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Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly

practical importance due to its built-in fault tolerance, coherence stabilization

virtues, and short run-time. Here we propose some compact schemes to implement

two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the

controlled unitary quantum gates, the unitary operator acting on the target qubit

is an arbitrary single-qubit gate operation. The controlled quantum gates can be

directly implemented using non-adiabatic holonomy in decoherence-free subspaces

and the required resource for the decoherence-free subspace encoding is minimal by

using only two neighboring physical qubits undergoing collective dephasing to encode

a logical qubit.
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I. INTRODUCTION

Based on the quantum parallelism, quantum computation is believed to can speed up the

solution of a number of mathematical tasks and has attracted more and more interests. The

key step to implement effective quantum computation is the construction of robust quan-

tum gates. Holonomic quantum computation (HQC), which is first proposed by Zanardi

and Rasetti [1] basing on adiabatic evolution, is regarded as a promising way to implement
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universal sets of robust gates. It can be robust against certain types of errors in the control

process and has been used to realize robust quantum computation [2–10] by taking advantage

of non-Abelian geometric phases [11] which only depend on global geometric properties of

the evolution paths. Unfortunately, however, the long run-time requirement for the desired

parametric control associated with adiabatic evolution makes the quantum gates become

vulnerable to open system effects and parameter fluctuations that may lead to loss of co-

herence. In order to remove the problem of long run-time associated with the original form

of HQC [1], Sjöqvist et al. developed a non-adiabatic generalization of HQC [12] in which

high-speed universal quantum gates can be implemented using non-adiabatic non-Abelian

geometric phases [13]. Non-adiabatic HQC has also been experimentally demonstrated in dif-

ferent physical systems, such as three-level transmon qubit [14], nuclear magnetic resonance

(NMR) quantum information processor [15], and diamond nitrogen-vacancy centers [16, 17].

Besides errors from the control of quantum system, decoherence, arised from the in-

evitable interaction between the quantum system and environment, is another main chal-

lenge in implementing robust quantum gates. Decoherence will destruct the desired coher-

ence of the system, so it is harmful for effective quantum computation. One of the promising

strategies to avoid decoherence is decoherence-free subspaces (DFSs) which utilize the sym-

metry structure of the system-environment interaction [18]. The basic idea of DFS is that

information encoded in it still undergoes unitary evolution even though taking the deco-

herence caused by environment into account. In addition, DFSs have been experimentally

demonstrated in a host of physical systems [19–23].

Many efforts have been devoted to combining the fault tolerance of HQC and the quantum

coherence stabilization virtues of DFSs [6–8]. In 2005, Wu et al. [6] implemented HQC in

DFSs which was robust against some stochastic errors and collective dephasing. However,

the long run-time associated with the adiabatical control of the parameters and the using of

four neighboring physical qubits undergoing collective dephasing to encode a logical qubit

are big challenges in experiment. After that, Xu et al. [24] developed a non-adiabatic

generalization of HQC in DFSs which could overcome the long run-time requirement of

its adiabatic counterpart. Latter, some other schemes for non-adiabatic HQC in DFSs in

different physical systems have also been proposed [25–27]. However, all the above schemes

only focused on one- and two-qubit gates. As we all known, it is too complex to implement

most algorithms with the increase of the number of qubits if only one- and two-qubit gates
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are available. The direct implementation of multiqubit gates, which is generally believed

to provide a simpler design, a faster operation, and a lower decoherence, is thus of greatly

practical importance.

In this paper, inspired by above works, we propose some compact schemes to implement

non-adiabatic holonomic two- and three-qubit controlled unitary quantum gates and Fredkin

gate in DFSs. Here the unitary operator acting on the target qubit in controlled unitary

quantum gates, is an arbitrary single-qubit gate operation by varying the parameters in-

dependently. These controlled quantum gates can be directly implemented, which avoids

the extra work of combining two gates into one. Furthermore, they are robust against cer-

tain types of errors in the control process and the decoherence caused by environment, and

can be implemented in a high speed. This is the first scheme for implementing three-qubit

controlled quantum gates using non-adiabatic holonomy in DFSs. Moreover, an attractive

feature of our schemes is that the resources cost for the DFSs encoding is minimal by using

only two neighboring physical qubits to encode a logical qubit.

II. QUANTUM HOLONOMY AND PHYSICAL MODEL

We now briefly show how quantum holonomy can arise in non-adiabatic unitary evo-

lution before introducing our physical model. Consider a quantum system described by

an N -dimensional state space and governed by Hamiltonian H(t). Assume that there is

a time-dependent M-dimensional subspace S(t) spanned by the orthonormal basis vectors

{|ψm(t)〉}Mm=1. The evolution operator U(τ, 0) is a holonomic matrix acting on S(0) spanned

by {|ψm(0)〉}Mm=1 if |ψm(t)〉 satisfies the following conditions [24]:

(i)
M
∑

m=1

|ψm(τ)〉〈ψm(τ)| =
M
∑

m=1

|ψm(0)〉〈ψm(0)|, (1)

(ii) 〈ψm(t)|H(t)|ψl(t)〉 = 0, m, l = 1, 2, ...,M, (2)

where τ is the evolution period, |ψm(t)〉 = U(t, 0)|ψm(0)〉 = Texp(−i
∫ t

0
H(t′)dt′)|ψm(0)〉, T

is time ordering. Here condition (i) ensures that the evolution of subspace S(0) is cyclic,

while condition (ii) means that the evolution is purely geometric.

In order to combine the fault tolerance of HQC and the quantum coherence stabilization

virtues of DFSs, we consider the following physical model. The quantum system consists
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of N physical qubits interacting collectively with a dephasing environment. The interaction

between the quantum system and its environment is described by the interaction Hamilto-

nian

HI =
(

N
∑

k=1

Zk

)

⊗B, (3)

where Zk is the Pauli Z operator for the kth physical qubit and B is an arbitrary environment

operator. Due to the symmetry of the interaction we can find a DFS to protect quantum

information against decoherence. For the simplest case, i.e., the number of physical qubits

is two, there exists a DFS:

SD = Span{|01〉, |10〉}. (4)

We can use this subspace to encode a logical qubit, i.e., |0〉L = |01〉, |1〉L = |10〉, hereafter
we use the subscript L to denote logical states. Obviously, the resources cost for the DFS

encoding is minimal by using only two neighboring physical qubits, which undergo collective

dephasing to encode a logical qubit. In the following, we will use this encoding to implement

controlled quantum gates.

III. TWO-QUBIT CONTROLLED UNITARY GATE

In this section we demonstrate how to implement a non-adiabatic holonomic two-qubit

controlled unitary gate, denoted as C1-U gate, in DFS. Here U is an arbitrary single-qubit

unitary gate operation acting on the target qubit, whose matrix form is given by

U =





u00 u01

u10 u11



 . (5)

To this end, we consider four physical qubits interacting collectively with the dephasing

environment and there exists a six-dimensional DFS:

SD1 = Span
{

|0101〉, |0110〉, |1001〉, |1010〉, |0011〉 |1100〉
}

. (6)

We encode logical qubits in the subspace

SL1 = Span
{

|0101〉, |0110〉, |1001〉, |1010〉
}

, (7)
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where the logical qubit states are denoted as |0〉L|0〉L = |0101〉, |0〉L|1〉L = |0110〉, |1〉L|0〉L =

|1001〉, and |1〉L|1〉L = |1010〉. SL1 is a subspace of SD1 and the remaining vectors |0011〉
and |1100〉 are used as ancillary states, denoted as |a1〉 = |0011〉 and |a2〉 = |1100〉 for

convenience. Under the basis {|0〉L|0〉L, |0〉L|1〉L, |1〉L|0〉L, |1〉L|1〉L}, the C1-U gate is written

as [28]

C1 − U =















1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11















. (8)

In order to implement C1-U gate, we consider the following Hamiltonian

H1 =
1

2

{

(I2 + Z2)
[

∆1(I1 + Z1) + (Ω1R
x
13 + Ω2R

x
14 +H.c.)

]

+(I1 − Z1)
[

∆2(I2 − Z2) + (Ω3R
x
23 + Ω4R

x
24 +H.c.)

]

}

, (9)

where Rx
lm =

1

4
(Xl − iYl)(Xm + iYm), I is the one-qubit identity matrix, X , Y , and Z are

Pauli matrices acting on corresponding physical qubit, H.c. means Hermitian conjugate,

and ∆i and Ωi are controllable coupling parameters, with

∆1 = −Ω sin ξ, ∆2 = − Ω sin γ,

Ω1 = Ωcos ξ cos
α

2
, Ω3 = − Ωcos γ cos

α

2
,

Ω2 = Ωeiβ cos ξ sin
α

2
, Ω4 = Ωeiβ cos γ sin

α

2
. (10)

The Hamiltonian H1 can be rewritten as

H ′
1 = −2Ω

(

sin ξ|a1〉〈a1|+ sin γ|a2〉〈a2|
)

+Ω
(

cos ξ|1〉L|+〉L〈a1|+ cos γ|1〉L|−〉L〈a2|+H.c.
)

, (11)

where we have used two orthogonal states |+〉L = cos
α

2
|0〉L + eiβ sin

α

2
|1〉L and |−〉L =

e−iβ sin
α

2
|0〉L − cos

α

2
|1〉L. The subspace spanned by {|+〉L, |−〉L} is the same as that by
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{|0〉L, |1〉L}. The evolution operator associated with H1 is U1(t) = e−iH1t. With the choice

of Ωτ1 = π, the resulting evolution operator is given by

U1(τ1) =



























ei(δ−
θ

2
) 0 0 0 0 0

0 ei(δ+
θ

2
) 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 ei(δ−
θ

2
) 0

0 0 0 0 0 ei(δ+
θ

2
)



























, (12)

in the basis {|a1〉, |a2〉, |0〉L|+〉L, |0〉L|−〉L, |1〉L|+〉L, |1〉L|−〉L}, where δ − θ/2 = π + π sin ξ

and δ + θ/2 = π + π sin γ. Since the parameters ξ and γ are mutually independent, we can

vary the parameters δ and θ independently.

Therefore, for the states in the logical subspace SL1 , the action of the evolution operator

U1(τ1) is equivalent to C1-U gate and the single-qubit unitary gate operation U is written

as

U = ei(δ−
θ

2
)|+〉L〈+|+i(δ+ θ

2
)|−〉L〈−|. (13)

Under the basis {|0〉L, |1〉L}, defining the Pauli operators as σx = |0〉L〈1| + |1〉L〈0|, σy =

−i|0〉L〈1|+ i|1〉L〈0|, and σz = |0〉L〈0| − |1〉L〈1|, then U can be rewritten as

U = exp(iδ)Rn̂(θ), Rn̂(θ) = exp

(

−iθ
2
n̂ · σ

)

, (14)

with σ = (σx, σy, σz) and the unit vector n̂ = (sinα cos β, sinα sin β, cosα). In the above,

Rn̂(θ) represents a single-qubit rotation around the direction n̂ with angle θ. Thus U corre-

sponds to an arbitrary single-qubit gate operation by varying the parameters δ, θ, α, and β

independently [29]. In particular, when setting δ = θ/2 = α = π/2 (ξ = π, γ = 0, α = π/2)

and β = 0, we can implement a two-qubit controlled-NOT (CNOT) gate.

Since SD1 is an invariant subspace of the evolution operator, U1(τ1) has decoherence-free

property. Next, we use conditions (i) and (ii) to check that U1(τ1) is a holonomic matrix

acting on SL1 . For condition (i), the subspace spanned by {U1(τ1)|0〉L|0〉L, U1(τ1)|0〉L|1〉L,
U1(τ1)|1〉L|0〉L, U1(τ1)|1〉L|1〉L} coincides with SL1 , it is satisfied. While for condition (ii),

considering that U1(t) commutes with H1, condition (ii) reduces to 〈k|H1|k
′〉 = 0, where

|k〉, |k′〉 ∈ {|0〉L|0〉L, |0〉L|1〉L, |1〉L|0〉L, |1〉L|1〉L}. From Eq. (11), it is easy to find that con-

dition (ii) is also satisfied. Therefore, U1(τ1) is a holonomic matrix acting on SL1 with

decoherence-free property.
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Through the above illustration, a non-adiabatic holonomic C1-U gate in which U is an

arbitrary single-qubit gate operation in DFS with two- and three-body interactions have

been directly and successfully implemented. It is worth pointing out that one needs four-

body interaction [24] or the combination of a single-qubit gate and a two-qubit nontrivial

gate [26] to implement a non-adiabatic holonomic CNOT gate in DFS.

IV. THREE-QUBIT CONTROLLED UNITARY GATE

It is well known that by using two CNOT gates, two C1-V gates (V 2 = U), and a C1-V
†

gate, one can get a three-qubit controlled unitary gate with two control qubits and a unitary

operator U acting on a target qubit, which is denoted as C2-U gate [28]. Obviously, this

combination is very complex and it is more desirable to implement C2-U gate directly. In

this section we will show how to implement the C2-U gate directly in DFS. To this end, we

need six physical qubits interacting collectively with the dephasing environment to construct

a ten-dimensional DFS:

SD2 = Span
{

|010101〉, |010110〉, |011001〉, |011010〉, |100101〉,

|100110〉, |101001〉, |101010〉, |100011〉, |101100〉
}

. (15)

Similar to the case of C1-U gate, we encode logical qubits in the subspace

SL2 = Span
{

|010101〉, |010110〉, |011001〉, |011010〉,

|100101〉, |100110〉, |101001〉, |101010〉
}

, (16)

and the logical qubit states are denoted as

|0〉L|0〉L|0〉L = |010101〉, |0〉L|0〉L|1〉L = |010110〉,

|0〉L|1〉L|0〉L = |011001〉, |0〉L|1〉L|1〉L = |011010〉,

|1〉L|0〉L|0〉L = |100101〉, |1〉L|0〉L|1〉L = |100110〉,

|1〉L|1〉L|0〉L = |101001〉, |1〉L|1〉L|1〉L = |101010〉. (17)
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In the case of three-qubit C2-U gate, we also use only two neighboring physical qubits to

encode a logical qubit and |a3〉 = |100011〉 and |a4〉 = |101100〉 are as ancillary states. The

Hamiltonian H2 for implementing the C2-U gate is

H2 =
1

4

{

(I1 − Z1)(I4 + Z4)
[

∆1(I3 + Z3) + (Ω1R
x
35 + Ω2R

x
36 +H.c.)

]

+(I1 − Z1)(I3 − Z3)
[

∆2(I4 − Z4) + (Ω3R
x
45 + Ω4R

x
46 +H.c.)

]

}

=
[

2∆1|a3〉〈a3|+ (Ω1|1〉L|1〉L|0〉L〈a3|+ Ω2|1〉L|1〉L|1〉L〈a3|+H.c.)

+2∆2|a4〉〈a4|+ (Ω3|a4〉L〈1|L〈1|L〈1|+ Ω4|a4〉L〈1|L〈1|L〈0|+H.c.)
]

, (18)

where the controllable coupling parameters are chosen the same as in the case of C1-U gate

(see Eq. (10)). In this way the Hamiltonian in Eq. (18) can be rewritten as

H ′
2 = −2Ω(sin ξ|a3〉〈a3|+ sin γ|a4〉〈a4|)

+Ω(cos ξ|1〉L|1〉L|+〉L〈a3|+ cos γ|1〉L|1〉L|−〉L〈a4|+H.c.). (19)

The Hamiltonian H ′
2 has the same structure as H ′

1 and the states |+〉L and |−〉L are the same

as that in Eq. (11). Similar to the case of C1-U gate, it is easy to get the evolution operator

associated with H2 under the basis {|0〉L|0〉L|0〉L, |0〉L|0〉L|1〉L, |0〉L|1〉L|0〉L, |0〉L|1〉L|1〉L,
|1〉L|0〉L|0〉L, |1〉L|0〉L|1〉L, |1〉L|1〉L|0〉L, |1〉L|1〉L|1〉L}

U2(τ2) = Diag [1, 1, 1, 1, 1, 1, U ] , (20)

with evolution time satisfying Ωτ2 = π. From Eq. (20), one can easily find that U2(τ2) acts

as a C2-U gate on the states of SL2 and U is given by Eq. (5). A Toffoli gate, which can

perform a NOT operation on the target qubit or not, depending on the states of two control

qubits [30], is an important C2-U gate. One can get a Toffoli gate by using at least six

CNOT gates in principle [31]. Here the Toffoli gate can be directly implemented by utilizing

the same parameters in the case of implementing CNOT gate. The decoherence-free and

holonomy properties of the gate can now easily be verified. Since the verification exactly

parallels the one for the case of C1-U gate discussed in the last section and we don’t present

here.
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Now we turn to the implementation of a Fredkin gate, which is another important three-

qubit controlled gate that can perform a swap operation on two target qubits or not, de-

pending on the state of the control qubit. In order to achieve the Fredkin gate we consider

the following Hamiltonian

H3 =
1

2
√
2
η(I1 − Z1)(R

x
35 − Rx

46 +H.c.)

= η
1√
2
(|1〉L|1〉L|0〉L〈a3|+ |1〉L|0〉L|1〉L〈a4|

−|1〉L|0〉L|1〉L〈a3| − |1〉L|1〉L|0〉L〈a4|+H.c.)

= η(|1〉L|1〉L|0〉L − |1〉L|0〉L|1〉L)〈a−|+H.c., (21)

where η is a controllable coupling parameter and |a−〉 =
1√
2
(|a3〉− |a4〉). Here the encoding

is as the same as the situation in C2-U gate (see Eq. (18)). The Hamiltonian H3 is in the

Λ-type with ancillary state |a−〉 at the top while the logical qubit states |1〉L|1〉L|0〉L and

|1〉L|0〉L|1〉L at the bottom. The state orthogonal to |a−〉 is denoted as |a+〉 =
1√
2
(|a3〉+|a4〉)

and it decouples from the evolution of the system. The subspace spanned by {|a+〉, |a−〉}
is the same to that by {|a3〉, |a4〉}. When the evolution time τ3 meets ητ3 = π/

√
2, the re-

sulting evolution operator in the basis {|0〉L|0〉L|0〉L, |0〉L|0〉L|1〉L, |0〉L|1〉L|0〉L, |0〉L|1〉L|1〉L,
|1〉L|0〉L|0〉L, |1〉L|0〉L|1〉L, |1〉L|1〉L|0〉L, |1〉L|1〉L|1〉L} is given by

U3(τ3) = Diag















1, 1, 1, 1,















1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





























. (22)

One can find from Eq. (22) that U3(τ3) acts as a Fredkin gate on the states in the logic

subspac SL2 and its decoherence-free and holonomy properties can be demonstrated easily.

In this way we implement a non-adiabatic holonomic three-qubit Fredkin gate in DFS with

three-body interaction.
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V. DISCUSSION AND CONCLUSIONS

So far, we have succeeded in constructing C1-U , C2-U , and Fredkin gates. We now in-

troduce a few concepts from differential geometry to understand the nature of the above

holonomic gates. The set of K-dimensional subspaces of an N -dimensional Hilbert space is

a Grassmann manifold G(N ;K). The closed path C of K-dimensional subspaces is a loop in

G(N ;K). We now consider the holonomic gates described above. The C1-U , C2-U , and Fred-

kin gates are associated with loops in G(4; 2) [32], where the Hilbert spaces relevant for the

holonomy is spanned by {|a1〉, |a2〉, |1〉L|0〉L, |1〉L|1〉L}, {|a3〉, |a4〉, |1〉L|1〉L|0〉L, |1〉L|1〉L|1〉L},
and {|a3〉, |a4〉, |1〉L|0〉L|1〉L, |1〉L|1〉L|0〉L}, respectively. However, the previous schemes were

almost associated with loops in G(3; 2) [12]. It is worth noting that the schemes proposed

here can be generalized. For the C1-U gate between the mth and the nth logic qubits,

the Hamiltonian has the same structure as H1 but with the exchanging Rx
13 → Rx

2m−1,2n−1,

Rx
14 → Rx

2m−1,2n, R
x
23 → Rx

2m,2n−1, R
x
24 → Rx

2m,2n, (I1 + Z1) → (I2m−1 + Z2m−1), and

(I2 + Z2) → (I2m + Z2m). For the C2-U gate between the mth, nth, and lth logic qubits,

the Hamiltonian has the same structure as H2 but with the exchanging Rx
35 → Rx

2n−1,2l−1,

Rx
36 → Rx

2n−1,2l, R
x
45 → Rx

2n,2l−1, R
x
46 → Rx

2n,2l, (I1 − Z1) → (I2m−1 − Z2m−1), (I3 + Z3) →
(I2n−1 + Z2n−1), and (I4 + Z4) → (I2n + Z2n). At last, for the Fredkin gate between the

mth, nth, and lth logic qubits, the Hamiltonian has the same structure as H3 but with the

exchanging Rx
35 → Rx

2n−1,2l−1, R
x
46 → Rx

2n,2l and (I1 − Z1) → (I2m−1 − Z2m−1).

In conclusion, we have proposed schemes for implementing C1-U, C2-U, and Fredkin

gates directly by using non-adiabatic holonomy in DFSs. Our schemes combine the coherence

stabilization virtues of DFSs and the built-in fault tolerance of holonomic control. These gate

operations can be implemented in a high speed which avoids the extra errors and decoherence

involved in adiabatic case due to long time evolution. Moreover, the resource cost for

the DFSs encoding is minimal by using only two neighboring physical qubits undergoing

collective dephasing to encode a logical qubit.
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[24] G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Phys. Rev. Lett. 109, 170501

(2012).

[25] Z. T. Liang, Y. X. Du, W. Huang, Z. Y. Xue, and H. Yan, Phys. Rev. A 89, 062312 (2014).

[26] J. Zhou, W. C. Yu, Y. M. Gao, and Z. Y. Xue, Opt. Express 23, 14027 (2015).

[27] Z. Y. Xue, J. Zhou, and Z. D. Wang, Phys. Rev. A 92, 022320 (2015).

[28] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.

A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

[29] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam-

bridge University Press, Cambridge, 2000).

[30] E. Fredkin, and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).

[31] V. V. Shende, and I. L. Markov, Quantum Inf. Comput. 9, 461 (2009).

[32] V. A. Mousolou1, C. M. Canali1, and E. Sjöqvist, New J. Phys. 16, 013029 (2014).
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