
ar
X

iv
:1

40
3.

69
29

v2
  [

qu
an

t-
ph

] 
 2

8 
M

ar
 2

01
4

Upper Bound on Singlet Fraction of Two Qubit Mixed Entangled

States

Satyabrata Adhikari ∗, Atul Kumar †

Centre for System Science

Indian Institute of Technology Jodhpur, Jodhpur-342011, Rajasthan, India

July 14, 2018

Abstract

We demonstrate the possibility of achieving the max-
imum possible singlet fraction using a entangled
mixed two-qubit state as a resource. For this, we
establish a tight upper bound on singlet fraction and
show that the maximal singlet fraction obtained in
[6] does not attain the obtained upper bound on the
singlet fraction. Interestingly, we found that the re-
quired upper bound can in fact be achieved using
local filtering operations.

1 Introduction

Quantum entanglement [1] has been used as an ef-
ficient resource for several quantum communication
protocols such as teleportation, dense coding, and
cryptography [2, 3, 4]. The existence of long range
quantum correlations between entangled qubits al-
lows the use of such systems for information transfer
in communication protocols. In general, if a state is
maximally entangled then the optimal success of a
communication protocol is a certainty. However, in
real experimental set-ups it is difficult to prepare a
pure maximally entangled state due to the difficulty
in handling the multi-particle quantum systems in
terms of interaction with environment, control, and
preserving the necessary quantum coherence [5]. This
leads to a situation where one may have to deal with
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mixed entangled resources for quantum information
processing. This raises the question of usefulness of
such mixed entangled systems for efficient quantum
information processing. Verstraete and Verschelde
[6] have shown that any entangled two-qubit mixed
state can be used as a resource for quantum tele-
portation using certain trace preserving local oper-
ations and classical communications. The measure
of usefulness of any two-qubit mixed entangled re-
source (ρ) for quantum teleportation is given by tele-
portation fidelity, i.e. fT = 2F+1

3 , where F is the
singlet fraction of the entangled resource defined as

F (ρ) = maxU 〈ψ|U †ρU |ψ〉 and |ψ〉 = 1√
2

1
∑

i=0

|ii〉 [7].

For F > 1
2 , quantum teleportation is always success-

ful and if the singlet fraction of the underlying state
is unity then in principle perfect teleportation can be
achieved. Hence for a state to be useful as a resource,
the singlet fraction or the teleportation fidelity must
be maximized. In this Letter, we address the follow-
ing question: given an entangled mixed state of two
qubits as a resource for quantum teleportation, what
is the upper bound on singlet fraction that can be
achieved using all possible filtering operations? Our
results show an interesting observation that the max-
imal singlet fraction obtained in [6] can still be in-
creased to coincide with the required upper bound
on singlet fraction.

We analyze the upper bound on the singlet fraction
(and thus the upper bound on teleportation fidelity)
that can be achieved using a two qubit entangled
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mixed state. We call this bound as Dembo’s bound on
singlet fraction for any given two-qubit mixed state.
Although Verstraete et al have found that any two-
qubit mixed entangled state can be used to achieve
F > 1

2 using optimal local operations and classical
communication, our analysis in this Letter demon-
strates that the singlet fraction or teleportation fi-
delity obtained in [6] does not achieve the Dembo’s
upper bound on singlet fraction. We further demon-
strate that one can in fact obtain the optimal singlet
fraction in coherence with the Dembo’s bound by ap-
plying additional filtering operations. In general, our
results show that for any state with F > 1/2, the
Dembo’s bound on singlet fraction can be success-
fully achieved. The increase in singlet fraction using
local operations and hence the increase in teleporta-
tion fidelity will have a significant impact on quantum
information processing. In principle, this will allow
one to use even a mixed state to achieve successful
teleportation with optimal fidelity [8]. Furthermore,
our results may also release the constraints on the ex-
perimental set-ups to prepare a pure maximally en-
tangled state for efficient and optimal quantum tele-
portation.
Verstraete et al have addressed the problem of

maximal achievable singlet fraction of entangled two-
qubit mixed states optimized over all trace preserving
local operations and classical communications. Our
study is motivated by the fact that the optimal sin-
glet fraction (F ∗) of the filtered state obtained in [6]
does not exceed the value of 2/3. At this juncture, we
would like to raise the question of analyzing the up-
per bound on the singlet fraction of the filtered state.
Precisely, we are interested in analyzing whether the
value F ∗ can be increased to coincide with the upper
bound on singlet fraction. In order to discuss the im-
portance of our results, we now proceed to establish
a relation between the upper bound on the singlet
fraction and eigen values of any Hermitian-positive
semidefinite density operator.
In quantum information processing, eigenvalues

play an important role not only in shedding light
on many physical aspects of quantum systems but
also for analyzing many essential features such as
entanglement, discord, communication, and security.
For higher dimensional systems, evaluating the ex-

act maximum or minimum eigenvalue of a Hermitian
positive-definite matrix is not easy, but its upper or
lower bound suffices. To proceed further with our
analysis we state the following theorem [9]: For any
real n⊗n matrix C and a positive semidefinite oper-
ator B, the following inequality holds

λ1(C̄)tr(B) ≤ Tr(CB) ≤ λn(C̄)tr(B) (1)

where C̄ = C+CT

2 , CT is the transpose of matrix C,
λn(C̄) is the nth eigen value of the matrix C̄, and
λ1 ≤ λ2 ≤ λ3..... ≤ λn.
For C = I4

2 − XΓ and B = ρ, Eq. (1) can be re-
expressed as

λ1

(

I4
2

−XΓ

)

≤ F ∗ = tr

[(

I4
2

−XΓ

)

ρ

]

≤ λ4

(

I4
2

−XΓ

)

(2)

where X = (A⊗ I2) |ψ〉
− 〈ψ|−

(

A† ⊗ I2
)

, XΓ is par-

tial transpose of X , |ψ〉− = 1√
2
⌈|01〉 − |10〉⌉, and A

represents the filter. Although the functional form
of the upper bound of F ∗ is optimal for the above
inequality, it depends on the state parameter and
hence, must have a maximum achievable value for
every particular value of the state parameter. This
value would be provided by Dembo’s bound [10]
stated below as:
For any n⊗ n Hermitian positive semi-definite oper-
ator Rn with eigen values λ1 ≤ λ2 ≤ λ3..... ≤ λn,
Dembo’s bound can be given by

c+ η1
2

+

√

(c− η1)
2

4
+ b∗b ≤ λn(Rn)

≤
c+ ηn−1

2
+

√

(c− ηn−1)
2

2
+ b∗b (3)

where Rn =

(

Rn−1 b
(b∗)T c

)

, η1 is the lower bound on

the minimal eigenvalue of Rn−1, ηn−1 is the upper
bound on the maximal eigen value of Rn−1, and b is
an eigenvector of dimension (n− 1). Using Dembo’s
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bound Eq. (2) can be re-expressed as

λ1

(

I4
2

−XΓ

)

≤ F ∗ ≤ λ4

(

I4
2

−XΓ

)

≤
c+ η3

2
+

√

(c− η3)
2

2
+ b∗b (4)

Therefore, the upper bound on optimal singlet frac-
tion is

F ∗
D =

c+ η3
2

+

√

(c− η3)
2

2
+ b∗b (5)

For the family of states given by

ρ(F ) = F |ψ〉 〈ψ|+ (1− F ) |01〉 〈01| ;F ≥
1

3
, (6)

the upper bound on singlet fraction F ∗
D is

F ∗
D[ρ(F )] = 2−F

4(1−F ) ;
1
3 ≤ F ≤ 2

3

F ∗
D[ρ(F )] = F ;F ≥ 2

3 ,
1 (7)

The value of F ∗
D obtained in Eq. (7) is the optimal

value of singlet fraction that can be achieved for the
family of states represented by Eq. (6). Verstraete
and Verschelde have shown that using trace preserv-
ing optimal local operations, the maximal achievable
singlet fraction F ∗ for the family of states given in
Eq. (6) is

F ∗[ρ(F )] = 1
2

[

1 + F 2

4(1−F )

]

; 1
3 ≤ F ≤ 2

3

F ∗[ρ(F )] = F ;F ≥ 2
3 ,

(8)

Eq. (7) and (8) describe an interesting result that
F ∗ does not achieve the upper bound on singlet frac-
tion given by F ∗

D. A comparison of maximal singlet
fraction F ∗ obtained after performing the filtering
operations and F ∗

D obtained using Dembo’s bound is
given in Fig. (1) and clearly demonstrates that the
optimal singlet fraction F ∗ is always less than the op-
timal singlet fraction F ∗

D for 1
3 ≤ F ≤ 2

3 . In general,
we will always find that F ∗ ≤ F ∗

D. Dembo’s upper
bound on singlet fraction is obtained using mathe-
matical rigour. However, we still need to find a way to
obtained this bound experimentally i.e. would it be
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Figure 1: Comparison of maximal singlet fraction F ∗

and upper bound on singlet fraction F ∗
D obtained us-

ing Dembo’s bound

possible to increase the value of optimal singlet frac-
tion performing local operations and classical com-
munication on the filtered state i.e. can we achieve
the upper bound of singlet fraction given by Dembo’s
bound? Surprisingly, our results show that the bound
is indeed achievable.
In order to enhance the value of optimal singlet

fraction F ∗, we perform another filtering operation
on the filtered state such that the singlet fraction of
the output state can be given as

F ∗
opt = pF ∗(ρf ) + (1− p)F (ρf ) (9)

where p is the success probability multiplied with the
optimal singlet fraction of the state coming out of the
second filter. If we define 1−p = pAB where pAB de-
notes the success probability of first filter (for details,
please refer to [6]), then for F (ρf ) = 〈ψ| ρf |ψ〉 where

ρf = (A⊗I)ρ(A⊗I)†

pAB
, F ∗

opt can be re-expressed as

F ∗
opt = (1−pAB)F

∗(ρf )+tr
[

(A⊗ I)ρ(A† ⊗ I) |ψ〉 〈ψ|
]

(10)
The definition of pAB suggests that for success prob-
ability p to be high, pAB must be minimized. More-
over, the minimum value of pAB should be chosen in
such a way that the value of singlet fraction for the
second filter must not exceed Dembo’s bound. Hence,
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the minimum value of pAB would be

pmin
AB = 1−

F ∗
D − tr

[

(A⊗ I)ρ(AT ⊗ I) |ψ〉 〈ψ|
]

F ∗(ρf )
(11)

Using Eq. (10) and (11), we have

F ∗
opt = F ∗

D (12)

Eq. (12) clearly shows that one can achieve the max-
imum singlet fraction equals to Dembo’s bound by
using the filtering operations twice.

As an illustration, we use the family of states given
by Eq. (6) to calculate the F ∗

opt. In this case, Eq. (11)
will become

pmin
AB =

F 2

2(1− F )(2− F )
, (13)

and hence

F ∗
opt =

2− F

4(1− F )
, (14)

which is equal to F ∗
D.

Hence, applying the filter twice will always result in
achieving the upper bound on singlet fraction for any
two-qubit mixed density operator. However, achiev-
ing this upper bound on singlet fraction will lead to
the decrease in success probability of the first filter.
Nevertheless, the second filter always compensates
for the decrease in success probability of the first filter
by attaining the Dembo’s bound on singlet fraction.

In summary, we have established a relation be-
tween Dembo’s upper bound and singlet fraction (and
hence with teleportation fidelity) of a mixed two-
qubit entangled state. This relation is used to demon-
strate that any two-qubit mixed entangled state can
be used as a resource to achieve maximum possible
teleportation fidelity. It was found earlier that the
the trace preserving local operations always yield a
teleportation fidelity larger than 2/3 if the original
state is entangled. However, we found that the maxi-
mal fidelity obtained earlier can be increased with ad-
ditional local operations with certain non-zero prob-
ability. It would be interesting to find an example
where the optimal fidelity after the operation of a
single filter can coincide with Dembo’s bound.
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