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Following recent developments in quantum PageRanking, we present a compar-

ative analysis of discrete-time and continuous-time quantum-walk-based PageRank

algorithms. For the discrete-time case, we introduce an alternative PageRank mea-

sure based on the maximum probabilities achieved by the walker on the nodes. We

demonstrate that the required time of evolution does not scale significantly with in-

creasing network size. We affirm that all three quantum PageRank measures consid-

ered here distinguish clearly between outerplanar hierarchical, scale-free, and Erdös-

Rényi network types. Relative to classical PageRank and to different extents, the

quantum measures better highlight secondary hubs and resolve ranking degeneracy

among peripheral nodes for the networks we studied in this paper.
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I. INTRODUCTION

Characterising the relative importance of nodes in a graph is a key element in network

analysis. A ubiquitous application of such centrality measures is Google’s PageRank algo-

rithm [1, 2], whereby the World-Wide Web (WWW) is considered as a network of webpages

(nodes) connected by hyperlinks (directed edges) between them. By ranking each webpage

according to its PageRank centrality, the search engine’s results are ordered based on their

approximated quality.

There has been recent interest in formulating a quantum version of PageRank. Since

the intuition behind Google’s PageRank is a classical “random surfer” crawling the WWW,

a quantum walker traversing the associated directed network can be expected to provide

an analogous measure of PageRank. As the quantum analogue of classical random walks,

quantum walks serve as building blocks for quantum algorithms that can outperform their

classical counterparts [3]. It is thus interesting to study whether their quantum mechanical

properties afford an advantage over Google’s classical PageRank algorithm.

Paparo et al. [4] and Sánchez-Burillo et al. [5] have separately proposed two quan-

tum PageRank measures. The former is based on a discrete-time quantum walk (DTQW),

whereas the latter uses a continuous-time quantum walk (CTQW). While quantum walks

on arbitrary undirected graphs have been well defined, extending this framework to include

directed quantum walks is non-trivial due to the requirements of unitarity and reversibility

of the walk [6]. To deal with this difficulty, the discrete-time quantum PageRank uses a non-

fully-directed but unitary walk; whereas the continuous-time algorithm forgoes unitarity in

using an open-system quantum walk.

In [7], Paparo et al. performed further analysis of their proposed quantum PageRank

on complex networks, specifically on hierarchical graphs, directed scale-free graphs, and

Erdös-Rényi random graphs. The quantum PageRank algorithm not only distinguished

clearly between the three graph classes, but also exhibited distinct characteristics in terms

of highlighting secondary hubs and lifting the degeneracy of low-lying nodes. While it

displayed a smoother power law behaviour on scale-free networks, it was more sensitive to

coordinated attacks on hubs than the classical PageRank algorithm.

Nevertheless, the number of time steps required for the underlying discrete-time quantum

walk to yield a reliable quantum PageRank is yet to be considered. We seek to address this
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by investigating the oscillatory nature of the walker’s probability amplitudes across nodes in

the network. Such a consideration is worthwhile should an efficient quantum-system-based

implementation of the PageRank scheme become realisable.

The open-system-quantum-walk-based PageRank in [5] modelled directionality as the

walker’s non-unitary interaction with the environment. Similar to the discrete-time case,

the open-system PageRank lifted classical rank degeneracy of lowly connected nodes, whilst

preserving identification of the most central nodes. By extension, it is useful to ascertain

whether the other characteristics found in [7] for the discrete-time quantum PageRank are

reflected in the open-system scheme.

In this article, we largely follow the analysis in [7], but extend it in three ways. Firstly,

we consider the time-scale involved for discrete-time-quantum-walk-based PageRank. For

the network types considered here, we gauge a suitable number of time steps for the walker’s

evolution after which reliable PageRanks can be obtained. We propose such an upper bound

that does not scale significantly with increasing network size.

Secondly, rather than taking the time average of the walker’s probability distribution, we

propose an alternative indicator of PageRank based on the maximum probability amplitude

achieved by the walker on each node. This has previously been studied as a centrality

measure on undirected graphs in [8].

Thirdly, we concurrently analyse an open-system-based PageRank algorithm. In our com-

parative study of three quantum PageRank schemes, we discuss their relative performance

in extracting practically useful information about the networks under consideration. This

provides a better understanding of each scheme as tools for quantum-walk-based complex

network analysis. Our results suggest that as per classical PageRank, quantum PageRank-

ing distinguishes clearly between the outerplanar hierarchical, scale-free, and Erdös-Rényi

network families. While the quantum measures pick out more secondary hubs and remove

degeneracies among low-lying nodes [5, 7], each exhibits such quantum advantage to different

extents.

This article is organised as follows: Section II outlines the theoretical framework un-

derlying the classical and quantum PageRank algorithms. In Section III, we present our

numerical results for the algorithms on three types of directed networks, namely outer-

planar hierarchical, scale-free, and Erdös-Rényi networks. We continue our comparative

analysis on the algorithms in terms of secondary hub resolution on scale-free networks,
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localisation-delocalisation of the walker, and power law behaviour on scale-free networks.

Finally, Section IV contains discussion and conclusions.

II. THEORY

A. Classical PageRank

Google’s PageRank algorithm is a variant of eigenvector centrality. The PageRank vector

Icl is given by

GIcl = Icl, (1)

where G is the Google matrix, defined as

G := αE +
(1− α)

N
1. (2)

Here N is the number of nodes in the network, E is a (patched) connectivity matrix, α is

the damping parameter (typically α = 0.85), and 1 is the matrix of all ones. Intuitively, the

second term represents the possibility of the walker randomly hopping to any other node in

the network [2].

Define the connectivity (or adjacency) matrix C of the network as Cjk = 1 if there is

an edge from k to j, and Cjk = 0 otherwise. To obtain the patched E, C is modified such

that each column k containing all zeroes (corresponding to a node k with zero out-degree)

is replaced by a column with all entries set to 1
N

. The remaining columns corresponding to

nodes with outgoing link(s) are normalised to sum to one by dividing by the out-degree of

the node. Denote the out-degree of a node k by Dk, with Dk =
∑

j Cjk. Mathematically, E

is then

Ejk =


1
N

if Dk = 0

Cjk

Dk
if Dk 6= 0

(3)

and is in general column stochastic.

B. Szegedy-Google PageRank via discrete-time quantum walk

Szegedy’s formalism of the discrete-time quantum walk is a quantisation of the Markov

chain corresponding to a classical random walk [9–12]. Classically, for an N -node graph,
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such a process is described by an N -by-N matrix P of transition probabilities, where each

entry Pjk denotes the transition probability from node k to node j. Szegedy’s walk takes

place on the Hilbert space HN2
= HN ⊗ HN . This space is the span of all vectors |j, k〉,

where each vector represents a directed edge in the graph from node j to node k.

First we define the state vector

|ψj〉 := |j〉 ⊗
N∑
k=1

√
Pkj |k〉

=
N∑
k=1

√
Pkj |j, k〉

(4)

for each node j = 1, . . . , N of the graph. This represents a superposition of edge states

|j〉1 |k〉2 outgoing from the jth vertex, weighted by P . The reflection operator is given by

Π̂ :=
N∑
j=1

|ψj〉 〈ψj| , (5)

and

Ŝ :=
N∑

j,k=1

|j, k〉 〈k, j| (6)

is the swap operator. Then a step of the quantum walk is the unitary operator

Û := Ŝ(2Π̂− 1̂), (7)

whereas a two-step evolution operator takes the form

Û2 := (2ŜΠ̂Ŝ − 1̂)(2Π̂− 1̂). (8)

As proposed in [4], using the Google matrix G as the stochastic matrix P implements

a quantum version of the classical PageRank algorithm. Unitarity of the quantum walk is

maintained since G is stochastic, moreover information on the directionality of the network

is preserved in G.

The corresponding quantum walk is initialised as

|ψ0〉 =
1√
N

N∑
j=1

|ψj〉 (9)

that is, an equal superposition across all nodes, but weighted among the edge states at each

node by G. Taking Û2 as the discrete time evolution operator of the walk, the instantaneous

quantum PageRank is then

Iq(Pi, t) = 〈ψ0| Û †2t |i〉2 〈i| Û
2t |ψ0〉 , (10)
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which is just the walker’s probability distribution of over the Pi pages in the network after

t time steps. This value does not converge in time to any stationary distribution due to the

unitarity and reversibility of the quantum walk operator defined by Eq. (7).

Since a quantum PageRank measure must provide a unique ranking to each node in the

graph, Paparo et al. define it as the walker’s time-averaged probability distribution:

ITA(Pi) := 〈Iq(Pi, t)〉 =
1

tmax

tmax−1∑
t=0

Iq(Pi, t), (11)

which converges for large enough tmax. This will be referred to as the time-averaged (TA)

PageRank measure in this paper.

We propose an alternative PageRank measure based on the peak probability of finding

the walker on the node. We use the maximum Iq(Pi, t) reached after tmax to be the quantum

PageRank of a node:

IPmax(Pi) := max{Iq(Pi, t) : 1 ≤ t ≤ tmax, t ∈ Z}. (12)

We seek to gauge a suitable time-scale tmax based on the oscillatory evolution of Iq(Pi, t)

according to Eq. (10). First we apply t = 500 time steps of Û2 onto the initial state (9).

Performing a Fourier transform on the time series Iq(Pi, t) yields a power spectrum of the

oscillation frequencies present in it. We define ω(Pi) to be the lowest frequency present above

noise using a threshold of 10% of the highest peak in the power spectrum [8]. The “period”

of Iq(Pi, t) is then Tq(Pi) = 2π
ω(Pi)

. In general, each node i in the network, corresponding to

page Pi, has a different period Tq(Pi).

Denote the mean period of all nodes as 〈T allq 〉:

〈T allq 〉 :=
1

N

N∑
i=1

Tq(Pi). (13)

Let 〈T 5
q 〉 be the mean period of the five nodes whose instantaneous quantum PageRanks

Iq(Pj, t) reach the highest peak values within their respective periods 1 ≤ t ≤ Tq(Pj), t ∈ Z.

Following the above steps, we compute 〈T allq 〉 and 〈T 5
q 〉 for the directed network families

relevant to this study, namely outerplanar hierarchical, scale-free, and Erdös-Rényi networks

with sizes N = 32, 54, 128, 256, 512 nodes. We use an ensemble of ten scale-free and Erdös-

Rényi random networks for each N , generated using NetworkX [13]. For each Erdös-Rényi

network here and throughout this article, the probability for edge creation is set to p = 0.07.
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We use tmax = 2〈T 5
q 〉 as the required time-scale for our PageRank analyses, reasoning that

the periods of the most central nodes should figure more strongly over those of the peripheral

nodes in determining the general time-scale for each network.

Numerical results are shown in Table I, and Figure 1 plots the scaling of the mean periods

with network size. Our results suggest that tmax = 2〈T 5
q 〉 does not scale linearly upward

with N , rather it remains stable for the network types considered here. In the case of the

deterministically-constructed outerplanar hierarchical networks, the mean period plateaus

at approximately 〈T 〉 = 20 time steps for successive generations. Overall, the mean periods

are highest for scale-free networks. We see that larger Erdös-Rényi networks (with same

edge probability p = 0.07) tend to have smaller mean periods. We expect the time-scale for

higher N to remain similarly bounded.

C. Open-system PageRank via continuous-time quantum walk

The continuous-time quantum walk was originally proposed by Farhi and Gutmann out

of a study of computational problems reformulated in terms of decision trees [14]. Following

the Schrödinger equation, such evolution is described by

d |Ψ(t)〉
dt

= −iĤ |Ψ(t)〉 , (14)

where Ĥ is the transition rate matrix. Requiring unitary evolution operators in quantum

mechanics implies that Ĥ must be Hermitian, which is generally not the case for a directed

walk. To introduce directionality into CTQWs, we employ the open system method using the

Lindblad-von Neumann equation, which accounts for the non-unitary nature of the directed

walk through coupling with an external environment.

To work with open quantum systems, the concept of a density operator is used as a

substitution for wave functions in quantum mechanics. The density operator for the system

is defined by [15]

ρ =
N∑
i=1

pi |Ψi〉 〈Ψi| (15)

where pi are constants that represent how much of state |Ψi〉 is in the final mixed state, with
N∑
i=1

pi = 1.
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The Lindblad-von Neumann equation describes how a quantum system evolves after

tracing out the environment, and can be written in the form [16]:

dρ

dt
= −i~[Ĥ, ρ] +

∑
k

γk(L̂kρL̂
†
k −

1

2
{L̂kL̂†k, ρ}), (16)

where L̂k are unitary operators on the space that ρ is in. The set of all L̂k forms a basis

for this space. The matrix γ describes how non-energy conserving phenomena such as

temperature affect the system.

To parameterise interpolation between classical (undirected) and classical (directed) be-

haviours, a damping parameter β is introduced into the Lindblad-von Neumann equation:

dρ

dt
= −i(1− β)[Ĥ, ρ] + β

∑
i,j

γij(L̂ijρL̂
†
ij −

1

2
{L̂ijL̂†ij, ρ}), (17)

where Ĥ is just the adjacency matrix C with no allowance for direction or weighting of the

underlying graph. γ is taken as the patched connectivity matrix E as per Eq. (3) – this a

specific case of the Google matrix G in Eq. (2) with α = 1. Our approach is equivalent to

the quantum PageRank algorithm developed by Sánchez-Burillo et al. in [5], where they set

γ = G with α = 0.9 instead.

We solve the master equation via an eigen-operator method used by Saalfrank [17]. This

is a linearisation method that turns a non-linear equation into a linear one, whereby Eq.

(17) becomes
dρ

dt
= −i(1− β)LHρ+ βLDρ = LSOρ. (18)

This takes the eigen-operators LH and LD from the original N -dimensional space to a space

of N2 dimensions, and the density matrix is vectorised in this set-up.

As per Eq. (18), LH and LD can be combined into one operator LSO. For time-

independent LSO, this form is readily solved for any time t by taking the matrix exponential

of LSO, i.e.

ρ = ρ0e
LSOt. (19)

Convergence to a stationary result for large enough t is guaranteed [5], upon which the

occupation probabilities of each node indicate the open-system quantum PageRank, namely

IOS(Pi) := 〈i|ρ|i〉 = ρii. (20)
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III. RESULTS

To recap, the four PageRank measures considered here are:

• Icl (1) – classical Google PageRank

• ITA (11) – DTQW-based PageRank using the time-average of the instantaneous quan-

tum PageRank Iq

• IPmax (12) – DTQW-based PageRank using the maximum Iq reached

• IOS (20) – CTQW-based PageRank using the open system method

We set α = 0.85 in the Google matrix G (2) for Icl, ITA, and IPmax . For IOS, we use α = 1

in G and β = 0.85 in the master equation (17).

For all numerical results below, the DTQW-based PageRank measures ITA (11) and IPmax

(12) are computed using tmax = 2〈T 5
q 〉 steps of the evolution operator Û2, with values for

〈T 5
q 〉 in Table I. For IOS, we use sufficiently large t for convergence to the stationary result.

A. Three types of directed networks considered

To allow meaningful comparison between the four PageRank measures on various net-

works, we normalise the PageRanks by dividing through by the maximum value obtained

so that the most central node has a PageRank value of 1.

1. Outerplanar hierarchical networks

As introduced by Comellas and Miralles [18], outerplanar hierarchical networks are a

family of modular, self-similar, small-world graphs with zero clustering. This family mirrors

social, technological, and biological systems with a low clustering [19]. Outerplanarity refers

to the network having an embedding where all nodes lie on the boundary of the exterior

face; whereas the hierarchical structure is realised by using a recursive method of network

construction. Each generation n has N = 2n+1 nodes; thus the network doubles in size for

successive n, with newly-added nodes being those indexed 2n < i ≤ 2n+1. We follow [7] in

giving directions to the edges.
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As shown in Figure 2, all three quantum PageRank measures have a step-like behaviour

that reflects the network’s hierarchical structure. Within the same hierarchical level, edge

directionality gives rise to non-degenerate PageRank values. This intra-level non-degeneracy

has a smaller amplitude for the newly-added nodes (evidenced by nodes 17-32 in n = 4,

nodes 33-64 in n = 5, nodes 65-128 in n = 6, and nodes 129-256 in n = 7), thus enabling the

PageRank measures to distinguish between pre-existing and newly-added nodes in successive

generations.

Comparing ITA and IPmax , the latter measure tends to give more closely-valued PageRanks

within a hierarchical level, particularly for the newly-added nodes. As depicted in Figure 3,

nodes whose oscillatory Iq never peak above the value subsequent to the initial state receive

near-similar IPmax = Iq(Pi, t = 1) after one time step. For example, IPmax almost plateaus

for nodes 21-24 in n = 4 and nodes 41-48 in n = 5. Taking the time average resolves this

degeneracy as each node’s Iq evolves slightly differently in time.

Furthermore and as would be expected, we see that pairs of automorphically equivalent

nodes have identical time evolution of Iq. (Two nodes a and b are said to be automorphically

equivalent if there exists an isomorphism in which the labels of a and b are interchanged

[20, 21].) Such nodes are thus ranked identically by ITA and IPmax , preserving the equivalence

also present in Icl. On the other hand, this identical ranking of automorphically equivalent

nodes is not preserved by IOS. We instead observe a falling pattern of IOS values within the

hierarchical levels.

In summary, the four PageRank measures considered here are able to uncover the hier-

archical structure present in each network, but disagree on the relative rankings of these

levels. Here IOS most closely resembles Icl in ranking each level; but, especially for higher

n, its intra-level behaviour is in stark contrast to the other measures.

2. Scale-free networks

A power-law degree distribution typifies scale-free networks, that is, the probability P (k)

that a node is connected to k other nodes decays as P (k) ∼ k−γ [22]. Such behaviour was

first observed by Albert et al. in their analysis of the topology of the World-Wide Web, in

that the numbers of incoming and outgoing hyperlinks of a webpage both follow a power law

over several orders of magnitude [23]. Numerous other real-world networks have since been



11

found to be scale-free, from functional networks in the brain [24] and protein interactions

in cells [25], to social networks and their technical derivatives such as the Internet, e-mail

networks, and business collaboration [26].

Inherently linked to the scale-free property of a network is its evolution over time [27],

which can be modelled by preferential attachment [28]. Starting with a small number of

nodes, new nodes are added with a higher probability of being connected to pre-existing

nodes that are already well-connected – conceptually, “the rich get richer.” In this study,

we perform PageRank analysis on Bollobás et al.’s scheme for directed scale-free networks

[29] as implemented in NetworkX [13]. This scheme allows multiple edges and loops.

Based on Figure 4, all PageRank methods largely agree on identifying the most central

nodes, or hubs. Figure 5 provides an example case for obtaining ITA and IPmax based on the

time evolution of Iq.

As previously observed and noted in [7], ITA better highlights the secondary hubs com-

pared to Icl rather than concentrating all the importance on the most important hubs.

We see that this improved ranking capability of ITA over classical PageRank is even more

strongly featured in IPmax on both types of scale-free network. We investigate this further

in Subsection III B.

For the examples considered here, nodes with little or no in-degree receive the lowest

importances according to Icl and IOS, forming a near-plateau of low-lying nodes.

ITA and IPmax are additionally affected by which nodes a given node is pointing to. In

the case of the 32-node scale-free network in Figure 4, node 17 has unexpectedly high ITA

and IPmax by virtue of its pointing to secondary hub node 11. Similarly, the nodes pointing

to central hubs nodes 1 and 2 have low Icl and IOS, but have improved ITA and IPmax . The

more nodes there are that point to a given hub, the less advantage those nodes gain, as is the

case for those surrounding node 3. This accords with the observation made by [5] for their

open-system-quantum-walk-based PageRank, in that nodes connected to hubs distributing

their influence amongst a large number of connections receive lower rankings.

Therefore, low-lying nodes with degenerate Icl can be distinguished by ITA and IPmax

as these measures are more sensitive to the nodes’ positions in the network. In particu-

lar, a node’s ranking is increased by being linked to a network hub, provided it is among

a few neighbours of the hub. This ability of quantumness to resolve classical PageRank

degeneracies among peripheral nodes is also noted in [7] and [5].
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Finally we observe that IOS closely resembles Icl on these networks. Considering that

IOS as implemented here uses damping parameter α = 1 ⇒ G = E as the matrix coding

classical behaviour (directionality) into the walk, this suggests that β in the master equation

(18) (parameterising the classicality of the walk, here set to β = 0.85) can play a similar

role to that of α in classical PageRanking (parameterising random hops to any node, set to

α = 0.85 for Icl).

3. Erdös-Rényi random networks

An Erdös-Rényi random network of N nodes is constructed by choosing, with common

edge probability p, whether or not to connect pairs of nodes, with the choices being inde-

pendent for each node pair [30, 31]. For large N , its degree distribution follows a Poisson

distribution P (k) = e−〈k〉 〈k〉
k

k!
, where 〈k〉 is the mean degree. Despite having random edge

positions, such a network is rather homogeneous as most nodes have the same degree [32].

In this study, we use directed Erdös-Rényi random networks generated using NetworkX [13].

An example case of obtaining the DTQW-based ITA and IPmax is presented in Figure 6.

Overall results in Figure 7 demonstrate that for each PageRank measure, most nodes receive

similar PageRanks with no discernible hubs. This is an ostensibly different distribution of

PageRanks in contrast to the directed scale-free networks analysed earlier. Subsection III C

further studies this localised/delocalised behaviour of the walker on these two network types.

In summary, consistent with our analysis on scale-free networks, we find that IPmax pro-

vides an alternative measure to ITA as both exhibit similar features; whereas IOS more

closely resembles Icl.

B. Detection of secondary hubs on scale-free graphs

The preliminary PageRank analyses on scale-free graphs suggest that the quantum-walk-

based PageRank measures tend to give higher ranks to secondary hubs compared to classical

PageRank. To quantify such secondary-hub detection for each PageRank scheme, we analyse

an ensemble of 30 directed scale-free networks of size N = 256 by categorising the nodes

according to their PageRanks.

As before, for each network and PageRank method, we normalise the nodes’ PageRanks
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by dividing through by the maximum so that the most central node has a PageRank of 1.

Let the mean of these maximum-normalised PageRanks be a. Then we classify a node with

PageRank x as a

• main hub if x ≥ ca,

• secondary hub if a ≤ x < ca,

• low-importance node hub if x < a,

where c > 1 is a fixed constant. Here we choose c = 10.

Results plotted in Figure 8 affirm our earlier observations on scale-free networks. Compar-

ing all Pagerank measures considered, IPmax identifies the most number of nodes as secondary

hubs, followed by ITA, IOS, and finally Icl.

Based on Figure 8(c), the set of nodes classified as secondary hubs by ITA is most likely a

subset of those identified by IPmax . In particular, IPmax never picks out less secondary hubs

than ITA; moreover both largely follow the same trend in quantifying secondary hubs across

the network ensemble. On the other hand, IOS exhibits a similar trend to Icl. Although

not as stark a difference as the other two quantum measures, IOS also outperforms Icl in

secondary hub detection.

C. Localisation-delocalisation transition

To further compare the abilities of the various PageRank schemes to distinguish between

scale-free and Erdös-Rényi random networks, we study their localisation behaviour on these

network types. Since each PageRank scheme corresponds to a classical or quantum walk

along nodes, we can infer the walker’s degree of localisation based on the PageRank distri-

bution across the network.

Within scale-free networks, the presence of hubs – nodes of unusually high degree – is

the fundamental cause of localisation. Such localisation poses a problem for conventional

eigenvector centrality because most of the weight of the centrality concentrates on a small

number of nodes, thus necessitating the random-hop term in the Google matrix [33]. On the

other hand, the relatively homogeneous degree distribution in Erdös-Rényi random networks

is expected to favour a delocalised phase of the walker, as observed in [7].
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To quantify localisation, we use the Inverse Participation Ratio (IPR) defined as

ξ :=
N∑
i=1

[Pr(X = i)]2r , (21)

where r > 0 is a freely-chosen integer, and is fixed.

As in [7], we appropriate ξ to the case of PageRanks by considering X as a random

variable whose realisations are the nodes of the network. Then the probability Pr(X = i)

corresponds directly to node i’s PageRank Icl, ITA, or IOS – for each of these measures, the

sum of all PageRanks over the network is one. For a consistent probability interpretation of

IPmax , we divide its values by the mean 〈IPmax〉, so that all such normalised values sum to

one.

In the case of complete delocalisation, the walker’s probability distribution would be

uniform across the network, that is, Pr(X = i) = 1
N
∀i. If the walker is fully localised on one

node j, Pr(X = i) = δij, the Kronecker delta. Hence the IPR for these limiting cases is

ξ =

1 if the walker is localised

N1−2r if the walker is delocalised.
(22)

Rewrite the IPR as ξ = N−τ2r with

τ2r := (2r − 1) + ∆2r, (23)

where ∆2r is the normalised anomalous dimension, which interpolates between ∆2r = 1−2r

for a localised phase and ∆2r = 0 for a delocalised one. Then

log ξ ∼ (1− 2r −∆2r) logN. (24)

Choosing r = 1 and plotting log ξ against logN , analytical values for the gradient of the

plot are a = 0 and a = −1 for complete localisation and delocalisation respectively.

Based on Eq. (24), we analyse the localisation-delocalisation transition of each PageR-

ank measure. We compute the IPR for scale-free and Erdös-Rényi networks of size N =

32, 64, 128, 256, and 512, using an ensemble of ten graphs for each N .

As shown in Figure 9, performing linear fits on the resulting log-log plots yield numerical

gradient values a that are near-zero for the scale-free plots, and close to −1 for the Erdös-

Rényi plots. These values respectively correspond to localised and delocalised phases of the
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walker, as was expected based on the presence and absence of hubs in these networks. All

four PageRank measures are thus able to distinguish between scale-free and Erdös-Rényi

random networks by virtue of the walker’s localisation behaviour.

D. Power law behaviour on scale-free networks

Analyses of classical PageRank on real-world Web graphs have revealed a power law

distribution of PageRank values [34, 35]. This reflects a characteristic property of such scale-

free networks, in that only a few main hubs account for much of the PageRank allocation in

such scale-free networks. In particular,

Ij ∼ j−λ, (25)

where the Ij are the PageRanks of nodes sorted in descending order, and λ is the power

law scaling coefficient. Such a power law behaviour confirms that the PageRank algorithm

is able to reveal a network’s scale-free nature, with λ measuring the relative importance of

hubs with respect to the other less important nodes [7].

Here we verify and compare such power law behaviour for the PageRank measures Ij =

Icl, ITA, IPmax , and IOS. As per Subsection III C, the IPmax values given by Eq. (12) are

normalised to sum to one. For each measure, a plot of the logarithm of the sorted PageRank

values Ij against the logarithm of the node index j has slope λ. We analyse an ensemble of

30 scale-free networks with N = 256 generated using NetworkX.

Figure 10 contains plots of the logarithm of the ensemble mean PageRanks against j,

with linear fits yielding β for each PageRank measure. All PageRank measures display a

power law behaviour with scaling coefficients λOS < λTA < λPmax < λcl. The quantum-walk-

based measures thus tend to concentrate less importance on the hubs compared to classical

PageRank.

As noted in [7], the power law behaviour of ITA interpolates over a larger portion of the

data compared to Icl, marked as region II in Figure 10. We observe that such a smoother

power-law behaviour is preserved by IPmax . Therefore, ITA and IPmax can both better dis-

tinguish the low-lying nodes on scale-free networks.

In contrast for Icl, and as observed in [35], the plot flattens out for nodes in region III

with very low PageRank. Such a tail region without the general power-law behaviour is also
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present for IOS, but is characterised instead by a sharp decrease in PageRank. Nodes of

lowest importance are thus penalised by IOS.

Finally, Figure 11 presents an overall plot of each PageRank measure’s distribution on

scale-free networks. As shown in region II of the plot, intermediate nodes (including the

secondary hubs discussed in Subsection III B) are given higher ranks according to (in de-

scending order) IPmax , ITA, and IOS compared to Icl. To compensate for this improved

ranking, main hubs in region I receive lower quantum than classical PageRanks.

IV. DISCUSSION AND CONCLUSIONS

In this article, we have presented a comparative investigation of three quantum PageRank

measures, two of which are based on a DTQW, while the third uses an open-system CTQW.

Extending the work in [7], we further studied the periodic nature of the instantaneous

quantum PageRank Iq. In particular, we utilised it to propose a suitable time-scale tmax =

2〈T 5
q 〉 for the corresponding DTQW based on the periods of the hub nodes. Such a time-

scale was observed to not scale with network size, making it feasible even use on for larger

networks. In addition to taking ITA, we proposed a new measure IPmax to extract PageRanks

from Iq. For the open-system PageRank proposed in [5], we investigate the specific case of

α = 1 and β = 0.85 as defined here.

We have demonstrated that all three quantum PageRank measures are able to distinguish

between outerplanar hierarchical, scale-free, and Erdös-Rényi directed networks. Through

a comparative view, we observed similarities in rankings given by the DTQW-based PageR-

anks ITA and IPmax , and between the open-system-based PageRank IOS and the classical

PageRank Icl.

When applied to scale-free networks, the quantum PageRank schemes were better able

to highlight secondary hubs in scale-free networks than the classical scheme, which tends

to concentrate PageRanks on a few main hubs. This affirmed the results in [7] and [5];

moreover we found that this quantum advantage is most apparent in IPmax , followed by ITA

and IOS.

We used the Inverse Participation Ratio (IPR) to characterise the walker’s localisation on

scale-free and Erdös-R’enyi networks. We showed that for all four PageRank methods, the

walker is in a localised phase on the hub-containing scale-free networks, and is delocalised



17

on the hubless Erdös-R’enyi random networks. Therefore, each PageRank scheme is shown

to clearly distinguish between these two types of networks.

Lastly, the distribution of quantum PageRanks was observed to follow a power-law be-

haviour on scale-free networks – a property present in classical PageRank. In particular,

we showed that IPmax preserves the smoother power-law distribution over a larger portion

of nodes as found in ITA [7] compared to the classical case. We observed that IOS scales

according to a power law for most nodes, but displays a sharp drop in average PageRank

for the nodes of lowest importance, thus indicating that these nodes are penalised by IOS

compared to Icl.

In summary, we have shown that over the proposed time scale, IPmax does provide a fea-

sible alternative measure to ITA. It is interesting to note that IOS, constructed here without

the random hopping term present in Icl (as αOS = 1 while αcl = 0.85 in the Google matrix)

but with interpolation between the quantum/undirected and classical/directed behaviours

(as β = 0.85), resembles the classical PageRank measure that itself interpolates between

random hops and the underlying graph.

In future, it will be instructive to further analyse the oscillation periods of Iq on different

network types, particularly for deterministically-constructed graphs. From the cases consid-

ered here, we posit that the oscillation periods of Iq depend not on the number of nodes in

the network, but on the distribution and density of edges between nodes.

It will be useful to study the effect of the damping parameter α on IPmax and IOS. In [7],

ITA was found to be stable over a larger range of α values compared to Icl. We expect this

higher robustness to be preserved by IPmax as it is also derived from Iq. Furthermore for

IOS, it will be useful to study the effects of both parameters α and β in the Google matrix

and master equation respectively, as we have noted here that β seems to replicate the effects

of α in Icl.

As in [7], the sensitivity of the PageRank measures to coordinated attacks on hubs in scale-

free networks is worth investigating. We expect IPmax to be most affected by the selective

removal of hubs, as this scheme gives higher rankings to intermediate nodes compared to

the others.

Finally, the efficient implementation of such quantum PageRank schemes remains an open

problem. While an efficient quantum-circuit-based implementation is proven to be possible

for sparse unitary operators [36], the use of the Google matrix in ITA and IOS causes the
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associated unitary evolution operator Û to be dense. For the open system case, the matrix

exponential eLSO also becomes dense even for sparse networks.
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Network type N 〈T 5
q 〉 〈T allq 〉

32 21.0 19.7

64 24.0 19.7

Outerplanar hierarchical 128 21.4 19.8

256 20.2 20.5

512 21.0 20.2

32 95.3 109.0

64 100.2 120.7

Scale-free 128 85.8 118.9

256 91.0 111.0

512 99.1 113.3

32 37.7 68.3

64 56.6 64.4

Erdös-Rényi 128 54.5 72.5

256 20.4 33.8

512 11.0 17.5

TABLE I. Mean periods 〈T 5
q 〉 and 〈T allq 〉 of the three network types considered, with number of

nodes N . We use tmax = 2〈T 5
q 〉 as the number of time steps to obtain ITA and IPmax for a given

network type and size.
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FIG. 2. PageRanks on outerplanar hierarchical networks for generations n = 4, 5, 6, 7.

Icl, ITA, IPmax , and IOS – normalised by their maximum values – are plotted in gray, blue, purple,

and orange respectively.
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FIG. 3. Time evolution of Iq on n = 4 and n = 5 outerplanar hierarchical networks.

Left: The selected like-coloured nodes are automorphically equivalent, and have Iq that evolve

identically over time. Right: Time evolution of Iq. Vertical dashed lines bound tmax = 2〈T 5
q 〉

for the network, within which we determine IPmax as indicated by arrows, and ITA by taking the

time-averaged probabilities.
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FIG. 4. PageRanks on directed scale-free networks of sizes N = 32, 64, 128, 256. Icl,

ITA, IPmax , and IOS – normalised by their maximum values – are plotted in gray, blue, purple, and

orange respectively. For the N = 32 and N = 64 cases, nodes marked in red are the most central

nodes, or hubs; secondary hubs identified by ITA and IPmax are marked in grayscale.
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FIG. 5. Time evolution of Iq on a directed scale-free network of size N = 128. The black

vertical dashed line bounds tmax = 2〈T 5
q 〉 for the network, within which we determine IPmax as

indicated by arrows, and ITA by taking the time-averaged probabilities.

 
  

FIG. 6. Time evolution of Iq on a directed Erdös-Rényi network of size N = 256. The

vertical dashed line indicates tmax = 2〈T 5
q 〉 for the network, within which we determine IPmax as

indicated by arrows, and ITA by taking the time-averaged probabilities.



26

FIG. 7. PageRanks on directed Erdös-Rényi random networks of sizes N =

32, 64, 128, 256. Icl, ITA, IPmax , and IOS – normalised by their maximum values – are plot-

ted in gray, blue, purple, and orange respectively.
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FIG. 8. Secondary hub resolution by PageRank algorithms on an ensemble of 30

directed scale-free networks of size N = 256. (a) A histogram of nodes classified as main

hubs, secondary hubs, or low-importance nodes based on their (from left to right) Icl, ITA, IPmax ,

and IOS values respectively. (b) Zooming into (a). The quantum PageRanks ITA, IPmax , and

IOS respectively identify approximately 1.9, 2.6, 1.5 times more secondary hubs than Icl. (c) The

number of secondary hubs as measured by Icl (gray), ITA (blue), IPmax (purple), and IOS (orange)

for each of the scale-free networks in the ensemble.
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FIG. 9. Log-log plots of IPR (with r = 1) against the number of nodes in the network

for the four PageRank schemes. Successive rows correspond to Icl, ITA, IPmax , and IOS ; left

and right columns correspond to directed scale-free and Erdös-Rényi networks respectively. An

ensemble of ten graphs is used for each network type and size, with a dotted line joining the mean

IPR values for each size. Linear model fits are performed according to log ξ = a logN + b and

plotted in black, with parameter values a and b as indicated.
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FIG. 10. Plots of the logarithms of the mean PageRanks for each measure over an

ensemble of 30 scale-free networks against the logarithm of the node index (nodes

sorted in descending PageRank order). Particularly over region II, the PageRanks follow a

power law distribution Ij ∼ j−λ across the nodes with fitting parameter λ. For Icl and IOS , nodes

in the tail region III are ignored in performing the linear fit.
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FIG. 11. Combined plot of the logarithms of the mean PageRanks from each measure over an en-

semble of 30 scale-free networks versus the logarithm of the node index (nodes sorted in descending

PageRank order).
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