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We have proposed a scheme of the generation and preservation of two-qubit steady-state quan-
tum correlations through quantum channels where successive uses of the channels are correlated.
Different types of noisy channels with memory, such as amplitude damping, phase-damping, and
depolarizing channels have been taken into account. Some analytical or numerical results are pre-
sented. The effect of channels with memory on dynamics of quantum correlations has been discussed
in detail. The results show that, steady-state entanglement between two initial qubits without entan-
glement subject to amplitude damping channel with memory can be generated. The entanglement
creation is related to the memory coefficient of channel µ. The stronger the memory coefficient of
channel µ is, the more the entanglement creation is, and the earlier the separable state becomes the
entangled state. The result also shows that there exists nonlocality in the absence of entanglement.
Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit
system is initially prepared in an entangled state. We show that entanglement dynamics suddenly
disappears, while quantum discord displays only in the asymptotic limit. Furthermore, two-qubit
quantum correlations can be preserved at a long time in the limit of µ → 1.

PACS numbers: 73.63.Nm, 03.67.Hx, 03.65.Ud, 85.35.Be

I. INTRODUCTION

Quantum correlations, such as quantum entanglement
and quantum discord, have been proposed as the cru-
cial resources applications in quantum information pro-
cessing [1]. Entanglement is a special type of quantum
correlations, and it has been proven to be very impor-
tant for quantum communication networks and quantum
computations [2, 3]. On the other hand, quantum dis-
cord which captures more general quantum correlations
than entanglement, has initially been introduced by Ol-
liver and Zurek [4]. It has been proven that quantum
discord can exist without entanglement and it provides
quantum advantages for some quantum information tasks
[5, 6]. Over the past decade, the study of quantum cor-
relations applying to quantum communication tasks and
quantum computational models has attracted much at-
tention, they however, are usually very difficult to be cre-
ated, maintained, and manipulated in realistic systems.
Furthermore, quantum correlations are fragile and prone
to environmental effect due to any systems inevitably in-
teracting with their external environments which result
in quantum systems’ decoherence as well as disentangle-
ment, therefore it is very important and necessary to cre-
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ate and preserve the quantum correlations in the field of
quantum information.

The generation and preservation of bipartite or mul-
tipartite quantum correlations have been widely studied
both theoretically [7–20] and experimentally [21–26] in
recent years. Usually, people use of methods to create
entanglement either indirect coupled quantum systems
or direct coupled quantum systems [27–33]. The former
is to introduce a simple ancillary system, whose interac-
tions with the decoupled subsystems lead to their indirect
interactions with each other. For instance, the entangle-
ment between two qubits can also be created by immers-
ing in a common heat bath environment [28]. Recently,
it happens that even a dissipative common environment
or thermal electromagnetic field is able to induce entan-
glement among subsystems [29, 31].

At the same time, there are many methods developed
to protect quantum correlations from decoherence, such
as error-correcting codes [34, 35], strategies based on
decoherence-free subspaces [36, 37], or using detuning
modulation [38]. Besides, dynamical decoupling [39–41]
as well as quantum Zeno effect [42]can also be used to
protect bipartite quantum correlations by tackling de-
coherence. As mentioned above these previous studies,
the back-action of the environment and the memory ef-
fect of the environment play a significant role in combat-
ting decoherence. Recently, using the weak measurement
and its reversal measurement to protect quantum correla-
tions from the amplitude damping decoherence has been
demonstrated [43–48]. In addition, there have been sev-
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eral interesting works [49, 50] that focused on the pro-
tection of the long time limit of quantum correlations
through the addition of qubits.
In this paper, we aim to study how the correlated noise

acting on consecutive uses of channel influences the quan-
tum correlations dynamics. In real physical quantum
transmission channels, the noise over consecutive uses
provide a natural theoretical framework for the study
of any noisy quantum communication since they were
first considered by C. Macchiavello and G.M. Palma [51]
to study the problem of classical capacity. Later, the
study of information transmission over a correlated chan-
nel with an arbitrary degree of memory in quantum in-
formation process has attracted much attention [52–57].
Recently, a report about the effect of correlated noise on
the entanglement of X-type state of the Dirac fields in the
non-inertial frame has been investigated by M. Ramzan
[54]. We here, have analyzed the generation and preser-
vation of two-qubit quantum correlations through quan-
tum channels where successive uses of the channels are
correlated. Different types of noisy channels with mem-
ory, such as amplitude damping, phase-damping, and de-
polarizing channels have been taken into account. The
effect of channels with memory on dynamics of quantum
correlations has been discussed in detail. The results
show that, steady-state entanglement between two inde-
pendent qubits initially without entanglement subject to
amplitude damping channel with memory can be gener-
ated. We observe that there exists nonlocality quantified
by quantum discord in the absence of entanglement. Be-
sides, we compare the dynamics of entanglement with
that of quantum discord when a two-qubit system is ini-
tially prepared in an entangled state. We show that en-
tanglement dynamics suddenly disappears, whlie quan-
tum discord vanishes only in the asymptotic limit. Two-
qubit quantum correlations can be preserved at a long
time due to the channels with prefect memory.
The layout is as follows: In Sec. II, we illustrate the

initial states and noise channels. In Sec. III, we devote to
examining generation and protection of two-qubit quan-
tum correlations in different types of noisy channels with
memory. Finally, we give the conclusion in Sec. IV.

II. INITIAL STATES AND NOISE MODEL

We begin with a brief description of quantum-memory
channels. As we all know, there are two different types
of quantum channels including memoryless channels and
memory channels. The simplest models for quantum
channels are memoryless, when environmental correla-
tion time is smaller than the time between consecutive
uses, so that at each channel use the environment back
action can be negligible. Namely, the system under-
takes the same quantum channel ε, in which indepen-
dent noise acts on each use. Suppose N times uses of
this channel, then we have εN = ε⊗N . However, real sys-
tems among subsequent channel uses exhibit some corre-

lations, this can happen when environmental correlation
time is longer than the time between consecutive uses, so
that the channel acts dependently on each channel input,
εN 6= ε⊗N . These kinds of channels are called memory
channels.
In what follows we consider N channel uses. Given an

input state ρ, a quantum channel ε is defined as a com-
pletely positive, trace-preserving map from input-state
density matrices to output-state density matrices,

ε(ρ) =
∑

i

EiρE
†
i (1)

where Ei =
√

Pi1...iNAi are the Kraus operators of the
channel which satisfy the completeness relationship, and
∑

i Pi1...iN = 1. Here Pi1...iN can be interpreted as the
probability that a random sequence of operations is ap-
plied to the sequence of N qubits transmitted through
the channel. For a memoryless channel, these operations
Ai are independent, and we have Pi1...iN = Pi1Pi2 ...PiN .
However, for a channel with memory, these operations
are time-correlated, Pi1...iN = Pi1Pi2|i1 ...PiN |iN−1

, here
PiN |iN−1

is the conditional probability for that operation.
For simplicity, we consider the Kraus operators for two
consecutive uses of a channel with partial memory are

Ei,j =
√

Pi[(1 − µ)Pj + µδi,j ]Ai ⊗Aj (2)

where 0 ≤ µ ≤ 1 is the memory coefficient of channel.
Following, we will focus on the noisy channels (e.g. am-

plitude damping, phase-damping, and depolarizing chan-
nels) with time-correlated Markov noise for two consec-
utive uses. Based on the Kraus operator approach, for
any initial state ρ, the finial state under noise is given by
[51, 55]

ε(ρ) = (1 − µ)
∑

i,j

Ei,jρE
†
i,j + µ

∑

k

Ek,kρE
†
k,k (3)

One can understand the above expression that the same
operation is applied to both qubits with probability µ
while with probability 1 − µ both operations are uncor-
related.

A. Amplitude damping channel with memory

Amplitude damping channel which is used to charac-
terize spontaneous emission describes the energy dissipa-
tion from a quantum system. The Kraus operators for a
single qubit are given by

A0 =

( √
1− p 0
0 1

)

(4)

A1 =

(

0 0√
p 0

)

(5)
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FIG. 1. (Color online) Quantum entanglement of a two-qubit
system initially prepared in an unentangled state under am-
plitude damping channels with memory is plotted against γt

for different µ. Other parameters: α = 0.5, r = 0.3.
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FIG. 2. (Color online) Generation of quantum entanglement
is plotted against r and µ under amplitude damping channels
with memory. Other parameters: α = 0.5, p = 0.95.

where p ≡ 1− exp(−γt) is the single qubit damping rate.
Suppose that two qubits pass through the quantum de-
phasing channel, the environmental correlation time is
smaller than the time between consecutive uses, and then
the quantum amplitude damping channel with uncorre-
lated noise can similarly be defined as the following Kraus
operators

Ei,j = Ai ⊗Aj , (i, j = 0, 1) (6)

Based on previous analysis [51, 55], an amplitude-
damping channel with finite memory for two consecutive
uses, the task of constructing Kraus operators Ek,k for
the amplitude-damping channel is given by

E00 =







√
1− p 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






(7)
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FIG. 3. (Color online) Quantum discords of a two-qubit sys-
tem initially prepared in an unentangled state under differ-
ent quantum channels with memory are plotted against γt

for different µ. (a) Amplitude damping channels, (b) phase
damping channels, (c) depolarizing damping channels. Other
parameters: α = 0.5, r = 0.3.

E11 =







0 0 0 0
0 0 0 0
0 0 0 0√
p 0 0 0






(8)

Consider the following initial states

ρ(0) = r|Ψ〉〈Ψ|+ 1− r

4
I (9)

where Ψ =
√
1− α2|01〉+ α|10〉 corresponds to the Bell-

like states with 0 ≤ α ≤ 1, and r indicates the purity of
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FIG. 4. (Color online)Quantum entanglements of a two-qubit
system initially prepared in an entangled state under differ-
ent quantum channels with memory are plotted against γt

for different µ. (a) Amplitude damping channels, (b) phase
damping channels, (c) depolarizing damping channels. Other
parameters: α = 0.5, r = 0.5.

the initial states. According to Eq. (3), through calcula-
tions, it is not difficult to get the density matrix of a two
qubits system under an amplitude-damping channel with
time-correlated Markov noise for two consecutive uses,

ρAB(t) =







ρ11(t) 0 0 0
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
0 0 0 ρ44(t)






(10)
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FIG. 5. (Color online)Quantum discords of a two-qubit sys-
tem initially prepared in an entangled state under different
quantum channels with memory are plotted against γt for dif-
ferent µ. (a) Amplitude damping channels, (b) phase damp-
ing channels, (c) depolarizing damping channels. Other pa-
rameters: α = 0.5, r = 0.5.

whose the density matrix elements are

ρ11 =
1

4
(1− p)(1− r)[1 − p(1− µ)],

ρ22 =
1

4
[1+r(3−4α2)−4pr(1−α2)(1−µ)−p2(1−r)(1−µ)],

ρ33 =
1

4
[1− r(1− 4α2)−p2(1− r)(1−µ)− 4prα2(1−µ)],

ρ44 =
1

4
[1− r+ p2(1− r)(1− µ) + 2p− pµ+ pr(2− 3µ)],
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ρ23 = ρ∗32 = rα
√

1− α2[1− p(1− µ)]. (11)

B. Phase-damping channel with memory

Phase-damping channel describes a quantum noise
with loss of quantum phase information without loss of
energy. The Kraus operators for a single qubit are de-
fined in terms of the Pauli operators σ0 = I and σ3.
Suppose that two qubits pass through the quantum

dephasing channel, the channel with uncorrelated noise
can similarly be defined by the following Kraus operators

Ei,j =
√

PiPjσi ⊗ σj (12)

and two consecutive uses of the dephasing channel with
partial memory, the Kraus operators Ek,k is given as [56]

Ek,k =
√

Pkσk ⊗ σk (13)

where i, j, k = (0, 3), and P0 = 1 − p, P3 = p, where
p ≡ 1

2 [1− exp(−γt)]. Similarly according to Eq. (3), the
density matrix elements of a two qubits system under
a phase-damping channel with time-correlated Markov
noise for two consecutive uses are

ρ11 = ρ44 =
1

4
(1− r),

ρ22 =
1

4
[1 + r(3 − 4α2)],

ρ33 =
1

4
[1− r(1 − 4α2)],

ρ23 = ρ∗32 = rα
√

1− α2[(1− p)2(1 − µ) + µ]. (14)

C. Depolarizing channel with memory

Depolarizing channel is another important type of
quantum noise, it describes the process in which the den-
sity matrix is dynamically replaced by the state I/2. I
denoting identity matrix of a qubit. The Kraus operators
for a single qubit are given by

Ai =
√

Piσi, (i = 0, 1, 2, 3) (15)

where P0 = 1 − p, P1 = P2 = P3 = p/3, and p ≡ 1
2 [1 −

exp(−γt)].
Assume that the environmental correlation time is

smaller than the time between consecutive uses, a chan-
nel is memoryless and corresponds to its Kraus operators

Ei,j =
√

PiPjσi ⊗ σj , (i, j = 0, 1, 2, 3) (16)

Here we will consider the case of two consecutive uses
of a channel with partial memory, the task of construct-
ing Kraus operators Ek,k for the non-Pauli depolarizing
channel is given [57]

Ek,k =
√

Pkσk ⊗ σk, (k = 0, 1, 2, 3) (17)

According to Eq. (3), the density matrix elements of
a two qubits system under a depolarizing channel with
time-correlated Markov noise for two consecutive uses are

ρ11 = ρ44 =
1

36
[9+r(36α2−9+16p2(1−µ)−24p(2α2−µ))],

ρ22 =
1

36
[9+r(27−36α2+16p2(1−µ)+24p(2α2+µ−2))],

ρ33 =
1

36
[9 + r(36α2 − 9 + 16p2(1− µ) + 24p(µ− 2α2))],

ρ23 = ρ∗32 =
1

9
rα

√

1− α2[(3− 4p)2(1− µ) + 9µ]. (18)

III. GENERATION AND PROTECTION OF

TWO-QUBIT QUANTUM CORRELATIONS

UNDER QUANTUM CHANNELS WITH

MEMORY

Before investigating the generation and protection of
two-qubit quantum correlations under quantum chan-
nels with memory, let us review the correlation mea-
sures quantified by quantum discord (QD) [4] which is
defined by subtracting the classical correlation C(ρAB)
from the total amount of correlation I(ρA:B), namely,
QD(ρAB) = I(ρA:B) − C(ρAB). The total correla-
tion is quantified by the quantum mutual information
I(ρA:B) = S(ρA) + S(ρB) + S(ρAB), where ρA(ρB) is
the reduced matrix of ρAB by tracing out B(A). The
classical correlation C(ρAB) is defined as C(ρAB) =
S(ρA) − min{

∏
B

k
} S(ρA|B), where S(ρ) = −tr(ρ log2 ρ)

is the von Neumann entropy. Note that the minimum is
taken over the set of positive operator valued measure-

ment {
∏B

k } on subsystem B, S(ρA|B) is the conditional
entropy for the subsystem A.
It is worthy pointing out that the calculation of classi-

cal correlation involves a potentially complex optimiza-
tion process even numerically, usually there is no general
analytical expression of discord except for the simplest
case of two-qubit state. Such as for a bipartite quantum
X-state described by the density matrix ρAB, an expres-
sion of the quantum discord is given [58]

QD(ρAB) = min(Q1, Q2) (19)

where
Qi = H(ρ11 + ρ33) + Σ4

i=1ǫi log2 ǫi +Dj,

D1 = H(
1+

√
[1−2(ρ33+ρ44)]2+4(|ρ14|+|ρ23|)2

2 ),
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D2 = −Σiρii log2 ρii −H(ρ11 + ρ33),
H(x) = −x log2 x− (1− x) log2(1− x).
Besides, to investigate the two-qubit quantum correla-

tions dynamics, we also use concurrence as the quantifier
[59]. For the density matrix of a bipartite system has a
form given by Eq. (10), the concurrence reads

QE(ρAB) = 2max(0, |ρ23| −
√
ρ11ρ44, |ρ14| −

√
ρ22ρ33)

(20)
Evidence suggests entanglement quantified by concur-
rence varies from QE = 0 for a separable state to QE = 1
for a maximally entangled state.
In the following, we adopt both quantum discord and

concurrence as a measure of quantum correlations for a
two uncoupled qubits system initially prepared in Eq.(9)
successive uses of noisy channels with memory, such as
amplitude damping, Phase-damping, and depolarizing
channels. One can easily check the initial state given
by Eq.(9), the concurrence QE(ρ0) = 0 for the purity
0 ≤ r ≤ 1/3, while the purity 1/3 < r ≤ 1 corresponds
to the concurrence QE(ρ0) > 0.
Firstly, we consider the case where the initial state

given by Eq.(9) is prepared in an unentangled state
(e.g.α = 0.5, r = 0.3), when two qubits pass through the
quantum channels with memory. Due to the amplitude
damping channels with memory, there is no entanglement
at earlier times QE(ρ0) = 0, and at some time the quan-
tum entanglement of two-qubit system starts to build up
(see Fig. 1). This phenomenon is called delayed sudden
birth of entanglement [31]. Note that the degree of en-
tanglement depends on the memory coefficient of channel
µ. The stronger the memory coefficient of channel µ is,
the more the entanglement creation is, and the earlier
the separable state becomes the entangled state. This
implies the amplitude damping channels with memory
can locally create entanglement, and it can be preserved
an unentangled state at a steady entangled state in the
presence of the quantum channels with memory. Sur-
prisingly, even though Phase-damping, and depolarizing
channel with memory, two-qubit system can not be in-
duced entanglement.
To get a better understanding of the effects of the am-

plitude damping channel with memory on the entangle-
ment creation, we plot Fig.2 to show the entanglement
creation as a function of initial state purity r and mem-
ory coefficient of channel µ for p = 0.95. One can see that
the entanglement creation is not only depended on the
memory coefficient of channel µ but also on the initial
state chosen. However, when chosen p = 1, we find that,
for any α and 0 ≤ r ≤ 1/3, QE(ρt) = rα

√
1− α2µ ≥ 0,

which means that two uncoupled qubits system initially
prepared in any separable states given by Eq.(9) can be
induced entanglement with the help of the amplitude
damping channels with memory. Our result indicates
that the amplitude damping channels with memory can
be locally created entanglement, which is attributed to µ
as well as p.
Fig.3 shows quantum discord dynamics for two initial

unentangled qubits (e.g.α = 0.5, r = 0.3) in different

quantum channels with memory. The results show that
in a case where there is initially no entanglement between
two-qubit system but there exists quantum discord. This
means quantum discord captures more general quantum
correlations than entanglements. It is proven that the
states with nonzero quantum discord but not entangle-
ment are responsible for the efficiency of a quantum com-
puter [5, 6]. Besides, quantum correlations quantified by
quantum discord exhibit in the asymptotic limit, and can
be well protected in the presence of channels with mem-
ory. Especially, as the memory coefficient of channel µ
increases, quantum discord can be protected more effec-
tively. In the limit of µ → 1, the long-living quantum
discord preservation can be observed.
Finally, we investigate the dynamics of quantum corre-

lations for two initial entangled qubits (e.g.α = 0.5, r =
0.5) in different types of quantum channels with memory,
and compare the dynamics of entanglement with that
of quantum discord. The results show that, the entan-
glement dynamics disappears in a finite time under the
influence of noise as shown Fig. 4. This behaviour is
named entanglement sudden death, and the results are
consistent with Refs. [54]. While quantum discord ex-
hibits only in the asymptotic limit in Fig. 5. This in-
dicates quantum discord is more robustness against the
noise than entanglement. Besides, the amount of ini-
tial entanglement QE(0) ≈ 0.18 possesses less general
quantum correlations than the initial quantum discord
QD(0) ≈ 0.20. Take quantum channels with memory
into consideration, as we can see that, with the memory
coefficient of channel µ increasing, it can completely cir-
cumvent the entanglement sudden death. Particularly, in
the limit of µ → 1, the memory effect can help preserve
entanglement and quantum discord at a long time. More-
over, we find, when two qubits pass through amplitude
damping channels with memory, the amount of entan-
glement creation is more than the initial one, as shown
Fig.4(a).

IV. CONCLUSION

In conclusion, we have proposed a scheme of the gener-
ation and preservation of two-qubit steady state quantum
correlations through quantum channels where successive
uses of the channels are correlated. Different types of
noisy channels with memory, such as amplitude damp-
ing, phase-damping, and depolarizing channels have been
taken into account. The effect of channels with mem-
ory on dynamics of quantum correlations has been dis-
cussed in detail. We conclude the results as follows:
Firstly, steady state entanglement between two indepen-
dent qubits without entanglement subject to amplitude
damping channel with memory can be generated, but
Phase-damping, and depolarizing channel with memory
can not. Secondly, the amplitude damping channels with
memory can locally create entanglement, the stronger the
memory coefficient of channel µ is, the more the entan-
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glement creation is, and the earlier the separable state
becomes the entangled state. Thirdly, there is initially
no entanglement between two-qubit system but there ex-
ists quantum discord in different quantum channels with
memory. Finally, we compare the dynamics of entan-
glement with that of quantum discord when a two-qubit
system is prepared in an entangled state. We show that
entanglement dynamics suddenly disappears, namely en-
tanglement sudden death occurs, while quantum discord
displays only in the asymptotic limit. As the memory co-

efficient of channel µ increases, the phenomena of entan-
glement sudden death can be completely circumvented.
Particularly, two-qubit quantum correlations can be pre-
served at a long time in the limit of µ → 1
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[33] K. Almutairi, R. Tanaś, Z. Ficek, Phys. Rev. A 84 (2011)

013831.
[34] P.W. Shor, Phys. Rev. A 52 (1995) 2493.
[35] A.M. Steane, Phys. Rev. Lett. 77 (1996) 793.
[36] D.A. Lidar, I.L. Chuang, K.B. Whaley, Phys. Rev. Lett.

81 (1998) 2594.
[37] P.G. Kwiat, A.J. Berglund, J.B. Altepeter, A.G. White,

Science 290 (2000) 498.
[38] X. Xiao, Y. Li, K. Zeng, C. Wu, J.Phys. B: At. Mol. Opt.

Phys. 42 (2009) 235502.
[39] L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82 (1999)

2417.
[40] J.R. West, D.A. Lidar, B.H. Fong, M.F. Gyure, Phys.

Rev. Lett. 105 (2010) 230503.
[41] Z.X. Man, Y.J. Xia, and R. Lo Franco, Phys. Rev. A 92

(2015) 012315.
[42] S. Maniscalco, F. Francisca, R. Zaffino, N. Gullo, F. Plas-

tina, Phys. Rev. Lett. 100 (2008) 090503.
[43] A.N. Korotkov, K. Keane, Phys. Rev. A 81 (2010)

040103.
[44] Q. Sun, M. Al-Amri, M.S. Zubairy, Phys. Rev. A 80

(2009) 033838.
[45] Y.S. Kim, J.C. Lee, O. Kwon, Y.H. Kim, Nat. Phys. 8

(2012) 117.
[46] X. Xiao, Y.L Li, Eur. Phys. J. D 67 (2013) 204.
[47] S.C. Wang, Z.W. Yu, W.J. Zou, X.B. Wang, Phys. Rev.

A 89 (2014) 022318.
[48] J. Yune, K.H. Hong, H.T. Lim, J.C. Lee, O. Kwon,

S.W. Han, Y.S.Kim, S. Moon, Y.H. Kim Opt. Express

23 (2015) 26012-26022.
[49] M. Merkli, G. P. Breman, F. Borgonovi, V.I. Tsifrinovich,

Advance in Math. Phys. (2012) 375182.
[50] M.M. Flores, E.A. Galapon, Annals of Physics, 354

(2015) 21-30.



8

[51] C. Macchiavello, G. M. Palma, Phys. Rev. A 65 (2002)
050301.

[52] A. DArrigo, G. Benenti, G. Falci, C. Macchiavello, Phys.
Rev. A 88 (2013) 042337

[53] A. D’Arrigo, G. Benenti, G. Falci, C. Macchiavello, Phys.
Rev. A 92 (2015) 062342

[54] M. Ramzan, Quantum Inf. Process. 12 (2013) 83-95.
[55] Y. Yeo, A. Skeen, Phys. Rev. A 67 (2003) 064301.

[56] A. DArrigo, G. Benenti, G. Falci, New J. Phys. 9 (2007)
310.

[57] C. Macchiavello, G. M. Palma, S. Virmani, Phys. Rev. A
69 (2004) 010303.

[58] C.Z. Wang, C.X. Li, L.Y. Nie, J.F. Li, J.Phys. B: At.

Mol. Opt. Phys. 44 (2011) 015503.
[59] W. K. Wootters, Phys. Rev. Lett. 80 (1998) 2245.


