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Abstract

We study separability problem using general symmetric informationally complete

measurements and propose separability criteria in C
d1⊗C

d2 and C
d1⊗C

d2 · · ·⊗C
dn . Our

criteria just require less local measurements and provide experimental implementation

in detecting entanglement of unknown quantum states.

1 Introduction

The detection of entanglement is one of the most fundamental and attractive tasks in

quantum information theory and entanglement enables numerous applications ranging from

quantum cryptography to quantum computing(see reviews [1,2] and the references therein).

And there have been some necessary criteria for separability, such as Bell inequality [3],

positive partial transposition criterion [4], realignment criterion [5–7], covariance matrix

criterion [9],and correlation matrix criterion [10], entanglement witness [11].

Although numerous mathematical tools have been extensively studied, experimental im-

plementation of entanglement detection for unknown quantum states has fewer results [12].

The authors [13] connected the separability criteria with mutually unbiased bases (MUBs)

[14] in two-qudit, multipartite and continuous-variable quantum systems. Later, Chen et

al. [15] proposed separability criteria for arbitrary d-dimensional bi-partite states using mu-

tually unbiased measurements (MUMs) [16] and Liu et al. [18] derived separability criteria for

multipartite qudit systems,arbitrary high-dimensional bipartite and multipartite systems of

multi-level subsystems using sets of MUMs. Another method for the entanglement detection

was derived by incomplete sets of MUBs in [17].

Besides mutually unbiased bases, another intriguing topic in quantum information theo-

rey is the symmetric informationally complete positive operator-valued measurements (SIC-

POVMs) [19]. Most of the literature on SIC-POVMs focus on rank 1 SIC-POVMs (all the

POVM elements are proportional to rank 1 projectors). Such rank 1 SIC-POVMs just exist
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in lower dimensions. The author [20]introduced the concept of general SIC-POVMs(GSIC-

POVMs) in which the elements need not to be of rank one, and Gour and Kalev [21] con-

structed the set of all general SIC-POVMs from the generalized Gell-Mann matrices. In

addition, based on entanglement detection, Chen [22] and Shen [23] used the GSIC-POVMs

to give separability criteria for arbitrary d-dimensional bipartite and multipartite systems.

In this paper, we investigate entanglement detection via GSIC-POVMs and propose sepa-

rability criteria in arbitrary high dimensional bipartite systems of a d1-dimensional subsystem

and a d2-dimensional subsystem and multipartite systems of multipartite-level subsystems.

The paper is organized as follows. In Section 2, we recall some basic notions of SIC-POVMs

and GSIC-POVMs. In Section 3, we provide four theorems based on GSIC-POVMs and

formulate the validity and power of entanglement detection. At last, we conclude the paper

in Section 4.

2 SIC-POVMs and GSIC-POVMs

A POVM {Pj, j = 1, 2, · · · , d2} with d2 rank one operators acting on Cd is symmetric

informationally complete, if Pj = 1
d
|φj〉〈φj|, j = 1, 2, · · · , d2, and Σd2

j=1Pj = I, where the

vectors |φj〉 satisfy |〈φj|φk〉|2 = 1
d+1

, j 6= k, and I is the identity operator. The existence

of SIC-POVMs in arbitrary dimension d is an open problem. Only in a number of low

dimensional cases, the existence of SIC-POVMs has been proved analytically and numerically

for all dimensions up to 67(see [19] and the references therein).

A set of d2 positive-semidefinite operators {Pα, α = 1, 2, · · · , d2} on Cd is said to be a

general SIC measurement, if

(1)Σd2

α=1Pα = I, (2)Tr[(Pα)
2] = a, (3)Tr(PαPβ) =

1− da

d(d2 − 1)
,

where α, β = 1, 2, · · · , d2, α 6= β, I is the identity operator, and the parameter a satifies
1
d3

< a ≤ 1
d2
. Moreover a = 1

d2
if and only if Pα are rank one, which gives rise to a SIC-POVM.

Like the mutually unbiased measurements, the authors in [21] explicitly constructed

general symmetric informationally complete measurements for arbitrary dimensional spaces.

Let {Fα}d
2−1

α=1 be a set of (d2−1) Hermitian, traceless operators on Cd, satisfying Tr(FαFβ) =

δα,β, α, β = 1, 2, · · · , d2 − 1. Then d2 operators

Pα =

{

1
d2
I + t[F − d(d+ 1)Fα], α = 1, 2, · · · , d2 − 1,

1
d2
I + t(d+ 1)F, α = d2,

form a general SIC-POVM measurement, where F = Σd2−1
α=1 Fα, t should be chosen such that

Pα ≥ 0. Corresponding to the construction of GSIC-POVMs, the parameter a is given by

a =
1

d3
+ t2(d− 1)(d+ 1)3.
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The entanglement detection based SIC-POVMs has been briefly discussed in Ref. [24],

but the method is subject to the existence of SIC-POVMs. However these general symmetric

informationally complete measurements do exist for arbitrary dimension d and have many

useful applications in quantum information theory. In Ref. [25], based on the calculation of

the so-called index of the coincidence, the author derived a number of uncertainty relation

inequalities by general SIC-POVMs measurements and given some SIC-POVM P = {Pj} on

Cd and density matrix ρ, the author [25] calcute the called index of the coincidence C(P|ρ),
that is,

C(P|ρ) = Σd2

j=1[Tr(Pjρ)]
2 =

(ad3 − 1)Tr(ρ2) + d(1− ad)

d(d2 − 1)
(1)

Here C(P|ρ) = ad2+1
d(d+1)

when ρ is pure.

3 Main results and their proofs

Case 1 Cd1 ⊗ Cd2 .

Theorem 1. Suppose ρ is a density matrix in Cd1⊗Cd2. Let P = {Pj}d
2
1

j=1 and Q = {Qk}d
2
2

k=1

be any two sets of GSIC-POVMs on Cd1 and Cd2 with parameters a1, a2, respectively. Define

J1(ρ, (P,Q)) = max
{Pj}⊆P

{Qnj
}⊆Q

Σd2

j=1Tr[(Pj ⊗Qnj
)ρ]

Where d = min{d1, d2} and for nj, there exists a permutation σ ∈ Sd22
satifying σ(j) = nj.

If ρ is separable, then

J1(ρ) ≤
1

2
[
a1d

2
1 + 1

d1(d1 + 1)
+

a2d
2
2 + 1

d2(d2 + 1)
]

.

[Proof]. Assume that ρ = Σr
k=1λk|φ1

k〉〈φ1
k| ⊗ |φ2

k〉〈φ2
k|,Σr

k=1λk = 1, J̃1(ρ, (P,Q)) =
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Σd2

j=1Tr[(Pj ⊗Qnj
)ρ], P|φ1

k
〉(j) = Tr(Pj |φ1

k〉〈φ1
k|)

J̃1(ρ, (P,Q))

= Σd2

j=1Tr[(Pj ⊗Qnj
)ρ]

= Σd2

j=1Σ
r
k=1λkTr(Pj |φ1

k〉〈φ1
k|)Tr(Qnj

|φ2
k〉〈φ2

k|)
= Σd2

j=1Σ
r
k=1λkP|φ1

k
〉(j)Q|φ2

k
〉(nj)

= λ1Σ
d2

j=1P|φ1
1〉
(j)Q|φ2

1〉
(nj) + λ2Σ

d2

j=1P|φ1
2〉
(j)Q|φ2

2〉
(nj) + · · ·+ λrΣ

d2

j=1P|φ1
r〉(j)Q|φ2

r〉(nj)

Σd2

j=1P|φ1
k
〉(j)Q|φ2

k
〉(nj)

≤ Σd2

j=1

P 2
|φ1

k
〉
(j) +Q2

|φ2
k
〉
(nj)

2

≤
Σ

d21
j=1P

2
|φ1

k
〉
(j) + Σ

d22
j=1Q

2
|φ2

k
〉
(nj)

2

=
1

2
[
a1d

2
1 + 1

d1(d1 + 1)
+

a2d
2
2 + 1

d2(d2 + 1)
]

Then J1(ρ, (P,Q)) = max J̃1(ρ, (P,Q)) ≤ 1
2
[
a1d

2
1+1

d1(d1+1)
+

a2d
2
2+1

d2(d2+1)
].�

By using the Cauchy-Schwarz inequality, we can obtain stronger bound than in Theorem 1.

Theorem 2. Suppose ρ is a density matrix in Cd1⊗Cd2. Let P = {Pj}d
2
1

j=1 and Q = {Qk}d
2
2

k=1

be any two sets of general SIC-POVMs on Cd1 and Cd2 with parameters a1, a2, respectively.

Define

J2(ρ, (P,Q)) = max J̃2(ρ, (P,Q)) = max
{Pj}⊆P

{Qnj
}⊆Q}

|Σd2

j=1Tr[(Pj ⊗Qnj
)(ρ− ρA ⊗ ρB)]|.

Where d = min{d1, d2}, ρA(ρB) is the reduced density matrix of the first(second) subsystems.

If ρ is separable, then we can

J2(ρ) ≤
√

a1d
2
1 + 1

d1(d1 + 1)
− Σ

d21
j=1[Tr(PjρA)]2

√

a2d
2
2 + 1

d2(d2 + 1)
− Σ

d22
j=1[Tr(QjρB)]2.

[Proof]. Assume that ρ = Σr
k=1pkρ

A
k ⊗ ρBk , 0 ≤ pk ≤ 1,Σr

k=1pk = 1, where ρAk and ρBk

are the pure density matrix acting on the first and second subsystem. Thus we can get

ρA = Σr
k=1pkρ

A
k , ρ

B = Σr
k=1pkρ

B
k . Let J̃2 = |Σd2

j=1Tr[(Pj ⊗ Qnj
)(ρ − ρA ⊗ ρB)]|, ps,t =

√
pspt.
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Then

Σd2

j=1|Tr[(Pnj
⊗Qnj

)(ρ− ρA ⊗ ρB)]|

= Σd2

j=1|Tr[(Pnj
⊗Qnj

)(
1

2
Σr

s,t=1pspt(ρ
A
s − ρAt )⊗ (ρBs − ρBt ))]|

≤ Σd2

j=1Σ
r
s,t=1

1

2
|Tr[√psptPnj

(ρAs − ρAt )]||Tr[
√
psptQnj

(ρBs − ρBt )]|

≤

√

Σj,s,t{Tr[ps,tPnj
(ρAs − ρAt )]}2

2

√

Σj,s,t{Tr[ps,tQnj
(ρBs − ρBt )]}2

2
.

So we can get

J2(ρ) = max J̃2

≤ Σd2

j=1|Tr[(Pnj
⊗Qnj

)(ρ− ρA ⊗ ρB)]|

≤
√

a1d
2
1 + 1

d1(d1 + 1)
− Σ

d21
j=1[Tr(PjρA)]2

√

a2d
2
2 + 1

d2(d2 + 1)
− Σ

d22
j=1[Tr(QjρB)]2.�

In order to formulate the validity and power of entanglement detection, we consider the

examples in the following.

Example 1. Let us consider the isotropic states, which are locally unitarily equivalent to

a maximally entangled state mixed with white noise:

ρ = ρiso = α|φ+〉〈φ+|+ 1− α

d2
I,

where 0 ≤ α ≤ 1, |φ+〉 = Σd
i=1|ii〉

d
,

J1(ρ, (P,Q)) = J̃1(ρiso, (P,P)) = Σd2

j=1Tr[(Pj ⊗ P j)ρ] = αda+
1− α

d2
= (da− 1

d2
)α +

1

d2
,

where J̃1(ρiso, (P,P)) is montone increasing in α. If α > 1
d+1

, J̃1(ρiso, (P,P)) > ad2

d(d+1)
and

ρiso must be entangled by our theorem. Then Theorem 1 can detect all the entanglement of

the isotropic states, because it has been proven ρiso is entangled for α > 1
d+1

, and separable

for α ≤ 1
d+1

. [8] So we can get that for ρiso, Theorem 1 gives a necessary and sufficient

separable criterion.

Example 2. Next consider the d- dimensional Bell-diagonal states

ρBell = Σd−1
s,t=0cst|φst〉〈φst|,

wherecst ≥ 0,Σd−1
s,t=0cst = 1, |φst〉 = (Ust ⊗ I)|φ+〉, Ust = Σd−1

j=0σ
sj
d |j〉〈 j ⊕ t|, σd = e

2Π 2√−1
d ,

and ⊕ denoting (j + t) mod d.

By some simple calculations, there are

ρABell = ρBBell =
I

d
.
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Assume c0 = min{cst}, cd2 = max{cst}.

J̃1(ρBell, (P,Q)) = Σd2

j=1Tr[(Pj ⊗Qnj
)ρBell] ≥ J̃1(cd2 |φc

d2
〉〈φc

d2
|, (P,Q)).

Then
J1(ρBell, (P, U+

c0
PUc0)) ≥ J1(|φc0〉〈φc0|, (P, U+

c0
PUc0))

J1(ρBell, (P, U+
c
d2
PUc

d2
)) ≥ J1(|φc

d2
〉〈φc

d2
|, (P, U+

c
d2
PUc

d2
))

From Theorem 1, we can get ρBell is entangled if cd2 >
ad2+1

d2(d+1)a
.

From Theorem 2, we can get ρBell is entangled if 0 ≤ c0 ≤ 1
d2
, or 1

d2
≤ cd2 ≤ d−d3a+2

d3a(d+1)
, or

1
ad3

≤ cd2 ≤ 1.

It is obvious that the values of a affect the performance of the entanglement detection

of Theorem 1 and Theorem 2. When a gets larger or smaller, the criteria can detect more

entanglement.

Remark 1. Here we will talk something about these upper bounders. For Theorem 1 and

Theorem 2, if

d1 = d2 = d, ρ = ρiso, (P,Q) = (P,P).

When α = 1
d+1

, J̃1(ρiso, (P,P)) = ad2+1
d(d+1)

, J̃2(ρiso, (P,P)) = ad2+1
d(d+1)

− 1
d2
.

If d1 6= d2, d1 < d2 and the bound we get in the theorem 1 can be reached, then

d22 + d2 − 2d21 < 0, a2 ∈ (
d21 + d2

d22(d
2
2 − d21)

,
1

d22
),Tr(ρA) = Tr(ρB).

For example, the bounder can not be reached in C
2⊗C

n1 and C
3⊗C

n2 , where n1 ≥ 3, n2 ≥ 4.

So it is also an interesting problem to construct other new and efficient separable criteria.

Remark 2. In some case, our result is more effective than the results in [22]. Consider

ρ =
I⊗ I

4
+

1

16
σ1 ⊗ σ1 −

1

4
σ2 ⊗ σ2 +

1

16
σ3 ⊗ σ3.

And a class of measurements (P,P), satifying

P = { I
4
+ t(F − 6F1),

I

4
+ t(F − 6F2),

I

4
+ t(F − 6F3),

I

4
+ 3tF},

F = ΣFi, Fi =
σi

2
√
2

and σ
,
is are three pauli matrix, i = 1, 2, 3. Here ad2+1

d(d+1)
= 1

4
+ 18t2 and t ∈ (− 1

12
2

√

2
3
, 1
12

2

√

2
3
).

The criterion in Ref. [22] can not be used to detect ρ, but our Theorem 1 can detect

the entanglement of ρ. In fact, for the pair of measurements (P,P), using the criterion in

Ref. [22], we can get

J̃(ρ, (P,P)) = Σ4
j=1Tr[(Pj ⊗ pj)ρ] =

1

4
− 9t2 <

1

4
+ 18t2

6



which can not decide the entanglement of ρ.

But by Theorem 1, the state ρ is entangled because

J̃(ρ, (P,P))

= Σ4
j=1Tr[(Pj ⊗ pnj

)ρ]

= Tr[(P1 ⊗ p1)ρ] + Tr[(P2 ⊗ p4)ρ] + Tr[(P3 ⊗ p3)ρ] + Tr[(P4 ⊗ p2)ρ]

=
1

4
+ 22t2 >

1

4
+ 18t2

Case2 Cd1 ⊗ Cd2 · · · ⊗ Cdn .

For multipartite systems that the definition of entanglement is not unique. So we discuss

it with the the notions of k-partite entanglement or k-nonseparability for a given partition

and unfixed partition,respectively [1, 2]. A pure state |φ〉 of a n-partite system is called k-

separable if it can be written as a tensor product of k vectors, i.e. |φ〉 = |φ〉1⊗|φ〉2⊗· · ·⊗|φ〉k.
The states which do not contain any entanglement are called fully separable. In addition,

those states whose entanglement ranges over all n parties are called genuine multipartite

entangled states. The generalization to mixed states is direct: A mixed state is called k-

separable if it can be written as a convex combination of k-separable states ρ = Σr
k=1pkρk,

where ρk are k-separable pure states. In the following, we have two criteria for multipartite

systems of different dimensions and also argue k-nonseparability for a given partition of

n-partite system.

Theorem 3. Suppose ρ is a density matrix in Cd1 ⊗Cd2 ⊗ · · · ⊗ Cdn, and {P(i)} are n sets

of GSIC-POVMs in Cdi with parameters ai, i = 1, 2, · · · , n, where{P(i)} = {P (i)
j }d

2
i

j=1. Define

J3(ρ) = max
{P

(i)
nj

}⊆{P
(i)
j }

Σd
j=1Tr(⊗n

i=1P
(i)
nj
ρ).

Here d = min{d21, d22, · · · , d2n}. If ρ is fully separable, then

J3(ρ) ≤
1

n
Σn

i=1[
aid

2
i + 1

di(di + 1)
]

[Proof]. Let ρ = Σr
k=1pkPk, with Σr

k=1pk = 1, be a fully separable density matrix, where

ρk = ⊗n
i=1|φik〉〈φik|. Since

Σd
j=1Tr[(⊗n

i=1P
(i)
nj
)ρk] = Σd

j=1Tr[(⊗n
i=1P

(i)
nj
)(⊗n

i=1|φik〉〈φik|)]
= Σd

j=1[Π
n
i=1Tr(P

(i)
nj
|φik〉〈φik|)]

≤ Σn
i=1Σ

d
j=1

[Tr(P
(i)
nj |φik〉〈φik|)]2

n

where we use the inequality in [18]

x1x2 · · ·xn ≤ [
Σn

i=1(xi)
2

n
]
n
2 , xi ≥ 0, i = 1, 2, · · ·n

7



Then through th equality(1), we can get J3(ρ) ≤ 1
n
Σn

i=1[
aid

2
i+1

di(di+1)
].�

Theorem 4. Assume that ρ is a density matrix in Cd1 ⊗Cd2 ⊗ · · · ⊗Cdn, and {P (i)
j }d

2
i

j=1 are

n sets of GSIC-POVMs on Cdi with parameters ai, i = 1, 2, · · · , n.
If ρ is fully separable, then

J3(ρ) ≤ min
i 6=j

√

aid
2
i + 1

di(di + 1)

√

ajd
2
j + 1

dj(dj + 1)

[Proof]. Let ρ = Σr
k=1pkPk be a fully separable pure state, where Σr

k=1pk = 1.

I(ρ) = Σd
j=1Σ

r
k=1pkTr[(⊗n

i=1P
(i)
nj
)Pk]

= Σr
k=1Σ

d
j=1pkTr[(⊗n

i=1P
(i)
nj
)(⊗n

i=1|φi〉〈φi|)]
= Σr

k=1Σ
d
j=1pkΠ

n
i=1Tr(P

(i)
nj
|φi〉〈φi|)

Then using the Cauchy-Schwarz inequality, we can get

I(ρ) ≤
√

Σd
j=1[Tr(P

(i)
nj |φi〉〈φi|)]2

√

Σd
j=1[Tr(P

(i′)
nj |φi′〉〈φi′|)]2,

where i 6= i′ and using the equality (1), we finally get

J3(ρ) = max I(ρ) ≤ min
i 6=j

√

aid
2
i + 1

di(di + 1)

√

ajd
2
j + 1

dj(dj + 1)
.�

In partically, the criterion in Ref. [22] is the special case of Theorem 3. What’s more,

we can use Theorem 3 and Theorem 4 straightforward to detect k-nonseparable states with

respect to a fixed partition. For an n-partite state ρ in Cm1 ⊗Cm2 ⊗· · ·⊗Cmn = Cd1 ⊗Cd2 ⊗
· · · ⊗ Cdk , if there are k sets of GSIC-POVMs {P(i)} on Cdi with parameters ai such that

Σd
j=1Tr(⊗k

i=1P
(i)
nj
ρ) >

1

k
Σk

i=1

aid
2
i + 1

di(di + 1)

or

Σd
j=1Tr(⊗k

i=1P
(i)
nj
ρ) > min

1≤i 6=j≤k

√

aid
2
i + 1

di(di + 1)

√

ajd
2
j + 1

dj(dj + 1)

for some {P (i)
nj }d

2

j=1 ⊆ {P(i)}, then ρ is k-nonseparable in Cd1
⊗

Cd2 ⊗ · · · ⊗ Cdk , where

d = min{d21, d22, · · · , d2k} and i = 1, 2, · · · , k.

4 Conclusions and discussions

In summary, we have analyzed the separability problem based on the GSIC-POVMs and

presented separability criteria in Cd1 ⊗ Cd2 and Cd1 ⊗ Cd2 · · · ⊗ Cdn . Our results are use-

ful. First, our criteria are suitable for arbitrary dimension d because the GSIC-POVMs do

8



exist for arbitrary dimension d. Second, The criteria in this paper could detect the separa-

bility of arbitrary high dimensional bipartite systems and multipartite systems of different

dimensions only by less joint local measurements to reduce the complexity of experimental

implementation, and our result is more effective than the results in [22] in Remark 2. It

would be interesting to construct efficient criteria for entanglement detection using quantum

measurements.
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