
Effect of quantum noise on deterministic joint remote state preparation of a qubit
state via a GHZ channel

Ming-Ming Wang1, 2, ∗ and Zhi-Guo Qu2

1School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China
2Jiangsu Engineering Center of Network Monitoring,

Nanjing University of Information Science & Technology, Nanjing 210044, China
(Dated: June 4, 2021)

Quantum secure communication brings a new direction for information security. As an important
component of quantum secure communication, deterministic joint remote state preparation (DJRSP)
could securely transmit a quantum state with 100% success probability. In this paper, we study
how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise
or decoherence. Taking a GHZ based DJRSP scheme as an example, we study all types of noise
usually encountered in real-world implementations of quantum communication protocols, i.e., the
bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. Our study shows
that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise
parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the
noise parameter in the other three types of noise. And the receiver will get different output states
depending on the first preparer’s measurement result in the amplitude-damping noise. Our results
will be helpful for improving quantum secure communication in real implementation.
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I. INTRODUCTION

Quantum information and quantum communication have greatly impacted the development direction of modern
science. On the one hand, quantum cryptograph, such as quantum key distribution [1], quantum secret sharing (QSS)
[2], quantum data hiding [3, 4], quantum signature [5] and quantum authentication [6] can achieve high-level security
than their classical counterparts [7–12]. On the other hand, quantum algorithms, such as Grovers search algorithm
[13], can solve a certain problem much faster than classical algorithms [14–16].

In quantum world, quantum entanglement is a crucial resource and an amazing application of entanglement is
quantum teleportation [17], which can securely transmit a quantum state from a preparer to a remote receiver
by virtue of pre-shared entangled resource. If the preparer has already known the information of the state, the
transmission can be achieved by RSP [18–20] with simpler measurement and less classical communication costs. The
original RSP scheme only has one preparer who knows all the information of the prepared state. But for highly
sensitive and important information, it might not be reliable to let one person hold everything. To solve this potential
problem, joint RSP (JRSP) has been proposed [21], which involves at least two preparers. Each preparer holds partial
information and only if certain preparers work together can the state be remotely prepared, similar to the idea of secret
sharing. However, a serious problem for most of the previous JRSP schemes [22–25] is that they are probabilistic, i.e.,
the success probability is less than 1. Recently, a new direction of JRSP, namely deterministic JRSP (DJRSP) has
been put forward. Xiao et al. [26] introduced the three-step strategy to increase the success probability of JRSP. By
adding some classical communication and local operations, the success probability of preparation can be increased to
1. Nguyen et al. [27] presented two DJRSP schemes of general one- and two-qubit states by using EPR pairs. Chen
et al. [28] extended this idea to realize a DJRSP of an arbitrary three-qubit state by using six EPR pairs. In 2014,
we proposed a deterministic JRSP scheme of an arbitrary two-qubit state based on the six-qubit cluster state [29].

Quantum noise is an unavoidable factor in practical quantum communication system, which will severely affect the
security and reliability of the system [30]. For a RSP scheme, the entanglement shared among participants will turn
a pure state into a mixed one in the presence of noise. In recent years, some RSP schemes in noisy environment have
been studied. Xiang et al. [31] presented a RSP protocol for mixed state in depolarizing and dephasing channel. Chen
et al. [32] investigated remote preparation of an entangled state through a mixed state channel in nonideal conditions.
Guan et al. [33] studied a JRSP of an arbitrary two-qubit state in the amplitude-damping and the phase-damping
noisy environment. Liang et al. [34, 35] investigated a JRSP of a qubit state in different noises by solving Lindblad
master equation. Sharma et al. [36] investigated the effect of amplitude-damping and phase-damping noise on a
bidirectional RSP protocol. Li et al. [37] investigated a DJRSP of an arbitrary two-qubit state via four EPR pairs
channel which are subjected to several Markovian noises. They analyzed the DJRSP scheme by solving the master
equation in Lindblad form.

In real-world implementation, quantum communication protocols usually encountered four types of noise, namely
the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. In this paper, we will study
noise influence of all types of noise on DJRSP. Taking a one-qubit GHZ based DJRSP scheme as an example, we will
show that for different types of noise, the prepared state and the fidelity of the output state are quite different from
each other. The rest of this paper is organized as follows. In Sect. 2, we show our DJRSP scheme of an arbitrary
one-qubit state in ideal environment. Then, we investigate the effect of noise on the scheme with the four types of
noise in Sect. 3, respectively. The paper is concluded in Sect. 4.

II. DJRSP OF AN ARBITRARY ONE-QUBIT STATE IN IDEAL ENVIRONMENT

In the following, we will show a DJRSP scheme of an arbitrary one-qubit state based on GHZ state. As we discussed
in Ref. [29], this scheme is equivalent to the Bell state based scheme in Ref. [27].

A. DJRSP scheme of one-qubit based on GHZ state

In our DJRSP scheme, two preparers Alice and Bob want to jointly prepare a qubit state for remote receiver Charlie.
The prepared state has the form

|ϕ〉 = a0e
iθ0 |0〉+ a1e

iθ1 |1〉, (1)

where a0, a1 ∈ R with
∑1
j=0 a

2
j = 1; θ0, θ1 ∈ [0, 2π]. The information of the prepared state is split in the following

way: Alice knows S1 = {a0, a1} and Bob knows S2 = {θ0, θ1}. A three-qubit GHZ state is shared among Alice, Bob
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and Charlie as quantum resource, which has the form

|GHZ3〉 =
1√
2

(|000〉+ |111〉)ABC, (2)

where the subscripts denote the qubits of the GHZ state. Here, Alice holds qubit A, Bob holds qubit B and Charlie
holds qubit C.

Our DJRSP scheme can be described as follows.
Step 1: Alice performs a projective measurement on qubit A in the basis defined by S1 as {|Pm〉;m ∈ {0, 1}} with

|P0〉 = a0|0〉+ a1|1〉, |P1〉 = a1|0〉 − a0|1〉. Then, the quantum resource shared among three participants becomes

|GHZ3〉ABC =
1√
2

1∑
m=0

|Pm〉A|Qm〉BC, (3)

where |Q0〉BC = a0|00〉+a1|11〉, |Q1〉BC = a1|00〉−a0|11〉. After the measurement, Alice broadcasts her measurement
outcome m to Bob and Charlie via classical channels.
Step 2: Bob measures qubit B in the basis {| O(m)

n 〉;m,n ∈ {0, 1}} that determined by both S2 and m, which
have the form (

| O(m)
0 〉

| O(m)
1 〉

)
= V (m)

(
|0〉
|1〉

)
, (4)

with

V (0) =
1√
2

(
e−iθ0 e−iθ1

e−iθ0 −e−iθ1

)
, V (1) =

1√
2

(
e−iθ1 e−iθ0

−e−iθ1 e−iθ0

)
. (5)

After Bob performed his measurement, |Qm〉 can be rewritten as

|Qm〉BC =
1√
2

1∑
n=0

| O(m)
n 〉BR

(m)
n

†
|ϕ〉C, (6)

where R
(m)
n denotes the recovery operator that the receiver Charlie needs to perform, which has the form R

(0)
0 = I,

R
(0)
1 = σz, R

(1)
0 = −σzσx and R

(1)
1 = −σx.

Step 3: Bob announces his measurement result n publicly, then Charlie can perform the recovery operator R
(m)
n

on qubit C to get the prepared state |ϕ〉.

B. Density operators representation

In quantum noisy environment, a pure state will be transformed into a mixed state, which is more convenient to
be represented by density operator rather than vector state. To analyze the noisy procedure, we need to rewrite the
scheme in the form of density operator. The prepared state can be written as

ρtarget = |ϕ〉〈ϕ|. (7)

While the quantum resource shared among three participants is

ρsource = ρpure = |GHZ3〉〈GHZ3|. (8)

Alice’s measurement operator is represented by MA = {MA0,MA1}, which has the form

MAm = |Pm〉〈Pm|, m ∈ {0, 1}. (9)

And Bob’s measurement operator is MB(m) = {MB
(m)
0 ,MB

(m)
1 }, where

MB(m)
n = | O(m)

n 〉〈 O(m)
n |, n ∈ {0, 1}. (10)

Then, our DJRSP can be represented as follows.
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Step 1: Alice firstly measures qubit A by using the measurement operators {MAm} with m ∈ {0, 1}, and the
system of (B, C) will become

ρQm = trA

[
MAm ∗ ρsource ∗MA†m

tr(MA†m ∗MAm ∗ ρsource)

]
. (11)

Step 2: Bob measures qubit B by using {MB
(m)
n } with n ∈ {0, 1}, and qubit C becomes

ρ
O

(m)
n

= trB

 MB
(m)
n ∗ ρQm ∗MB

(m)
n

†

tr

(
MB

(m)
n

†
∗MB

(m)
n ∗ ρQm

)
 . (12)

Step 3: Charlie recover the prepared state by performing R
(m)
n , that is

ρout = R(m)
n ∗ ρ

O
(m)
n
∗R(m)

n

†
= ρtarget. (13)

III. DJRSP OF AN ARBITRARY ONE-QUBIT STATE IN NOISY ENVIRONMENT

In ideal situation, it is assumed that an entangled quantum resource has been shared among three participants.
However, in real situation, there must be a source that generates the entangled states and distributes each qubit to
relevant participant. And each distribution quantum channel will inevitably be affected by quantum noise in real-
world implementation. In the following, we will discuss how the noise around distribution channels affects the DJRSP
scheme.

A. The noise channels

There are four types of noise usually encountered in real-world quantum communication protocols, namely the
bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise.

1. The bit-flip noise

The bit-flip noise changes the state of a qubit from |0〉 to |1〉 or from |1〉 to |0〉 with probability λ and its Kraus
operators are [38]

E0 =
√

1− λ I, E1 =
√
λ σx, (14)

where I is identity matrix, σx is the Pauli matrix and 0 ≤ λ ≤ 1 is the noise parameter.

2. The phase-flip (phase-damping) noise

The phase-flip noise changes the phase of the qubit |1〉 to −|1〉 with probability λ and it can be described by Kraus
operators as [38]

E0 =
√

1− λ I, E1 =
√
λ σz, (15)

where σz is the Pauli matrix and 0 ≤ λ ≤ 1. Note that the phase-flip noise is equivalent to the phase-damping noise,
which describes the loss of quantum information without energy dissipation.
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3. The depolarizing noise

The depolarizing noise takes a qubit and replaces it with a completely mixed state I/2 with probability λ and its
Kraus operators are [38]

E0 =
√

1− λ I, E1 =

√
λ

3
σx, E2 =

√
λ

3
σz, E3 =

√
λ

3
σy, (16)

where σx, σz, σy are Pauli matrices and 0 ≤ λ ≤ 1.

4. The amplitude-damping noise

The amplitude-damping noise describes the energy dissipation effects due to loss of energy from a quantum system
and its Kraus operators are as follows [38]

E0 =

(
1 0
0
√

1− λ

)
, E1 =

(
0
√
λ

0 0

)
, (17)

where 0 ≤ λ ≤ 1 indicates the noise parameter.

B. The output state and the fidelity in noise environment

Suppose Alice has a quantum source generator in her laboratory. She generates the entangled resource |GHZ3〉ABC,
keeps qubit A in her own and then sends B to Bob and C to Charlie via noisy quantum channels, respectively. To
simplify the analysis, we suppose that the noise type of each channel is identical. In this case, the entangled source
shared among three participants after qubits transmission can be rewritten as

ρsource = ε(ρpure)

=
∑
j1,j2

E
(B)
j1
E

(C)
j2
|GHZ3〉 〈GHZ3|E(B)

j1

†
E

(C)
j2

†
, (18)

where Ej1 , Ej2 represent the noise operators that act on different qubits and superscripts denote the qubit transmitted
through noise channel. And the fidelity of the output state can be calculated as

F := |〈ϕ|ρout|ϕ〉|. (19)

To analyze noise effect of each type of noise, we just need to recalculate ρsource, put it into Eq. (11), and get results
from Eqs. (12) and (13). For the above four types of noise, we will get the following results.

1. DJRSP of one-qubit in the bit-flip noise

In the bit-flip noise, we will get

ρBF
out =[a20(1− 2λ) + λ] |0〉 〈0|+ [a21(1− 2λ) + λ] |1〉 〈1|

+ a0a1 |0〉 〈1|
[
ei(θ0−θ1)(2λ2 − 2λ+ 1)− 2ei(θ1−θ0)λ(λ− 1)

]
+ a0a1 |1〉 〈0|

[
ei(θ1−θ0)(2λ2 − 2λ+ 1)− 2ei(θ0−θ1)λ(λ− 1)

]
.

(20)

And the fidelity is

FBF = 1− λ+ 4λ(a21 − a41) [λ+ (1− λ) cos(2θ0 − 2θ1)] . (21)

It can be seen from the above equation that the fidelity is relevant to the noise rate λ, the amplitude factor a1
(a0 =

√
1− a21), and also the phase factors θ0 and θ1. The relationship of FBF, λ and a1 with different values of

θ0 − θ1 are plotted in Fig. 1.
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FIG. 1. The fidelity FBF of the output state in the bit-flip noise with respect to λ and a1 for different values of θ0 − θ1. (a)
FBF with λ and a1 when θ0 − θ1 = 0 or π ; (b) θ0 − θ1 = π

4
or 3π

4
; (c) θ0 − θ1 = π

2
; (d) FBF with a1 for selected λ when

θ0 − θ1 = 0 or π ; (e) FBF with a1 for selected λ when θ0 − θ1 = π
4

or 3π
4

; (f) FBF with a1 for selected λ when θ0 − θ1 = π
2

.

Fig. 1(a) represents FBF with λ and a1 in the case of θ0 − θ1 = 0 or π. As shown, the maximum fidelity is 1 when

λ = 0 or a1 = 1√
2
, which means there is no noise or the prepared state is |0〉±|1〉√

2
that is immune to the bit-flip noise.

The minimum fidelity is 0 when λ = 1 and a1 = 0 or 1, which means the prepared state is |0〉 or |1〉 and the bit-flip
noise will change the prepared state to its orthogonal state, i.e., |0〉 → |1〉 or |1〉 → |0〉. If λ takes some certain values,
we can get related curves in 1(d), which are specific instances of the surface in 1(a). It can be seen from the figure
that the fidelity is convex upward and it changes dramatically with the increase of noise rate λ. FBF will get the
maximum point 1 if a1 = 1√

2
for all λ.

For other cases where θ0 − θ1 = π
4 , 3π

4 or π
2 , the surfaces are plotted in Figs. 1(b) and 1(c). While 1(e) and 1(f)

are specific examples of 1(b) and 1(c) when λ takes some certain values, respectively. It can be seen from 1(e) and
1(f) that in the case of 0 < λ < 1, FBF is always less than 1 no matter what value a1 is.

2. DJRSP of one-qubit in the phase-flip noise

In the phase-flip noise, we have

ρPF
out =a20 |0〉 〈0|+ a21 |1〉 〈1|+ a0a1(1− 2λ)2

[
ei(θ0−θ1) |0〉 〈1|+ ei(θ1−θ0) |1〉 〈0|

]
. (22)

And the fidelity is

FPF = 1− 8λ(1− λ)(a21 − a41). (23)

Note that the fidelity is relevant to the noise rate λ and the amplitude factor a1, but not the phase factors θ0 and
θ1, which is different from the bit-flip noise. The relationship of FPF, λ and a0 is shown in Fig. 2. As shown, the
maximum fidelity is 1 when λ = 0, or λ = 1, or a1 = 0 or a1 = 1, which means there is no noise, or the noise does not
change the entanglement, or the prepared state is |0〉 or |1〉. The minimum fidelity is 1

2 when λ = 1
2 and a1 = 1√

2
,

which means the prepared state is eiθ0 |0〉+eiθ1 |1〉√
2

and the output state is complete mixture |0〉〈0|+|1〉〈1|2 .

The value of FPF with a1 is presented in Fig. 2(b) for different λ. It can be seen from the figure that the fidelity
is concave upward if λ 6= 1. The fidelities will be the same if λ is set to x and 1− x with 0 ≤ x ≤ 1 (for example, the
fidelities are the same when λ = 0.25 and λ = 0.75). And each FPF will get its minimum point if a1 = 1√

2
for all λ.
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FIG. 2. The fidelity FPF of the output state in the phase-flip noise with respect to λ and a1. (a) FPF with λ and a1; (b) FPF

with a1 for some selected values of λ.
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FIG. 3. The fidelity FDE of the output state in the depolarizing noise with respect to λ and a1. (a) FDE with λ and a1; (b)
FDE with a1 for some selected values of λ.

3. DJRSP of one-qubit in the depolarizing noise

In the depolarizing noise, the output state is

ρDE
out =

1

3
[a20(3− 4λ) + 2λ] |0〉 〈0|+ 1

3
[a21(3− 4λ) + 2λ] |1〉 〈1|

+
1

9
a0a1e

i(θ0−θ1)(3− 4λ)2 |0〉 〈1|+ 1

9
a0a1e

i(θ1−θ0)(3− 4λ)2 |1〉 〈0| .
(24)

And the fidelity is

FDE = 1− 2

3
λ+

8

9
λ(4λ− 3)(a21 − a41), (25)

where the fidelity is still relevant to the noise rate λ and the amplitude factor a1. The relationship of FDE, λ and a1
is shown in Fig. 3. As shown, the maximum fidelity is 1 when λ = 0, which means there is no noise. The minimum
fidelity is 1

3 when λ = 1 and a1 = 0 or 1, which means the prepared state is |0〉 or |1〉 and the output state is
|0〉〈0|+2|1〉〈1|

3 or 2|0〉〈0|+|1〉〈1|
3 .

It can be seen from Fig. 3(b) that the fidelity is constant, FDE = 1
2 , when λ = 3

4 . The fidelity is concave upward if

λ > 3
4 and the fidelity is convex upward if λ < 3

4 . For each curve, FDE will get the maximum/minimum point when

a1 = 1√
2
.

4. DJRSP of one-qubit in the amplitude-damping noise

In the amplitude-damping noise, we will get two different output states based on Alice’s measurement result m,
which is different from the other three types of noise. For m = 0, we will get the output state as

ρAD0
out =[a20(1− λ) + λ] |0〉 〈0|+ a21(1− λ) |1〉 〈1|

+ a0a1(1− λ)ei(θ0−θ1) |0〉 〈1|+ a0a1(1− λ)ei(θ1−θ0) |1〉 〈0| .
(26)

And the corresponding fidelity is

FAD0 = 1− a21λ. (27)
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(d)

FIG. 4. The fidelity of the output state in the amplitude-damping noise with respect to λ and a1. (a) FAD0 with λ and a1;
(b) FAD1 with λ and a1; (c) FAD0 with a1 for some selected values of λ; (d) FAD1 with a1 for some selected values of λ.

While for m = 1, we will get

ρAD1
out =a20(1− λ) |0〉 〈0|+ [a21(1− λ) + λ] |1〉 〈1|

+ a0a1(1− λ)ei(θ0−θ1) |0〉 〈1|+ a0a1(1− λ)ei(θ1−θ0) |1〉 〈0| .
(28)

And the fidelity is

FAD1 = 1 + a21λ− λ. (29)

Still, the fidelity for both cases is relevant to the noise rate λ and the amplitude factor a1. The relationship of
FAD0 and FAD1 with λ and a1 can be found in Fig. 4. As shown in Fig. 4(a), the maximum FAD0 is 1 when λ = 0 or
a1 = 0, which means there is no noise or the prepared state is |0〉. The minimum FAD0 is 0 when λ = 1 and a1 = 1,
which means the prepared state is |1〉 and the output state is |0〉. Note that one will get the same surface of FAD1 as
FAD0 if the variable a0 is replaced by a1. And similar results about the maximum and minimum FAD1 can be got in
Fig. 4(b).

For some selected values of λ, one can get related curves in Fig. 4(c) and Fig. 4(d). It can be seen from the figures
that FAD0 and FAD1 are monotone. FAD0 is convex upward and it decreases dramatically with the increase of noise
rate λ from a1 = 0 to a1 = 1 and each curve will get its minimum value at the right point. While FAD1 is concave
upward and it increases dramatically with the increase of noise rate λ from a1 = 0 to a1 = 1 and each curve will get
its minimum value at the left point.

IV. CONCLUSION

Starting with the scheme in ideal condition, we investigated the DJRSP scheme in four types of noise, respectively.
As shown in the paper, some information of the prepared state is lost through the noise channels. We use fidelity to
describe how close are the final states to the original state and how much information has been lost in the process.
The result of our study shows that the prepared state and the fidelity of the state is quite different from each other in
different types of noise. For one thing, the fidelity of the prepared state in the bit-flip noise depends on the amplitude
factor ai and the phase factor θi of the initial state, and the noise parameter λ. But in the other three types of noise,
the fidelity only depends on the amplitude factor and the noise parameter, but have nothing to do with the phase
parameter θi. For another thing, in the amplitude-damping noise, it is interesting that the receiver Charlie will get
different prepared output states depending on the first preparer Alice’s measurement result m. But in the other three
types of noise, the receiver will get the same output state, which is irrelevant to the first preparer Alice’s measurement
result.

We have considered the case where the qubits in Bob’s and Charlie’s side were affected by quantum noise. It should
be noted that the qubit A in Alice’s side may still be affected by noise. In this case, the noise effect on the quantum
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channel can be represented as

ρsource =ε(ρpure)

=
∑

j1,j2,j3

E
(A)
j1

E
(B)
j2
E

(C)
j3

ρpure E
(A)
j1

†
E

(B)
j2

†
E

(C)
j3

†
. (30)

We can still calculate the noise effect on entanglement channel in different types of noise, just as mentioned Sect.
III B. And it is also possible to consider the situation where different qubits are subjected to different types of noise.

In summary, we have studied a DJRSP scheme of an arbitrary single qubit in noisy environment and shown how
the scheme is affected by all types of noise usually encountered in real-world. Our results will be helpful for analyzing
and improving quantum secure communication in real implementation. To show our method, we have considered a
simple case where three participants were involved. In the future, it is also possible to analyze other situations such
as multi-participants involved or multi-qubit prepared.
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