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Abstract

The conventional Quantum Fourier Transform, with exponential speedup compared to the classi-

cal Fast Fourier Transform, has played an important role in quantum computation as a vital part of

many quantum algorithms (most prominently, the Shor’s factoring algorithm). However, situations

arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for

example in the implementation of control operations that depend on Fourier coefficients. In this

paper, we detail a new quantum algorithm to encode the Fourier coefficients in the computational

basis, with fidelity 1 − δ and desired precision ε. Its time complexity depends polynomially on

log(N), where N is the problem size, and linearly on 1/δ and 1/ε. We also discuss an application

of potential practical importance, namely the simulation of circulant Hamiltonians.
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I. INTRODUCTION

Since the milestone introduction of Shor’s quantum factoring algorithm [1] allowing prime

number factorization with complexity O(polylogN) – an exponential speedup compared to

the fastest-known classical algorithms – there has been an increasing number of quantum

algorithm discoveries harnessing the unique properties of quantum mechanics in order to

achieve significant increases in computational efficiency. The use of the Quantum Fourier

Transform (QFT) [2] in Shor’s factoring algorithm is integral to the resulting speedup.

The Fast Fourier Transform (FFT), an efficient classical implementation of the discrete

Fourier transform (DFT), is a hugely important algorithm, with classical uses including

signal processing and frequency analysis [3]. Due to its widespread ubiquity and efficiency

(with scaling O(N logN)), it has been regarded to be the one of the most important non-

trivial classical algorithms [4].

The QFT (with complexity O((logN)2)) algorithm is the natural extension of the DFT to

the quantum regime, with exponential speedup realized compared to the FFT (O(N logN)),

due to superposition and quantum parallelism. The QFT is essentially identical to the FFT

in that it performs a DFT on a list of complex numbers, but the result of the QFT is stored as

amplitudes of a quantum state vector. In order to extract the individual Fourier components,

measurements need to be performed on the quantum state vector. As such, the QFT is not

directly useful for determining the Fourier transformed amplitudes of the original list of

numbers. However, the QFT is widely used as a subroutine in larger algorithms, including

but not limited to Shor’s algorithm [1], quantum amplitude estimation [5] and quantum

counting [6, 7].

Typically, there are two methods of encoding the result of a quantum algorithm: encoding

within the computational basis of the quantum state [5], or encoding within the amplitudes of

the quantum state [2]. The QFT fits the latter criteria, and has been enormously successful,

used as a foundation for a plethora of other quantum algorithms – for example in the

fields of quantum chemistry and simulations [8–10], signal and image processing [11, 12],

cryptography [13] and computer science [4, 14]. However, situations arise where we need the

Fourier coefficients in the computational basis, for example in order to efficiently implement

circulant Hamiltonians with quantum circuits [15].

In this paper, we introduce a new quantum scheme for computing the Fourier transform
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and storing the results in the computational basis, namely Quantum Fourier Transform

in the Computational Basis (QFTC). We begin in Sec. II by defining the notations and

chosen conventions, before subsequently detailing the QFTC algorithm for computing the

DFT in the computational basis in Sec. III. This section also includes a thorough analytic

derivation of the complexity and error analysis. One possible application of this algorithm,

the implementation of circulant Hamiltonians, is then discussed in Sec. V. Finally, we

present our conclusions in Sec. VI. In addition, we have provided supplementary material

in the appendices, detailing the quantum arithmetic necessary for the QFTC algorithm

Appendix A and the implementation of circulant matrix operators Appendix B.

II. DEFINITIONS AND NOTATIONS

The DFT, applied to a unit vector x = (x0 x1 · · · xN−1) ∈ CN , outputs a unit vector

y = (y0 y1 · · · yN−1), where

yk =
1√
N

N−1∑

j=0

e2πijk/Nxj, k = 0, 1, . . . , N − 1. (1)

The QFT performs the Discrete Fourier Transform in amplitudes:

N−1∑

j=0

xj |j〉 →
N−1∑

k=0

yk |k〉 . (2)

The QFTC, on the other hand, enables the Fourier transformed coefficients to be encoded

in the computational basis:

|0〉 → 1√
N

N−1∑

k=0

|k〉 |yk〉 (3)

where |yk〉 corresponds to the fixed-point binary representation of number yk ∈ (−1, 1) (see

the complemental encoding in Appendix A). In the QFTC algorithm, the value of x is

provided by an oracle Ox

Ox |0〉 =
∑

j

xj |j〉 . (4)

The oracle can be efficiently implemented if x is efficiently computable, or using the qRAM

which takes complexity logN under certain conditions [16–20]. In fact, in the QFTC algo-

rithm, the controlled-Ox gate (|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Ox) is required. (Otherwise, there will

always be an indefinite total phase eiφ of x). The number of calls to controlled-Ox and its

inverse will be included in the overall complexity of the QFTC algorithm.
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Without loss of generality, we will assume the yk coefficients are real in the following

sections. If this is not the case, we can always redefine the inputs as the following:

x′j =
xj + x∗N−j

2
(xN = x0 and the x∗j is the complex conjugate of xj.) (5)

for all j. Applying the DFT to x′ then produces a purely real result, y′k = Re(yk). The

imaginary components Im(yk) can be derived analogously in the same fashion. In the fol-

lowing sections, we assume that N = 2L, where L is some integer, as in the conventional

FFT and QFT algorithms.

III. QUANTUM FOURIER TRANSFORM IN THE COMPUTATIONAL BASIS

The steps involved in the QFTC algorithm are detailed below (with Fig. 1 depicting the

circuit for Step 1 –Step 4 and Fig. 2 for Step 5 –Step 9 ).

Step 0 Intialise all qubits, including ancillas, to |0〉.

Step 1 Prepare the first register of L qubits into an equal superposition of its computational

basis states using a Hadamard transform:

|0L〉 H⊗L
−−−→ 1√

N

N−1∑

k=0

|k〉 , (6)

where k is represented in binary as k1k2 · · · kL with L qubits.

Step 2 Prepare an ancillary qubit in the third register as:

|0〉 H−→ 1√
2

(|0〉+ |1〉). (7)

Step 3 Apply the controlled-Ox and controlled-Hadamard gates to the second register of L

qubits, conditional on the ancillary qubit state:

|0L〉 1√
2

(
|1〉+ |0〉

) Ox⊗|1〉〈1|+H⊗L⊗|0〉〈0|−−−−−−−−−−−−−→ 1√
2

(N−1∑

j=0

xj |j〉 |1〉+
1√
N

N−1∑

j=0

|j〉 |0〉
)
, (8)

where j is represented in binary as j1j2 · · · jL with L digits.
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Step 4 Apply a controlled phase operator on these three registers (with details given in

Fig. 1(b)):

1√
N

N−1∑

k,j=0

|k〉 1√
2

(
xj |j〉 |1〉+

1√
N
|j〉 |0〉

) ∑
j,k e

2πijk/N |k〉〈k|⊗|j〉〈j|⊗|1〉〈1|
−−−−−−−−−−−−−−−−−−−→

1√
N

N−1∑

k,j=0

|k〉 1√
2

(
xje

2πijk/N |j〉 |1〉+
1√
N
|j〉 |0〉

)
≡ 1√

N

N−1∑

k=0

|k〉 |φk〉 . (9)

|0〉 / H⊗L •

|0〉 / Ox H⊗L R

|0〉 H • •
(a)

|k1〉 •
|k2〉 • • · · ·

...
...

...|kL〉 • • · · · •
|j1〉 R1

|j2〉 · · · R2

... R1 · · · · · ·

|jL〉 R1 R2 RL

|0〉+ |1〉 • • • · · · • • · · · •
(b)

FIG. 1. (a) the quantum circuit for Step 1–Step 4 ; (b) Detailed quantum gates to implement the

controlled phase operator in Step 4 . Here R` = |0〉 〈0|+ e2πi/2` |1〉 〈1|.

Using the Hadamard gate and the pauli-Z gate, we can prepare two additional registers

in the quantum states |φ±〉:

|0L+1〉 (+): H⊗L⊗H; (−): H⊗L⊗ZH−−−−−−−−−−−−−−−−−→ |φ±〉 =
1√
2

(N−1∑

j=0

±1√
N
|j〉 |1〉+

N−1∑

j=0

1√
N
|j〉 |0〉

)
. (10)

Note that |φk〉 = 1√
2

(∑N−1
j=0 x

2πijk/N
j |j〉 |1〉+

∑N−1
j=0

1√
N
|j〉 |0〉

)
in Eq. 9,

∣∣〈φ±|φk〉
∣∣2 =

1

4
(y2
k + 1)± yk

2
, (11)
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and
∣∣〈φ+|φk〉

∣∣2 −
∣∣〈φ−|φk〉

∣∣2 = yk, (12)

which leads to the following steps (as detailed in Fig. 2).

|0〉
2 sin2(π·)− 1

Σ−

||〈φ+|φk〉|2〉

|0〉 / H⊗p0 •
|`〉 QFT†

|0〉1 H • H

(Q+
k )`|φk〉2 /

SWAP
|φ+〉3 /

|0〉
2 sin2(π·)− 1

||〈φ−|φk〉|2〉

|0〉 / H⊗p0 •
|`〉 QFT†

|0〉 H • H

(Q−k )`|φk〉 /
SWAP

|0〉 |yk〉
|φ−〉 /

amplitude estimation

FIG. 2. the quantum circuit for Step 5–Step 9 . The Σ− gate transforms |α〉 |β〉 |0〉 into

|α〉 |β〉 |α− β〉 (see Appendix A).

Step 5 Prepare |φ+〉 and perform the swap test [21] on |φk〉 and |φ+〉. We get

1

2
|0〉
(
|φk〉 |φ+〉+ |φ+〉 |φk〉

)
+

1

2
|1〉
(
|φk〉 |φ+〉 − |φ+〉 |φk〉

)
≡ |ψ+

k 〉 (13)

for all values of k.

Step 6 Run amplitude estimation of Q+
k , for all k, on state |ψ+

k 〉 as defined below:

|ψ+
k 〉 →

∣∣∣∣
θk
π

〉 ∣∣∣ψ↑k
〉

+

∣∣∣∣1−
θk
π

〉 ∣∣∣ψ↓k
〉
. (14)

Step 7 Compute |〈φ+|φk〉|2 = (y2
k + 1)/4 + yk/2 using the quantum multiply-adder and sine

gate (see Appendix A for details), for all values of k:
∣∣∣∣
θk
π

〉 ∣∣∣ψ↑k
〉

+

∣∣∣∣1−
θk
π

〉 ∣∣∣ψ↓k
〉
→
∣∣∣
∣∣〈φ+|φk〉

∣∣2
〉
|ψ+
k 〉 . (15)
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In the above description of Step 5 –Step 9 ,

|ψ+
k 〉 = sin θk |ψ0

k〉+ cos θk |ψ1
k〉 (16)

where |ψ0
k〉 corresponds to the part of |ψ+

k 〉 whose first qubit is |0〉, |ψ1
k〉 corresponds to the

part of |ψ+
k 〉 whose first qubit is |1〉. It can be easily calculated from Eq. 13 that sin2 θk =

(1 + |〈φ+|φk〉|2)/2 where θk ∈ [0, π/2]. We define Q+
k := −A+

k S0(A+
k )†Sχ, where A+

k is the

unitary operator performing |0〉123

A+
k−−→ |ψ+

k 〉, S0 = I− 2 |0〉123 〈0|123 and Sχ = I− 2 |0〉1 〈0|1
(subscripts denote labels of registers shown in Fig. 2). According to the amplitude estimation

algorithm [7],

(Q+
k )` |ψ+

k 〉 = sin(2`+ 1)θk
∣∣ψ0

k

〉
+ cos(2`+ 1)θk

∣∣ψ1
k

〉
. (17)

For any ` ∈ N, Q+
k acts as a rotation in 2-dimensional space Span{|ψ0

k〉 , |ψ1
k〉}, and it has

eigenvalues e±i2θk with eigenstates |ψ↑,↓k 〉 (un-normalized). Therefore we can generate the

state

|ψ+
k 〉 = |ψ↑k〉+ |ψ↓k〉

phase estimation−−−−−−−−−→
∣∣∣∣
θk
π

〉 ∣∣∣ψ↑k
〉

+

∣∣∣∣1−
θk
π

〉 ∣∣∣ψ↓k
〉
, (18)

by running amplitude estimation of A+
k on |ψ+

k 〉, and get
∣∣∣|〈φ+|φk〉|2

〉
= |2 sin2 θk − 1〉

using the quantum multiply-adder and sine gate (see Appendix A). The quantum circuit of

amplitude estimation procedure is marked out in Fig. 2.

Step 8 Repeat Step 2 –Step 7 in other registers, with |φ+〉 and A+
k replaced by |φ−〉 and A−k ,

we get

1√
N

N−1∑

k=0

|k〉
∣∣∣
∣∣〈φ+|φk〉

∣∣2
〉
|ψ+
k 〉 →

1√
N

N−1∑

k=0

|k〉
∣∣∣
∣∣〈φ+|φk〉

∣∣2
〉
|ψ+
k 〉
∣∣∣
∣∣〈φ−|φk〉

∣∣2
〉
|ψ−k 〉 .

(19)

Step 9 Calculate |〈φ+|φk〉|2 minus |〈φ−|φk〉|2 and encode the result in p0 + 1 qubits (error

ε = 2−p0), using the quantum adder described in Appendix A:

1√
N

N−1∑

k=0

|k〉
∣∣∣
∣∣〈φ+|φk〉

∣∣2
〉
|ψ+
k 〉
∣∣∣
∣∣〈φ−|φk〉

∣∣2
〉
|ψ−k 〉 |0p0+1〉 →

1√
N

N−1∑

k=0

|k〉
∣∣∣
∣∣〈φ+|φk〉

∣∣2
〉
|ψ+
k 〉
∣∣∣
∣∣〈φ−|φk〉

∣∣2
〉
|ψ−k 〉 |yk〉 ≡

1√
N

N−1∑

k=0

|k〉 |Ψancilla
k 〉 |yk〉 . (20)

Step 10 Uncompute the ancillas using the inverse algorithm of Step 2 –Step 8 :

1√
N

N−1∑

k=0

|k〉 |Ψancilla
k 〉 |yk〉 →

1√
N

N−1∑

k=0

|k〉 |yk〉 . (21)
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IV. COMPLEXITY ANALYSIS

Theorem 1 (QFTC). The required quantum state 1√
N

∑N−1
k=0 |k〉 |yk〉 can be prepared to ac-

curacy ε 1 with fidelity 1−δ 2 using O
(
(logN)2/(δε)

)
one- or two-qubit gates, and O

(
1/(δε))

calls of controlled-Ox and its inverse.

Proof. First, we consider the complexity involved inA+
k (described in Step 2 –Step 5 ). It con-

tains Hadamard gates, controlled phase operators and swap gates which can be constructed

using O
(
(logN)2

)
one- or two-qubit gates and only one call of controlled-Ox.

The subsequent amplitude estimation block needs O(1/(δε)) applications of Q+
k =

−A+
k S0(A+

k )†Sχ to get accuracy ε with fidelity at least 1 − δ [7, 22]. We then use the

quantum multiply-adder and sine gate to get the value of |〈φ+|φk〉|2 = 1
4
(1 + y2

k) + yk/2 for

different |k〉’s in the computational basis. Using the similar procedure to obtain |〈φ−|φk〉|2,

we get yk = |〈φ+|φk〉|2−|〈φ−|φk〉|2 finally. Since the derivative of sinx is always smaller than

one, we set ε = Θ(ε) in order to guarantee accuracy ε in yk. As detailed in Appendix A, the

quantum multiply-adders and sine gates have complexity O(polylog(1/ε)) which is smaller

than O(1/ε) in amplitude estimation. Therefore, the complexity of these gates can be

omitted.

The total complexity of the proposed circuit will be O
(
(logN)2/(δε)

)
one- or two-qubit

gates, and O
(
1/(δε)

)
calls of controlled-Ox and its inverse.

Note that we do not calculate yk directly from |〈φ+|φk〉|2 to avoid having to implement

a square-root gate, which must be designed carefully due to the infinite derivative of the

square root function at zero. Also we do not use gates to transform the value of yk directly

into the amplitude in quantum state like many other algorithms do [18, 23–27]. Instead,

we put the value 1
4
(1 + y2

k) + yk/2 into the amplitude in order to take the sign of yk into

account. Throughout the proposed QFTC algorithm, |k〉 in the first register is used to control

the application of quantum operators acting on other registers, giving us the advantage of

parallel calculating yk for all k, which is the main reason the QFTC algorithm outshines the

FFT in complexity. Though values of yk’s cannot be obtained by a single measurement of

1√
N

∑N−1
k=0 |k〉 |yk〉, they can be used widely in subsequent quantum computation once they

are encoded in the computational basis.

1 |yk − ỹk| < ε, where ỹk is the truncated value of yk with accuracy 2−p0 .

2
∣∣∣〈Ψfinal| ( 1√

N

∑N−1
k=0 |k〉 |ỹk〉)

∣∣∣ ≥ 1− δ, where |Ψfinal〉 is the state obtained through the QFTC algorithm.
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V. APPLICATION

One important family of operators are the circulant matrices which have found impor-

tant applications in, for example, photonic quantum walks [28], investigation on quantum

supremacy [15], biochemical modelling [29], vibration analysis [30], and parallel diagnostic

algorithm for super-computing [31].

Circulant matrices are defined as follows [32]:

C =




c0 c1 · · · cN−1

cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0



, (22)

using an N -dimensional vector c = (c0 c1 · · · cN−1). Such matrices are diagonalizable by

the discrete Fourier transform (DFT), i.e.

C = FΛF †, (23)

where F is the Fourier matrix with Fkj = e2πijk/N/
√
N , and Λ is a diagonal matrix of

eigenvalues given by Λk =
√
N
(
F (c0 c1 · · · cN−1)†

)
k
≡
√
NFk. (Note that the condition

that C is Hermitian (in order to be a Hamiltonian) is equivalent to our assumption in Sec. II

that the Fourier coefficients Fk are real.) Due to this property, we are able to implement

circulant quantum operators (non-unitary in general) using the conventional QFT through

the manipulation of amplitudes, as detailed in Appendix B.

However, this approach cannot be used directly for simulation of (non-sparse) circulant

Hamiltonians, where we need to perform

e−iCt
N−1∑

k=0

sk |k〉 = e−iCt |s〉 = QFT e−iΛt QFT† |s〉 . (24)

The above operation e−iΛt requires controlled quantum logic gates, which depend on the

Fourier coefficients; this requires encoding of the Fourier coefficients in the computational

basis, as performed by the QFTC algorithm.

In the following, we will demonstrate how the QFTC algorithm can be used to simulate

Hamiltonians with a circulant matrix structure, as shown in Fig. 3, with the aid of the

quantum circuit given in simulating diagonal Hamiltonians [33]:
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|s〉 QFT† • • QFT e−iCt |s〉

|0〉

QFTC

e+2L/2it|1〉〈1|

QFTC†

|0〉

|0〉 e−2L/2−1it|1〉〈1| |0〉

|0〉 e−2L/2−2it|1〉〈1| |0〉

...
...

...

|0〉 e−2L/2−p0 it|1〉〈1| |0〉

FIG. 3. Simulation of circulant Hamiltonians. p0 +1 is the number of digits of the resulting Fourier

coefficients and Fk was encoded in the form f0.f1f2 · · · fp0 as the complemental code for a number

between −1 and 1. Here we define QFTC |k〉 |0〉 = |k〉 |Fk〉 (detailed in Step 2–Step 10 in Sec. III).

Step 1 Perform the inverse QFT on |s〉:
N−1∑

k=0

sk |k〉 →
N−1∑

k=0

sk |k〉 . (25)

Step 2 Apply the QFTC algorithm (Step 2 –Step 10 in Sec. III) for c:

N−1∑

k=0

sk |k〉 →
N−1∑

k=0

sk |k〉 |Fk〉 . (26)

Step 3 Do controlled phase gate e+2L/2it|1〉〈1| on the first digit (qubit) of |Fk〉 and e−2L/2−p+1it|1〉〈1|

on the pth digit (qubit) of |Fk〉 for all p > 1:

N−1∑

k=0

sk |k〉 |Fk〉 →
N−1∑

k=0

ske
−iΛkt |k〉 |Fk〉 . (27)

Step 4 Undo the QFTC for every |k〉:
N−1∑

k=0

ske
−iΛkt |k〉 |Fk〉 →

N−1∑

k=0

ske
−iΛkt |k〉 . (28)

Step 5 Perform the QFT:
N−1∑

k=0

ske
−iΛkt |k〉 → e−iCt |s〉 . (29)
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Theorem 2 (Simulation of Circulant Hamiltonians). The simulation of a circulant Hamil-

tonian e−iCt can be performed within error δ 3 using O
(√

Nt(logN)2/δ3/2
)

one- or two-qubit

gates, as well as O
(√

Nt/δ3/2) calls of controlled-Ox and its inverse, where x = c is a unit

vector in CN and C is Hermitian.

Proof. The error present in the Hamiltonian simulation is fully determined by the preci-

sion of the QFTC algorithm. According to the above QFTC complexity analysis, we need

O
(
(logN)2/(δε)

)
one- or two-qubit gates, as well as O

(
1/(δε)) calls of controlled-Ox and its

inverse, to achieve accuracy ε in Fk. The fidelity achieved for the Hamiltonian simulation,

as defined by the squared modulus of inner product, is

(1− δ)2
∣∣∣〈e−iC̃t |s〉 , e−iCt |s〉〉

∣∣∣ = (1− δ)2

∣∣∣∣∣
N−1∑

k=0

ei(Λ̃k−Λk)t |sk|2
∣∣∣∣∣ > 1−O((

√
Ntε)2 + δ), (30)

where the last inequality is derived using

∣∣eiγ1 + |Γ| eiγ2
∣∣ =

(
1 + |Γ|2 + 2 |Γ| cos(γ1 − γ2)

)1/2
> (1 + |Γ|)

∣∣∣∣cos
γ1 − γ2

2

∣∣∣∣ , (31)

and Λ̃k are the estimated (truncated) eigenvalues calculated via the QFTC algorithm. For

a fixed δ in the QFTC algorithm, if we choose ε =
√
δ/(
√
Nt), the fidelity will be 1−O(δ).

We then need O
(
(logN)2/(δε)

)
= O

(√
Nt(logN)2/δ3/2

)
one- or two-qubit gates, as well as

O
(√

Nt/δ3/2) calls of controlled-Ox and its inverse.

VI. CONCLUSION

In this paper, we proposed a new QFTC algorithm, an efficient quantum algorithm to

encode the results of the Discrete Fourier Transform in the computational basis. This al-

gorithm allows us to overcome a main shortcoming of the conventional Quantum Fourier

Transform – the inability to perform operations controlled by the Fourier coefficients. In

short, the QFTC utilizes swap tests to obtain a function of the Fourier coefficients in the am-

plitudes, with individual coefficients then extracted via amplitude estimation and quantum

arithmetic.

3 ‖e−iCt − ẽ−iCt‖ ≤ δ, where ẽ−iCt represents the operator that is actually performed by this algorithm.

11



Secondly, a detailed complexity analysis of the QFTC algorithm was performed, finding

it require O
(
(logN)2/(δε)

)
calls of one- or two-qubit gates, as well as O

(
1/(δε)

)
calls of

controlled-Ox and its inverse, in order to achieve fidelity 1−δ and precision ε. Note that the

overall complexity depends polylogarithmically on N , similarly to the conventional QFT,

and we require only controlled phase gates and Hadamard gates. The inverse proportionality

with the desired accuracy, ε, occurs due to the application of amplitude estimation within

the algorithm.

Finally, we detailed an application of the QFTC algorithm in the simulation of circu-

lant Hamiltonians, which requires O
(√

Nt(logN)2/δ3/2
)

one- or two-qubit gates, as well as

O
(√

Nt/δ3/2) calls of controlled-Ox and its inverse to achieve fidelity 1− δ. This paves the

way for a quantum circuit implementation of continuous-time quantum walks on circulant

graphs, with potential applications in a wide array of disciplines. Further applications of

the QFTC algorithm are also expected.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Ashley Montanaro for constructive comments, and

Jeremy O’Brien, Jonathan Matthews, Xiaogang Qiang, Lyle Noakes for helpful discussions.

Appendix A: Quantum Arithmetic

Addition and multiplication are basic elements of arithmetic in classical computer. There

have been several proposals on how to build quantum adders and multipliers [34–37], con-

structed predominately using CNOT gates and Toffoli gates. Draper’s addition quantum

circuits, however, utilizes the quantum Fourier transformation (QFT) [38]. QFT-based

multiplication and related quantum arithmetic have also been proposed [39–42]. In this

appendix, for completeness, we outline the construction of the quantum arithmetic gates

required for the QFTC algorithm in detail.

We show here, using QFT-based circuits and fixed-point number representation, that all

elementary quantum arithmetic gates used to construct the QFTC circuit (including adders,

multipliers and cosine gates) have O(poly(n)) complexity, when n is the number of qubits
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(number of digits) representing a number. With accuracy ε, this results in O(polylog(1/ε))

complexity.

1. QFT Multiply-adder

We begin by describing a quantum multiply-adder for real inputs a and b between 0 and

1. Let |a〉 = |a1〉 |a2〉 · · · |am〉 represent the fixed point number a = 0.a1a2 · · · am (same for

b). Using this representation, the quantum multiply-adder (QMA), as shown in Fig. 4(a),

can realize the following transformation,

Π±m,n |a〉 |b〉 |c〉 = |a〉 |b〉 |c± a · b〉 , (A1)

where m and n denote the number of digits of a and b respectively.

In quantum multiply-adders, the outputs, unlike the inputs, can be negative and we use

the complemental code c(C) = c0.c1c2 · · · cm+n ∈ [0, 2) to represent the output c ∈ (−1, 1)

and c = c(C) if c is non-negative and c = c(C) − 2 if c is negative. |c〉 is composed of

|c0〉 |c1〉 · · · |cm+n〉. Note that this quantum multiply-adder also applies to any fixed-point-

represented numbers by cleverly choosing the appropriate positions of the fractional points.

m-qubit |a〉
Π±m,nn-qubit |b〉

(m+n)-qubit |c〉
≡ π±m,n

|a〉
|b〉

QFT QFT† |c± a · b〉

(a) quantum multiply-adder

|a〉
π±m,n

|a〉
|b〉 |b〉

|φ(c)〉 |φ(c± a · b)〉

(b) intermediate multiply-adder

FIG. 4. Quantum circuit of the multiply-adder

The quantum multiply-adder can be decomposed into the following form, as shown in

Fig. 4(b):

Π±m,n = (I⊗ I⊗QFT†) · π±m,n · (I⊗ I⊗QFT), (A2)
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where π±m,n represents an intermediate quantum multiply-adder,

π±m,n |a〉 |b〉 |φ(c)〉 = |a〉 |b〉 |φ(c± a · b)〉 (A3)

with |φ(c)〉 := QFT |c〉 and |φk(c)〉 = 1√
2
(|0〉+ e2πic·2m+n−k |1〉), k = 1, 2, · · · ,m+ n+ 1.

Fig. 5 shows a detailed quantum circuit construction of π±m,n, using the QFT adders

2−lΣ±m,n, which act as follows:

2−lΣ±m,n |b〉 |φ(c)〉 = |b〉 |φ(c± 2−lb)〉 . (A4)

The QFT adders are constructed via controlled phase operations, as shown in Fig. 5(c).

After applying the QFT adder 2−mΣ±m,n (controlled by |am〉) in Fig. 5(a), we get

|φ(c)〉 −→ |φ(c± am2−mb)〉 . (A5)

Proceeding in a similar fashion, it can be seen that the final output state of the intermediate

multiply-adder is

|φ(c+ am2−mb+ · · ·+ a12−1b)〉 = |φ(c± a · b)〉 . (A6)

To illustrate how the circuit works, take for example the evolution of φm+n−l(c) after

R±1 , . . . , R
±
n :

|0〉+ e2πic·2l |1〉 −→ |0〉+ e2πic·2l±b |1〉 . (A7)

We then have

|φk(c)〉 → |φk(c± 2−lb)〉 .

It is clear from Fig. 5(c) that the QFT adder uses O
(
(m+ n)n

)
one- or two-qubit gates.

Hence, the total complexity of the intermediate QFT multiply-adder’s is O
(
(m + n)mn

)
.

Thus, with QFT scaling O
(
(m+ n)2

)
, the total complexity of the quantum multiply-adder

Π±m,n is max{O(mn2),O(nm2)}.
Note that if we choose l = 0 in 2−lΣ±m,n and perform a QFT and an inverse QFT before

and after the application of the QFT adder in Eq. A4, we have a quantum adder

|b〉 |c〉 → |b〉 |c± b〉 . (A8)

We can also add (or subtract) two numbers without having to destroy their original values

encoded in the computational basis, i.e.,

|b〉 |c〉 |0〉 → |b〉 |c〉 |b〉 → |b〉 |c〉 |b± c〉 (A9)

by using Eq. A8 twice.
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1 Number system

use fixed point number system

a = 0.a1a2 · · · am |a〉 = |a1a2 · · · am〉

b = 0.b1b2 · · · bn |b〉 = |b1b2 · · · bn〉

f = a · b = 0.f1f2 · · · fk · · · ≈ 0.f1f2 · · · fk

|f〉 = |f1f2 · · · fk〉

|φ(x)〉 = QFT |x〉
error less than 2−k

2 Notation

m-qubit |a〉
Πm,n

|a〉
n-qubit |b〉 |b〉

(m+n)-qubit |0〉 |a · b〉

Πm,n = Π+
m,n

QFT QFT †

3 Multiplier-accumulator (cf. PEREZ. QUANTUM ARITHMETIC WITH THE QUANTUM FOURIER
TRANSFORM. SEC 7)

|a〉
Π±m,n

|a〉
|b〉 |b〉

|φ(c)〉 |φ(c± a · b)〉

|a1〉 • |a1〉
|a2〉 • |a2〉

...
...

|am−1〉 • |am−1〉
|am〉 • |am〉
|b〉

2−mΣ±m,n 2−m+1Σ±m,n

· · ·
2−2Σ±m,n 2−1Σ±m,n

|b〉

|φ(c)〉 · · · |φ(c± a · b)〉

4 Adder (cf. PEREZ. QUANTUMARITHMETICWITH THE QUANTUM FOURIER TRANSFORM. SEC 7)

|b〉
2−lΣ±m,n

|b〉
|φ(c)〉

∣∣φ(c± 2−lb)
〉

1

(a) π±m,n gate

1 Number system

use fixed point number system

a = 0.a1a2 · · · am |a〉 = |a1a2 · · · am〉

b = 0.b1b2 · · · bn |b〉 = |b1b2 · · · bn〉

f = a · b = 0.f1f2 · · · fk · · · ≈ 0.f1f2 · · · fk

|f〉 = |f1f2 · · · fk〉

|φ(x)〉 = QFT |x〉
error less than 2−k

2 Notation

m-qubit |a〉
Πm,n

|a〉
n-qubit |b〉 |b〉

(m+n)-qubit |0〉 |a · b〉

Πm,n = Π+
m,n

QFT QFT †

3 Multiplier-accumulator (cf. PEREZ. QUANTUM ARITHMETIC WITH THE QUANTUM FOURIER
TRANSFORM. SEC 7)

|a〉
Π±m,n

|a〉
|b〉 |b〉

|φ(c)〉 |φ(c± a · b)〉

|a1〉 • |a1〉
|a2〉 • |a2〉

...
...

|am−1〉 • |am−1〉
|am〉 • |am〉
|b〉

2−mΣ±m,n 2−m+1Σ±m,n

· · ·
2−2Σ±m,n 2−1Σ±m,n

|b〉

|φ(c)〉 · · · |φ(c± a · b)〉

4 Adder (cf. PEREZ. QUANTUMARITHMETICWITH THE QUANTUM FOURIER TRANSFORM. SEC 7)

|b〉
2−lΣ±m,n

|b〉
|φ(c)〉

∣∣φ(c± 2−lb)
〉

1

(b) QFT adder

|b1〉 • · · · • |b1〉
|b2〉 · · · · · · |b2〉

...
...

|bn−1〉 · · · · · · • |bn−1〉
|bn〉 • · · · • · · · • • |bn〉

|φm+n+1(c)〉 R±l+2 · · · R±n+l+1

∣∣φm+n+1(c± 2−lb)
〉

...
...

|φm+n−l(c)〉 R±1 · · · R±n
∣∣φm+n−l(c± 2−lb)

〉

|φm+n−l−1(c)〉
∣∣φm+n−l−1(c± 2−lb)

〉
...

...

|φm−l+2(c)〉 R±1 R±2
∣∣φm−l+2(c± 2−lb)

〉

|φm−l+1(c)〉 R±1
∣∣φm−l+1(c± 2−lb)

〉

...
...

|φ1(c)〉
∣∣φ1(c± 2−lb)

〉

(c) Detailed quantum circuit construction of the QFT adder 2−lΣ±m,n, R±k = |0〉 〈0|+ e±2πi/2k |1〉 〈1|.

FIG. 5. Quantum circuit of π±m,n

2. Quantum sine & cosine gate

By implementing the Taylor series using the quantum multiply-adder, we are able to build

a quantum sine (and cosine) gate. Suppose x = 0.x1x2 · · ·xn and x ∈ [0, 1). We aim to build

a sine gate calculating the value of sinπx, performing |x〉 |0n〉 |0m〉 → |x〉 |sin πx〉 |Ψancilla〉.
We now consider the error in the truncated Taylor series. First, the error introduced
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|x〉 •
Π+

|x〉
|0〉

X

|x〉
|0〉

Π+

Π+

· · ·

Π+

∣∣x2
〉

|0〉 |x〉
|0〉

π−

∣∣x3
〉

|0〉

π+

· · ·
∣∣x2t−3

〉

|0〉

π(−1)
t

∣∣x2t+1
〉

∣∣∣π3

3!

〉 ∣∣∣π3

3!

〉
∣∣∣π5

5!

〉 ∣∣∣π5

5!

〉
∣∣∣ π2t+1

(2t+1)!

〉 ∣∣∣ π2t+1

(2t+1)!

〉

|0〉 QFT · · · QFT† |sinπx〉

(a) sine gate

|x〉 •
Π+

|x〉
|0〉

X

|x〉
|0〉

Π+

Π+

· · ·

Π+

∣∣x2
〉

|0〉
Π+

|x〉
|0〉 |x〉

|0〉

π+

∣∣x2
〉

|0〉

π−

∣∣x4
〉

|0〉

π+

· · ·
∣∣x2(t−1)

〉

|0〉

π(−1)
t+1

∣∣x2t
〉

∣∣∣π2

2!

〉 ∣∣∣π2

2!

〉
∣∣∣π4

4!

〉 ∣∣∣π4

4!

〉
∣∣∣π6

6!

〉 ∣∣∣π6

6!

〉
∣∣∣ π2t

(2t)!

〉 ∣∣∣ π2t

(2t)!

〉

|0〉 QFT · · · QFT† X |cosπx〉

(b) cosine gate

FIG. 6. Quantum circuits of the sine and cosine gates (|0〉 represents a number of qubits in above

circuits where the numbers are omitted). Pauli-X gates are used to transform |0〉 into |x〉 and the

subscript for all the quantum multiply-adders in above circuits is (p′, p′).

by imprecision in the n-digit representation of x is O(2−n), since the derivative of sin πx is

bounded. The Taylor series of sinπx at around x = 0 is

sin πx = πx− (πx)3

3!
+

(πx)5

5!
− · · ·+ (−1)t

(πx)2t+1

(2t+ 1)!
+

(−1)t+1 cos πz

(2t+ 3)!
(πx)(2t+3). (A10)

The remainder term for the kth term in the expansion is f (k+1)(z)
(k+1)!

xk+1, where z ∈ (0, x),

according to Taylor’s Theorem [43]. As a result, in Eq. (A10), the reminder term (error) is

(−1)t+1 cosπz
(2t+3)!

(πx)(2t+3) and is obviously bounded by O(2−n) for t = n.
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In the sine gate, the t + 1 terms
{
πx, (πx)3

3!
, · · · , (−1)t (πx)2t+1

(2t+1)!

}
are first calculated and

then added (or subtracted) together. Suppose each of the t + 1 terms has an error within

2−p. Taking p = n + dlog ne = O(n), the error introduced by adding and subtracting

will be O(t · 2−p) = O(2−n). Suppose all multiply-adders have p′ digits inputs. When

errors in y1, y2 are within 2−(`+1) and y1, y2 ≤ 1 − 2−(`+1), (y1 + 2−(`+1))(y2 + 2−(`+1)) =

y1y2 + 2−`(y1 + y2)/2 + 2−2`−2 ≤ y1y2 + 2−`. It means that by applying the multiply-adders

2t times, the error will be 22t times larger. Thus we can choose a p′ = O(p + 2t) = O(n)

which guarantees accuracy 2−p in all the powers of x and also all the t + 1 terms in the

Taylor series.

We conclude that we can choose t = O(n) and p′ = O(n) so that the total accuracy of

the sine gate is bounded by 2−n. Fig. 6 shows the quantum circuit for the sine and cosine

gate. The complexity of the quantum sine gate can be calculated based on the scaling of

quantum multiply-adders which equals to O(p′3). The total complexity of the quantum sine

gate is O(tp′3) = O(n4) for accuracy 2−n. To put it in another way, O(polylog(1/ε)) one- or

two-qubit gates are required to achieve accuracy ε.

Appendix B: Implementing circulant operators

|s〉 / QFT† • QFT C |s〉

|0〉 / Ox R H⊗L |0L〉

FIG. 7. Implementation of circulant matrices. Here R |k〉 |j〉 = e2πikj/N |k〉 |j〉.

Consider an arbitrary state |s〉. We wish to obtain C |s〉, where C is an arbitrary circulant

matrix. Below, we present a possible algorithm for implementing a circulant matrix quantum

operator (see Fig. 7).

Step 1 Perform the inverse QFT on |s〉:

N−1∑

k=0

sk |k〉 →
N−1∑

k=0

sk |k〉 . (B1)
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Step 2 Add another register prepared to
∑N−1

j=0 cj |j〉 using Ox (x = c in Eq. 4):

N−1∑

k=0

sk |k〉 →
N−1∑

j,k=0

skcj |k〉 |j〉 . (B2)

Step 3 Apply the controlled phase gate so that |k〉 |j〉 → e2πikj/N |k〉 |j〉:
N−1∑

j,k=0

skcj |k〉 |j〉 →
N−1∑

j,k=0

skcje
2πijk/N |k〉 |j〉 . (B3)

Step 4 Apply Hadamard gates to |j〉:
N−1∑

j,k=0

skcje
2πijk/N |k〉 |j〉 →

N−1∑

j,k=0

sk |k〉 (Fk |0L〉+
√

1− F 2
k |0⊥〉), (B4)

where |0⊥〉 represents any states perpendicular to |0L〉.

Step 5 By post-selecting the ancillary qubit state |0L〉, the quantum state in the first register

collapses to

1√∑
k |Fksk|2

N−1∑

k=0

Fksk |k〉 . (B5)

Step 6 Perform the QFT:

QFT
N−1∑

k=0

skFk |k〉 ∝ C |s〉 . (B6)

Note that the post-selection probability of obtaining the correct state in Step 5 is

p =
N−1∑

k=0

|skFk|2 , (B7)

and p equals to 1/N when C is unitary. Therefore, using amplitude amplification [7],

O((logN)2/
√
p) one- or two-qubit gates, as well asO(1/

√
p) calls of Ox, Os and their inverses

are needed to implement a circulant matrix operation C, where Os |0L〉 =
∑N−1

k=0 sk |k〉.
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