh b

(0)
max

2 (dash-dot-

line) and cos(α
(0)
maxπ) (dash-line)) are given as functions of N . All graphs have breakpoints at

N = Nc = 34. For N > Nc, the coherence intensity vanishes very rapidly with an increase in N ,

see (52).
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FIG. 5: The creatable states with the low coherence intensity. (a) The polarization I
(1)
− (curves

below the dash-line I
(1)
c ), I

(1)
+ (curves above the dash-line I

(1)
c ). (b) The associated values of the

control parameter α, α
(1)
− (curves below the dash-line α

(1)
c = 1

2), α
(1)
+ (curves above the dash-line

α
(1)
c ). All parameters are given as functions of the chain length N for Jmin = 0.01. Each curve

corresponds to the particular b from set (57), where n increases from the left to the right lines in

this figure, for instance, b(1)(10) = 2.487.

FIG. 6: The creation fidelities of the one-to-one (bold line) and the two-to-one (dash-line) mapped

states are shown as functions of the chain length N . The fidelity of the two-to-one mapped region

is much less than that of the one-to-one mapped region and has the maximum at N = 12.
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FIG. 7: The polarization (a) and the coherence intensities (b) averaged over the control parameter

α are shown as functions of the inverse temperature b for chains of different lengths N , N =

2, 10, 20, . . . , 120.
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FIG. 8: The creatable regions in the space of the creatable parameters λ and β1 for (a) N = 2,

(b) N = 6, (c) N = 60, and (d) N = 120. General behavior of the curves b = const (solid lines)

and α = const (dash-lines) is similar to that of curves in Fig.2. In particular, the curves b = const

concentrate near the curve b → ∞. With an increase in N , their density near b = 0 increases as

well. For N = 2, the line b → ∞ coincides with the right coordinate line of the parameter β1. The

tail of the states with vanishing I is well formed in the cases N = 6, 60 and 120 (shown in figs.

(b)-(d)). This tail corresponds to α → 0 (any b), similar to Fig.2. The unavailable region appears

if N > 3.
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