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Resonant Transition Based Quantum Computation

Chen-Fu Chiang ∗, Chang-Yu Hsieh †‡

February 23, 2017

Abstract

In this article we assess a novel quantum computation paradigm based on the resonant
transition (RT) phenomenon commonly associated with atomic and molecular systems. We
thoroughly analyze the intimate connections between the RT-based quantum computation and
the well-established adiabatic quantum computation (AQC). Both quantum computing frame-
works encode solutions to computational problems in the spectral properties of a Hamiltonian
and rely on the quantum dynamics to obtain the desired output state. We discuss how one can
adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches
are limited by different aspects of Hamiltonians’ spectra. The RT approach provides a com-
pelling alternative to the AQC under various circumstances. To better illustrate the usefulness
of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems
and discuss straightforward methods to fine tune its efficiency.

1 Introduction

In the past decades there has been great progress in quantum computation. One of the aims of
quantum computation is to attack computationally hard problems that prove difficult (if not im-
possible) for classical computers. Several quantum algorithms, such as Deutsch-Jozsa algorithm [1]
and Shor’s factoring algorithm[2], that provide exponential speed-up in comparison to the classical
counterparts, have already been found and demonstrate the superiority of quantum computations.

Most early algorithm developments were based on the quantum circuit models in which qubits
are operated by a sequence of discrete quantum gates in analogy to the classical circuit models.
However, the complexity of quantum circuit models has deterred subsequent developments. A
variety of alternative quantum computation models have been proposed to carry out quantum
computations without explicitly relying on a circuit model. Among them, the adiabatic quantum
computation (AQC) model [3, 4, 5, 6] is probably the most well-known and receives most attention.
In this work, we shall compare a recently proposed quantum computation model to the AQC and
discuss how this new model can be a practical alternative and complement to the AQC.

In a series of recent works, a new quantum computation model is introduced. In Ref. [7], a
polynomial quantum algorithm for obtaining the energy spectrum of a physical system was proposed
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that can be used for phase estimation algorithm. Subsequently, Wang et al.,[8] generalized the
model to solve 3-bit exact cover (EC3) problems and improved upon the earlier work on the phase
estimation algorithm including the extraction of eigenstates of a Hamiltonian.

This new quantum computation framework is inspired by resonant transition (RT) phenomenon
commonly observed in atomic and molecular systems. When a quantum system is only weakly
perturbed, the system responds most actively when the perturbations resonate with some transition
frequencies of the system’s spectrum. Based on this principle, the computational problem is then
encoded to the spectral properties of a Hamiltonian of the system and an external agent, a probe
qubit, is brought into interaction with the system. By adjusting the property of the probe qubit,
one can induce specific transitions inside the system and explore the eigen-energy of the system
and eigenstates.

Despite relying on different physical processes, the RT model is actually intimately related to
the well-established and highly successful AQC model. To clearly illustrate their connections, we
(1) discuss how one can adapt any adiabatic algorithm to a corresponding RT algorithm and (2)
inspect the underlying quantum dynamics of the RT model and compare to that of the AQC model.
As will become clear in the later discussions, the RT model suffers a potential performance hit when
the spectrum of the Hamiltonian contains too many degenerate levels other than the manifold in
which the solution (to a computational problem) is encoded. Since no adiabaticity is imposed onto
the quantum dynamics, the RT model is significantly less susceptible to common obstacles such
as the spectral gap issue[10] for the AQC model. Because of the high compatibility in terms of
algorithm development and entirely different sources of obstacles in carrying out these quantum
dynamics driven computations, we expect the RT model can provide a practical alternative and
complement to the AQC. Towards the end, we show how RT algorithms perform in a non-trivial
algorithmic context when we consider a 3-SAT problem. It will also be clear that the RT algorithm
is clearly derived from an adiabatic version[5].

The structure of this work is described as the following. In section 2, we characterize the basics
of the resonant-transition (RT) model based quantum computation. Explanations are then given
on the structure of a RT-based EC3-solving algorithm and its physical implementations through
Pauli matrices. In section 3, we review the essences of the AQC and the adiabatic path. Later we
compare the quantum dynamics of the AQC with that of the RT-based quantum computation from
the similarity perspective, the difference perspective and the performance perspective. Subsequently
we demonstrate how to emulate the RT-based quantum computation via the AQC. In section 4.1, we
propose a new energy function to encode 3-SAT instances to be used in the EC3-solving algorithm
to solve 3-SAT problems. The modified EC3-solving algorithm has a lower decay error probability
and avoids the high degeneracy issue. We provide the performance analysis in section 4.2 and
discussion in section 5.

2 Quantum Computation by The Resonant Transition Model

In this section, we explain the basic physics behind the RT model, illustrate the RT-based quantum
computations through the original EC3-solving algorithm [8], and discuss its physical implementa-
tions and other characteristics.
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2.1 Resonant Transition Physics

We present background material on the model system and the phenomenon of resonant transitions
between two quantum states in order to make the present paper self-contained. To be elucidated in
the subsequent section, the proposed quantum algorithms are realized physically with the resonant
transitions of a quantum system coupled to an external agent.

Following [7, 8], we consider a quantum device composed of two sets of qubits, namely, the
probe qubits and the register qubits. The register qubits could be constructed with an ensemble of
two-level atoms in a cavity or trapped ions, while the probe qubits are additional two-level system
supposed to possess highly adjustable physical properties, such as the resonant frequency and the
coupling strength to the register qubits. For the rest of this paper, we should restrict the discussion
to one probe qubit.

Similar to the Jaynes-Cummings model in quantum optics, this quantum device is described by
the following Hamiltonian,

H = Hp +Hs +Hint

=
1
2
ω0Z ⊗ Is2 + I2 ⊗Hs + cX ⊗A, (1)

where Hs represents the many-body Hamiltonian for the quantum register, Z and X are standard
Pauli matrices, and A denotes the probing operation on the quantum register due to interaction with
the probe qubit. In this device, the probe qubit is governed by a particularly simple Hamiltonian,
Hp, which sets the energy gap, ω0, between the two states |0〉 and |1〉. The interaction with the
quantum register should eventually result in a flip of the probe qubit’s state from |0〉 to |1〉 or vice
versa due to X appearing at the very last term in Eq. (1). We shall see shortly that the operator
A generalizes X to induce transitions among quantum states of a multi-level quantum system.

Given the Hamiltonian in Eq. (1), the dynamics of the entire system (the register qubits plus the
probe qubit) is governed by the unitary evolution U(t) = exp(−iHt). The time-evolved quantum
state at time τ reads

ρτ = U(τ)ρ0U
†(τ)

= U(τ)(|1〉 〈1| ⊗ |Ψs〉 〈Ψs|)U †(τ), (2)

where ρ0 = |1〉 〈1| ⊗ |Ψs〉 〈Ψs| is the joint initial state. A transition in the probe qubit’s state (say,
from |1〉 to |0〉) is accompanied with a similar transition between states of the register qubits. The
decay probability for the probe qubit can be quantitatively estimated from the perturbation theory,

Pdecay = 〈0|Trs(ρτ ) |0〉 , (3)

where Trs(·) denotes a partial trace over the register qubits. To implement the quantum algorithm,
we operate the quantum device in the weak coupling limit, i.e. c� 1 in Eq. (1). In this scenario,
the virtual transitions are strongly suppressed and the dominant pathways are the classical-like
transitions in which energy is transferred back and forth between the probe qubit and register
qubits. One can approximately decompose Eq. (3) into an incoherent summation (i.e. no quantum
interference) of distinct transitions between the i-th and j-th eigenstates of Hs. More precisely,
the contribution to the decay probability of a particular transition path between the i-th and j-th
state of Hs reads

Pdecay,i→j = sin2

(
Ωijτ

2

)
Q2
ij

Q2
ij + (Ej − Ei − ω0)2

|〈Ψi|Ψs〉|2 (4)
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where Qij = 2c 〈Ψi|A |Ψj〉, Ωij =
√
Q2
ij + (Ej − Ei − ω0)2, |Ψs〉 is the initial state of the register

qubits, |Ψi〉 and |Ψj〉 are the i-th and the j−th eigenvector of Hs. From Eq. (4), it is clear
that the dominant resonant pathways would have a nearly perfect match between the energy gaps
(Ej − Ei) and ω0. When a transition is off-resonant, i.e. |Ej − Ei| >> ω0, the corresponding
contribution to the decay probability in Eq. (4) can be tuned to extremely small values in many
realistic experimental set-ups. Further detail on the resonant transitions can be found in Refs.
[9, 11, 12, 13] and later discussions below.

2.2 Original EC3-Solving Algorithm

We now summarize the algorithm proposed by Wang and his co-authors that exploits the resonant
transition physics to perform computational tasks. Extended from the spectrum-probe algorithm in
[7], EC3-solving algorithm was further designed to solve a satisfaction problem. An EC3 problem is
a boolean formula F with M clauses and n binary variables v1, v2, · · · vn that F = C1∧C2 · · ·∧CM .
Each clause contains exactly three variables and it is satisfied when there is only one variable is
1 and the other two are 0. The task is to determine if there is an assignment of v1v2 · · · vn that
satisfies all M clauses such that F is evaluated to 1. An energy function is defined as

hi(vi1, v
i
2, v

i
3) =

{
0 if vi1, v

i
2, v

i
3 satisfies clause Ci;

1 if vi1, v
i
2, v

i
3 does not satisfy clause Ci

(5)

where viz means the zth variable in clause Ci that z ∈ {1, 2, 3}, i ∈ {1,M} and viz ∈ {v1, · · · , vn}.
Then it is defined that

HCi |v1v2 · · · vn〉 = hi(vi1, v
i
2, v

i
3) |v1v2 · · · vn〉 (6)

and

HC =
M∑
i=1

HCi . (7)

From Eq. (6)-(7), we know that for any given arbitrary assignment, HC computes the total
number of violated clauses in an EC3 instance. The state space, i.e. all the possible assignments
(N = 2n), is the computational basis (also the eigen-basis) for HC while the corresponding eigen-
value is the number of clauses violated by that eigenstate. Hence, the eigenvalues are integers in
the range of 0 and M in the subspace occupied by HC . Eigenstates with eigenvalues 0 would be
the solution assignments.

The EC3-solving algorithm acts on an 1-qubit probe register Rp and one n + 1 qubit register
Rs as shown in Figure 1. The register Hamiltonian is constructed as

Hs =
(
−IN 0

0 HC

)
. (8)

where IN is N -dimensional identity operator. It is given that

A = X ⊗
(

1√
2

(I2 +X)
)⊗n

(9)
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Figure 1: [8] The original EC3-solving algorithm. The register Rp has one probing qubit that is
initially in the excited state. The Rs register contains n + 1 qubits where the first qubit is an
ancillary qubit while the last n qubits are the state space for all the boolean assignments. The
unitary U is based on Hamiltonian H in Eq. (1) that U = e−iH(τ).

and

|Ψs〉 = (I2 ⊗H⊗n)(|0〉⊗(n+1)) =
1√
N

N∑
j=1

|0〉 |j − 1〉 =
1√
N

N∑
j=1

|ϕj〉 (10)

From Eq. (8)-(10) we know (1) the states |ϕj〉 are eigenstates of Hs with eigenvalue −1 because of
−IN and (2) Hs |Ψs〉 = − |Ψs〉 where Es = −1. With the additional 1 ancillary qubit in Rs, it is
easier to prepare an eigenstate for Hs as |Ψs〉 can be prepared by using Hadamard gates on the last
nth qubits of register Rs. We simply set ω0 = 1 for resonance and let the system evolve for some
time τ and we measure the probe qubit to see if we observe 0. If the outcome is 1, it means we
have not found any solution yet. If the outcome is a 0, it means either (1) with high probability we
have found the solution or (2) with low probability we obtain a non-solution state because of the
error from non-solution assignments becomes non-negligible such that the energy from the probe
qubit leaks to non-solution assignments.

In the RT model, a state in the cavity system climbs up from eigen state |Ψi〉 to state |Ψi+1〉
by using the energy given from the probe qubit when the eigen energy gap Ei+1 − Ei is equal
to the frequency ω0 . In this setting, we know the state |Ψs〉 can be also viewed as state |Ψ0〉
because Es = E0 = −1 as E1 = 0. The evolution of |Ψ0〉 to all other states, solution assignment(s)
state |Ψ1〉 and non-solution assignments |Ψj〉, will contribute to the probability of observing a 0 in
register Rp. It is clear to see that each |Ψj〉 state is associated with eigen energy Ej and it can be
expressed as

|Ψj〉 =
mj∑
l=1

1
√
mj
|1〉 |µl〉 (11)

where mj is the number of eigenstates associated with eigenvalue Ej and |1〉 |µl〉 is the corresponding
eigenstate. The contribution from the solutions states (states with eigenvalue 0) is

Pdecay = sin2(
Ω01τ

2
) (12)
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The contribution from all non-solution states is [8]

P errdecay =
N∑
j=2

sin2(
Ω0jτ

2
)

Q2
0j

Q2
0j + E2

j

1. (13)

Since Qij = 2c 〈Ψi|A |Ψj〉 and we know that

〈Ψ0|A |Ψj〉 =
1√
N

1
√
mj

N∑
j=1

mj∑
l=1

(
(〈0| 〈j|)A) |1〉 |µl〉

)
=

1√
N

1
√
mj

N∑
j=1

mj∑
l=1

(
〈1|

N−1∑
kj=0

1√
N
〈kj |)(|1〉 |µl〉

)
=

1
N

mj√
mj

N∑
j=1

1

=
√
mj .

(14)

Q0j is therefore 2c√mj where mj is the degeneracy of the assignments (basis states) of HC with
eigenvalue Ej . The upper bound of decay error probability P errdecay can be simplified to

P errdecay ≤
∑
j

Q2
0j

Q0j
2 + Ej

2 ≤
∑
j

4c2mj

Ej
2 ≤ 2

3
π2c2mmax, (15)

where mmax is the maximum of mj , given the fact that
∑∞

j=2
1

(j′−1)2
= π2

6 . We have to choose
the coupling factor c ' O( 1√

mmax
) to make P errdecay become negligible. However, this imposes the

dilemma. If we have a huge degeneracy (exponentially large) in the system, then we need to set τ
to be exponentially large (τ ' 1

c ) for each iteration since

Pdecay = sin2(c
√
m0τ) (16)

has to be some non-negligible number. If τ is some constant number, then Pdecay will be exponen-
tially small. That makes the number of required iterations (∆ ' 1

Pdecay
) exponential large and the

overall complexity ∆ × τ would be huge. Furthermore, for hard instances of solvable satisfaction
problems, m0 is a small number as it is the number of satisfying assignments. When we observe
a 0 in the probe qubit, it implies that with high probability the solution state is obtained. Hence,
we will examine the potential issues based on (1) decay error probability and (2) energy leak due
to high degeneracy.

We remark that our analyses above restricts to Hamiltonians for EC-3 or 3-SAT problems
encoded with specific energy functions which assign the (integer-valued) energies according to the
number of clauses violated. For more general Hamiltonians, the success probability of the algorithm
depends on more factors as discussed in Ref. [14].

1in this case, the initial state |Ψs〉 is also the eigenstate of Hs with eigenvalue -1 such that |Ψs〉 that will be excited
to other eigenstates with higher eigenvalues.
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2.3 Physical Implementation

We next clarify the physical implementations of the full Hamiltonian H in terms of elementary
Pauli matrices for qubits. First, we define the projection operator

Z+ = |0〉 〈0| = 1
2

(I2 + Z), Z− = |1〉 〈1| = 1
2

(I2 − Z).

Each energy function in hi in Eq. (5) can now be straightforwardly translated into a linear combi-
nation of three-qubit projections,

hi(vi1, v
i
2, v

i
3) =

(
I−

∣∣∣0vi10vi21vi3

〉〈
0vi10vi21vi3

∣∣∣− ∣∣∣0vi11vi20vi3

〉〈
0vi11vi20vi3

∣∣∣− ∣∣∣1vi10vi20vi3

〉〈
1vi10vi20vi3

∣∣∣ )
=

(
I− Z+

1 Z
+
2 Z
−
3 − Z

+
1 Z
−
2 Z

+
3 − Z

−
1 Z

+
2 Z

+
3

)
, (17)

where I is the identity operator in the 3-qubit subspace. We then expand the projection operators
using Pauli matrix Z, for instance,

Z+
1 Z

+
2 Z
−
3 =

1
8

(
I + Z1 + Z2 + Z3︸ ︷︷ ︸

one body

+Z1Z2 − Z1Z3 − Z2Z3︸ ︷︷ ︸
two body

− Z1Z2Z3︸ ︷︷ ︸
three body

)
.

The full register Hamiltonian (coupling the n-register qubits to the ancillary one) can also be
re-written in terms of the projection operators introduced earlier,

Hs = −Z+
0 ⊗ I + Z−0 ⊗Hc

= I2 ⊗
(
Hc − I

2

)
− Z0 ⊗

(
Hc + I

2

)
, (18)

where Z−0 , Z+
0 and I2 are operators associated with the ancillary qubit and I is the identity operator

in the N-dimensional supspace spanned by n qubits in cavity. As for the register-probe interaction,
the operator A given in Eq. (9) is already fully specified in terms of Pauli matrices.

It is now clear that the EC3 problems require building intricate many-body interactions among
qubits in the present framework. While the two-body interaction can be generated easily in most
cavity-related quantum optical experiments, a major challenge is to coherently couple multiple
(beyond 2) register qubits that might not be in a close vicinity of each other. This obstacle prevents
implementing the present algorithm in a large scale experiment involving many register qubits at
the moment. Nevertheless, with the recent progress of various quantum technologies such as the
quantum bus[18] and the many-body Hamiltonian simulations [15, 16, 17], the future prospect
of constructing the required multiple-qubit interacting Hamiltonian is certainly promising. This
could be particularly true as the present framework only requires static (alway-on) interactions as
opposed to time-dependent (on-demand) interactions among the qubits. This static requirement is
true for both the energy functions, hi, as well as for register-probe interaction, Hint.

3 Comparison to Adiabatic Quantum Computation

We now analyze the intimate connections between RT and AQC models. First, we briefly summarize
the essence of AQC [5] to make the analysis in this work self-contained.
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Based on the adiabatic theorem [19], a quantum system evolves according to Schrödinger equa-
tion

i
d

dt
|ψ(t)〉 = Hc(t) |ψ(t)〉 , (19)

we can consider a family of Hamiltonians H̃(s), 0 ≤ s ≤ 1 and let H(t) = H̃(t/T ). Define the
instantaneous eigenstates and eigenvalues

H(s) |l; s〉 = El(s) |l : s〉 (20)

where
E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s) (21)

and the minimum spectral gap is

gmin = min
0≤s≤1

(E1(s)− E0(s)). (22)

It is well-known that the expected running time

T � ε

g2
min

s.t. 〈l = 0; s = 1|ψ(T )〉 ' 1. (23)

where
ε = max0≤s≤1|〈l = 1; s|dH

ds
|l = 0; s〉|. (24)

This concept was further extended [5] in a linear manner. The computation starts by initializing
the AQC in the easy-to-prepare ground state(s) of the Hamiltonian HB. The time dependent
Hamiltonian H(t) is defined as

H(t) = (1− s)HB + sHC (25)

where s = f(t/T ). In this study, we consider s = t/T for simplicity. We simply let the ground state
of HB evolve in this Hamilton H(t). When t = T , the ground state |l = 0; s = 0〉 of HB will evolve
into state |ψ(t)〉 that is extremely close to the ground state |l = 0; s = 1〉 of HC . The running time
of AQC is determined by the minimal spectral gap gmin of the underlying Hamiltonians [5].

In the following three subsections, we shall investigate (1) how to adapt any AQC algorithm to
a corresponding RT version to firmly establish their connections as computational devices, (2) how
the performance of RT and AQC model differs in different computational problems due to the very
different physical mechanism by which the models operate, and (3) how to interpret the underlying
quantum dynamics of RT model in terms of well-established and well-studied AQC models.

3.1 Translation of Algorithms

Figure 2 presents a clear picture of how the two computational models are related. In both models,
the solution to a computational problem is encoded in the ground state of a Hamiltonian HC . If
it is easy to initialize a quantum device in the ground state of HC then the problem is directly
solved without invoking either AQC or RT models. Hence, both AQC and RT models are initialized
with an easy-to-prepare quantum state and rely on different physical principles (adiabatic theorem
versus resonant transition) to manipulate the quantum dynamics in order to achieve the desired
ground state of HC .
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Figure 2: Connections between AQC and RT. In both models, the desired solution is encoded
as the ground state of HC . In the RT model, the HC is embedded into a larger Hamiltonian
after introducing the ancillary qubit. The enlarged system is then excited from the -1-eigenvalue
manifold to the 0-eigenvalue manifold with the help of the probe qubit. On the other hand, the
AQC model starts with HB (easy to initialize in the ground state) and relies on adiabatic tuning
to morph the Hamiltonian to HC .

As described earlier and shown in the figure, the AQC model would initialize the device in the
ground state of another Hamiltonian HB, which is related to HC via a simple linear equation as in
Eq. (25). As long as this transformation of Hamiltonians (from HB to HC) is adiabatically slow,
the quantum device remains in the instantaneous ground state of the time-evolved Hamiltonian.
This guarantees the attainment of the ground state of HC at the end of the algorithm execution.

On the other hand, the RT model would add an ancillary qubit to the system (with Hamiltonian
HC) to define an extended Hamiltonian for the enlarged system. For instance, this is how the
register Hamiltonian Hs, Eq. (8), for the EC3 solving algorithm is defined earlier. As shown,
the desired Hamiltonian HC appears at the lower diagonal part of the enlarged Hamiltonian in
Eq. (8). We note that Hs Hamiltonian essentially introduces a highly degenerate ground state and
the rest of the spectral properties of Hs is determined by HC Hamiltonian. It would be easy to
initialize the enlarged system in the ground state with eigenvalue -1 since this is determined solely
by the ancillary qubit’s quantum state. By properly tuning the probe qubit’s energy to target
the transition between the -1 and 0 eigenvalue manifold of this extended system, the desired state
(ground state of HC) can also be reached reliably.

Hence, the translation of adiabatic algorithms is now clear. One simply takes HC (the final
Hamiltonian in an adiabatic algorithm) and embedded into Hs as done in Eq. (25). This straight-
forward mapping establishes the RT model potentially being a universal quantum computation
framework. In this work, this adaptation of AQC’s EC3 and 3-SAT algorithms to RT versions are
discussed in great depth. Another important algorithm for adaptation is AQC’s integer-factoring
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scheme[22]. The translation scheme has given the RT model an access to a variety of important
AQC-based quantum algorithms.

3.2 Different Limiting Factors

We now compare the performance of AQC model and RT model when attacking two types of prob-
lems: Minimum Hamming Weight Problem and Perturbed Minimum Hamming Weight Problem.
A Minimum Hamming Weight Problem (MHWP) is that for a given n bit string z ∈ {0, 1}n, we
want to minimize the Hamming weight w(z) of z. In the MHWP, it is shown that the complexity is
O(1) for AQC [6]. If we look at the final Hamiltonian HC , we know that many eigenstates (in the
computational basis) would have the same eigenvalues. For instance, when n = 3, binary strings
011, 101 and 110 have the same Hamming weight. When eigenvalue en/2 = n

2 , we have C(n, n/2)
eigenstates, which is approximately O(2n/n2) by Stirling’s approximation. That is the correspond-

ing maximum degeneracy of the system. Hence, the RT model would have a complexity of O(
√

2n

n2 )
when it is easy to prepare the initial state with eigenvalue ω0 shifted from the eigenvalue of the all
zeros string. It is clear in this case that AQC performs much better than RT based models in the
simple MHWP.

In a Perturbed Miminum Hamming Weight Problem (PMHWP), a Hamiltonian of the system
is expressed as

Hf (t) = H(t)− t

T
(n+ 1) |1n〉 〈1n| (26)

and it is shown [6] that for the Hamiltonian Hf : gmin ∈ O( n√
2n

) and this implies T � Ω(2n

n2 ).

Similarly, for the RT model, the complexity for PMHWP remains O(
√

2n

n2 ) exactly the same as
that for MWHP since small perturbation from |1n〉 〈1n| does not affect where the most degeneracy
occurs and does not change the degree of highest degeneracy. The perturbation will only affect
(decrease or increase) the degeneracy of eigenstate |1〉⊗n by at most n, which is significantly smaller
than C(n, n/2). In such a scenario, small perturbation, the RT model is almost perturbation blind
and outperforms AQC.

Hence, when solving the eigenstate/eigenvalue problems (such as CSP, MHW, and search),
we need to examine the nature of the problem in order to choose the right model. From a very
intuitive sense, we can imagine that RT model and AQC model are similar but their running time
is dominated by different parameters. In the AQC model, the running time is dominated by the
inverse of the square of the minimal spectral gap 1/g2

min while in the RT model, the running time
is dominated by the square root of the maximal degeneracy

√
mmax.

Finally, we emphasize that the above comparisons are based on idealistic situations in which no
noise or decoherence is considered. In the study of resonant transitions physics, it is well known that
a signficant quantum state leakage into high-lying energy state is highly unlikely due to the violation
of energy conservations . In fact, if this type of quantum leakage happened all the time, it would
have completely altered the robust resonant transition physics observed ubiquitously. This being
said, temporary virtual transition into the high-lying energy states then back down to the resonant
states can happen as allowed by the Heisenberg’s time-energy uncertainty principle. Hence, the
realistic problem is not really the leakage problem but rather the dephasing problem. As the qubits
temporarily change their states, important quantum phase information will be lost. Fortunately,

10



the phase factors of a wave function is not explicitly used in the RT model. This allows the RT
model, similar to the AQC model, to be more noise-resilient than the traditional circuit models
where the computational time has to be significantly less than the single qubit’s dephasing time,
for instance.

3.3 Adiabatic Evolution Following Resonant Transition Model

To complete the analysis, now we would like to compare the underlying quantum dynamics of the
two models and gain a different perspective on their connections. We follow closely a method of
analysis presented by Wong and Myer [20] in which one can make AQC to emulate other unitary
dynamics based quantum computation models. The idea is to project complicated many-qubit
quantum dynamics into the dynamics of an effective qubit. One then asks how to engineer an
appropriate adiabatic path for this effective qubit’s Hamiltonian such that the time evolved ground
state emulates the dynamical evolution in another system. Being an effective two-state description,
one can view the adiabatic ground state evolutions as a trajectory on the Bloch sphere.

Through these simplified representations, Wong and Myer provide an illuminating account of
the subtle differences between AQC and continuous quantum walk (CQW) model, another universal
quantum computation paradigm based on the unitary quantum dynamics. In Ref. [20], it was shown
that for AQC to emulate the quantum walk search algorithm, it must interpolate between three
fixed Hamiltonians (H̃B, H̃E , H̃C). That implies in order to emulate the behavior of a quantum
walk via the use of AQC, the corresponding Hamiltonian for AQC is structurally beyond a linear
interpolation between the initial Hamiltonian, H̃B, and the final Hamiltonian, H̃C . Not surprisingly,
adopting the same projected representation, we find the AQC can more naturally emulate the RT
model; although with an unusual adiabatic path.

To make AQC emulate RT model in the approach just described above, let us first formulate the
RT model in this two-state description. We first focus on the system part and exclude the ancillary
and probe qubits. The solutions of a computational problem are designated as one quantum state
|g〉 and every other states are denoted as |i〉. Next we incorporate the probe and ancillary qubits
into the two-state description. We now define augmented basis with |G〉 = |01g〉 and |B〉 = |10b〉
with |b〉 =

∑2n−1
i=0

1√
2n
|i〉 where the three indices of the kets denotes the state of the probe qubit,

the ancillary qubit and the cavity system, respectively. In this augmented basis, we can now depict
the time evolution of the entire quantum device in which an initial state |Ψ0〉 = |B〉 is time evolved
under the unitary operation, U = e−iHτ . The time evolution of |Ψ0〉 can be expressed as

|Ψ0(τ)〉 =
√
Pdecay |01g〉+

√
1− Pdecay |10b〉 = α(τ) |G〉+ β(τ) |B〉 (27)

where H is described in Eq. 1. In this case we obtain

Ω0,1 = 2c, Pdecay = sin2(
Ω0,1τ

2
) = sin2(cτ) (28)

by the result from Eq. 4, 14 and 16 and assuming there is only one solution. Then we want the
ground state of the adiabatic Hamiltonian HA(τ) to be |Ψ0(τ)〉 with eigenvalue λ0. The other
eigenstate is hence ∣∣∣Ψ0

⊥(τ)
〉

= β(τ) |G〉 − α∗(τ) |B〉 (29)
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with eigenvalue λ⊥0 . Similar to the analysis by Wong and Meyer, to avoid complex number, in [20]
with eigenvalues λ0 = −λ⊥0 , the Hamiltonian is

H̃A(τ) = λ0 |Ψ0(τ)〉 〈Ψ0(τ)|+ λ⊥0

∣∣∣Ψ⊥0 (τ)
〉〈

Ψ⊥0 (τ)
∣∣∣ (30)

= λ⊥0

(
−|α|2 + β2 −2αβ
−2α∗β |α|2 − β2

)
(31)

= λ⊥0

(
− sin2(cτ) + cos2(cτ) −2 sin(cτ) cos(cτ)
−2 sin(cτ) cos(cτ) sin2(cτ)− cos2(cτ)

)
(32)

(33)

The Hamiltonian is thus reduced to

H̃A(s) = λ⊥0 (s)[−(1− 2s)H̃C +
√
s(1− s)H̃E ] (34)

where
s(t) = sin2(cτ) (35)

is the interpolation schedule and we have

H̃C =
(
−1 0
0 1

)
, H̃E =

(
0 −2
−2 0

)
. (36)

We still need to find out λ⊥0 in terms of s. By use of the adiabatic theorem ds/dt = εg2(s) and
Eq. (35), we have

2 sin(cτ) cos(cτ)c = εg2(s). (37)

Since λ0 = −λ⊥0 , i.e. λ⊥0 = g(s)/2, then we obtain

g(s) =

√
2c
√
s(1− s)
ε

, λ⊥0 = 4

√
c2s(1− s)

4ε2
. (38)

Therefore, the adiabatic Hamiltonian that follows the evolution in a RT-based algorithm is

H̃A(s) = 4

√
c2s(1− s)

4ε2
[−(1− 2s)H̃C +

√
s(1− s)H̃E ]. (39)

Unlike the case presented in Ref. [20], the AQC emulates the RT dynamics via a non-linear and
closed adiabatic path which starts with −H̃C at s = 0 and returns to H̃C at s = 1. Note the sign
difference in the beginning and the end of the adiabatic path.

The initial input to the system is |10b〉 and is also the ground state of -H̃C . This points to a
fundamental difference between RT and AQC models. In the AQC case, one would like to initialize
the quantum device into the ground state of H̃B, which should preferably overlap significantly
with the desired output state as much as possible and limit the need to perform the adiabatic
transitions. In the RT model, we actually want the initial state to be completely orthogonal to the
desired state because the resonant transitions imply a jump from one eigenstate to another. In the
two-state description, this would imply the initial state has to be |B〉 (completely orthogonal to
|G〉). This physical circumstances explain the unusual closed adiabatic path AQC must follow in
order to emulate the RT model.

12



In this two-state projected view, it is also clear that the RT dynamics is different from that of
the CQW consider in Ref. [20]. For instance, the Hamiltonian H̃e acts more powerfully than the
standard oracular operations. Unlike a standard oracular operation which first reflects around |G〉
by applying a phase then reflects around the initial state, the Hamiltonian H̃e introduces an extra
structure that drives the evolution between |G〉 and |B〉.

4 3-SAT Problems

To further illustrate the usefulness of a RT-based quantum computations, we generalize the EC3
algorithm presented earlier to study hard instances in 3-SAT problems. Through this highly non-
trivial problem, we will address how to improve the efficiency of a RT model. We recall a 3-SAT
is defined as a formula F with M clauses and n binary variables. Let N = 2n be the number
of possible assignments for n boolean variables. Let V = {v1, v2, · · · , vn} be the set of boolean
variables and V̄ = {v̄1, v̄2, · · · , v̄n} be the complement set. A 3-SAT formula is described as

F = C1 ∧ C2 ∧ · · · ∧ CM and Ci = (li1 ∨ li2 ∨ li3)

where (1) ∀i ∈ {1,M} , literal lij ∈ V or literal lij ∈ V̄ and (2) ∀k ∈ {1, n}, vk or v̄k appears at least
once in F . The task is to find an assignment to v1, v2, · · · , vn such that F will be evaluated to 1.

4.1 RT algorithm

Given a 3-SAT formula F , we associate each 3-bit clause with an energy function, modified from
Eq. (5),

hi(Ci) = hi(li1, l
i
2, l

i
3) =

{
0 if li1, l

i
2, l

i
3 satisfies clause Ci;

1 if li1, l
i
2, l

i
3 does not satisfy clause Ci,

(40)

where liz is the zth literal in clause Ci. We can consider this energy function as a constant energy
function. Similarly, we can also have the clause associated with another energy function

hi(Ci) = hi(li1, l
i
2, l

i
3) =

{
0 if li1, l

i
2, l

i
3 satisfies clause Ci;

γ × i if li1, l
i
2, l

i
3 does not satisfy clause Ci,

(41)

we can consider this second energy function as clause dependent energy function. With both energy
functions, each local Hamiltonian HCi can be defined by its action on quantum state vectors,

HCi |v1v2 · · · vn〉 = hi(li1, l
i
2, l

i
3) |v1v2 · · · vn〉 . (42)

Hence, the Hamiltonian HC =
∑

iHCi gives an energetic value to each configurations of all qubits
according to which clauses Ci are violated. The solutions to a 3-SAT problem would correspond to
the zero-energy eigenstates of HC if they exist. Similar to the EC3 algorithm introduced earlier,
one needs to introduce an additional ancillary qubit and embed HC within the extend structure of
Hamiltonian Hs as done in Eq. (8). Details of how to construct all these abstract Hamiltonians in
terms of Pauli matrices can be inferred from Sec. 2.3.

To improve performance of RT-based quantum computation, it is desirable to reduce the decay
error probability P errdecay described in Eq. (15). Intuitively, we can either (1) increase the eigenvalue
gap (detuning effect) to suppress the decay error probability P errdecay and (2) increase the number of

13



distinct eigenvalues in the spectrum of HC to minimize the degeneracy in each eigenenergy man-
ifold. These two objectives can be simultaneously achieved through the modifications introduced
in Eq. (41).

4.2 3-SAT Hard Instances

It is well-known that, in general, the difficulty of a 3-SAT problem is gauged by an order parameter
known as the clause-variable ratio, (M/n). When the ratio is around M/n ' 4.24, then the
problem can undergo a phase transition[21, 23, 24, 25] and be classified as NP-complete. When the
order parameter is significantly different from the critical value of 4.24, then the problem becomes
relatively trivial. Next we use either Eq. (40) or Eq. (41) as the energy function required by the
3-SAT algorithm presented in Sec. 4.1 and compare the performance of the corresponding algorithm
in a hard instance of the 3-SAT problem.

4.2.1 Constant Energy Function

In this subsection, we will analyze RT-based algorithm to solve a hard 3-SAT instance. We will
take a constant energy function, based on Eq. (40), that assigns a numerical value 1 whenever a
clause is violated. Given the constraint from a hard 3-SAT instance, the decay probability error
can be bounded from above with respect to M . We obtain 2 a new upper bound

P errdecay ≤
∑
j

4c2mj

Ej
2 ≤ 4c2mmax

j′=4n∑
j′=1

1
j′2
≤ 4c2(

π2

6
− 2M − 1

2M2
)mmax. (43)

Regarding the performance, the main concern is the maximal degeneracy mmax. With M + 1
eigenvalues and N eigenstates, even distributed uniformly, each eigenvalue has an expected expo-
nential O( N4n) degree of degeneracy. It is inevitable that mmax is exponentially large for 3-SAT hard
instances, given the constructed HC based on Eq. (40). This implies the coupling factor c (between
the register and the probe) has to be exponentially small in order to make P errdecay negligible. This
ultra-weak coupling is, however, not a desired solution as the running time τ will necessarily scale
to an exponentially large quantity, (O(

√
mmax)), as summarized in Table 1. The worst case is

that there is only one solution assignment and all the degeneracy occurs at the non-solution assign-
ments that only violate one clause. In such a scenario, the complexity of the RT approach is O(

√
N).

Method Running time time unit
RT with Constant Energy Function O(

√
mmax) Continuous Time

Conventional Grover O(
√

2n) Discrete, Oracle Invocations

Table 1: Time complexity for two types of quantum algorithms for solving SAT.

For conventional discrete quantum search algorithms, such as Grover’s search algorithm on un-
structured data [27], the complexity is O(

√
N) when there are only a few solutions. Let us consider

a uniform situation that the given 2n−1 non-solution assignments will be evenly distributed among
one eigenvalue, two eigenvalues and so on till M eigenvalues. On the average, in comparison to

2On Mathematica, harmonicnumber(M,2), is bounded from above by π2

6
− 2M−1

2M2 by use of Laurent series
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conventional discrete quantum search algorithms, the RT algorithm outperforms the conventional
quantum search algorithms in hard instances since the expected running time of each iteration is 3

E(τ) ' E(
1
c

) ' E(
√
mmax) =

∑M
i=1

√
N
i

M
' O(

√
N/n) (44)

Figure 3: Top line for the conventional discrete quantum search algorithm, the bottom line is for
spectra probing algorithm. The x axis is the number of possible assignments (N) in hard cases in
a constraint satisfaction problem F . The y axis is the complexity.

4.2.2 Clause Dependent Energy Function

Now we will adapt the modified energy function introduced in Eq. (41). From Eq. (15), it is shown
that P errdecay ≤

∑
j

4c2mj
Ej

2 . In the worst case scenario, we have only one solution and each of the rest
of 2n − 1 assignments violates only one clause (the first clause). Given such a condition, we have

P errdecay ≤
4c2(N − 1)

(γ)2
. (45)

Since the running time τ of each iteration is proportional to the inverse of coupling factor c, i.e.

τ ' 1
c
, (46)

and we have to make the P errdecay a relatively small constant, then we know τ ' O(
√
N
γ ). It is clear

that γ defined in Eq. (41) improves the running time of the adapted algorithm as γ gets larger.
Suppose γ is a positive integer, i.e. γ ∈ [1, 2, · · · ,∞] and the cost of increasing γ is constant, then
the rate of improvement remains positive but monotonically drops as γ is scaled up. When γ ∝

√
N ,

the running time τ would approach a plateau value independent of input size. Unfortunately, the
ideal scenario is difficult to attain as it is unrealistic to scale γ arbitrarily large in experiments. The
benefit of having a large γ is physically intuitive and reflects in improved algorithmic performances.

Regarding the average case, for the simplicity of the analysis, let us assume the distribution of
the non-solution assignments to corresponding eigenvalues is uniform. Given 2n − 1 non-solution
assignments, they will be evenly distributed among one eigenvalue, two eigenvalues and so on till

3On Mathematica, harmonicnumber(M,1/2)/M, is approximately 2
√

1
M

by Puiseux series
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M(M+1)
2 eigenvalues. In each case, we will have mmax equal to 2n, 2n/2, 2n/3 · · · and 2n/(M(M +

1)/2), respectively. We derive 4

E(τ) ' E(
√
mmax

γ
) =

1
γ

∑K
i=1

√
N
i

K
' O(

√
N/(nγ)) (47)

where K = (M(M+1))/2. In comparison to the performance of the solver that adapts the constant
energy function as shown in Eq. (44), we notice that the algorithm that adapts the clause dependent
energy function outperforms by a factor of γ and

√
n. The improvement is two-fold in the solver

that adapts clause dependent energy function. The first improvement comes from the variable γ
that we can control in the experiment. The second improvement, the factor

√
n, comes from the

fact that, using the clause dependent in the energy function, we broaden the bandwidth of the
spectrum (from M to M×(M+1)

2 ) while the number of underlying eigenstates remains as N . A
wider spectrum of eigenvalues leads to a lower number of the expected maximal degeneracy.

5 Discussion

In this work, we critically analyze a novel quantum computational paradigm which encodes solu-
tion of a computational problem in eigenstates of a Hamiltonian and invoke the trick of resonant
transition to explore these eigenstates. Our main focus is to fully understand how the RT model
compares and contrasts with the well-established and highly related AQC model. To this end, we
provide a straightforward scheme to translate any AQC algorithm into a corresponding RT ver-
sion. We also briefly comment on how to build up the extended Hamiltonian for the entire system
(register qubits, ancillary qubit and probe qubit) in terms of elementary Pauli matrices.

To further understand the subtle differences in the underlying quantum dynamics driving both
computational models, we use simple Hamming weight problems [6] to distinguish the influences
of different spectral properties of the Hamiltonian on the computational performances. In AQC,
the spectral gap size determines how fast the adiabatic execution of an algorithm can take place.
In the RT model, for Hamiltonians based on the constant energy functions, it is the degeneracy
structure of the Hamiltonian’s eigen-spectrum that determines the execution speed. Through the
toy model analyses, we argue that certain AQC algorithms will be more efficiently implemented in
a RT model. Since both computational models rely on complicated many-body quantum dynamics
to proceed, it would be illuminating to compare these underlying dynamics in some simple fashion.
In this study, we adopt Wong’s method that depicts the entire computational procedure as an
effective qubit starting from some initial state and gradually moves toward the target (solution)
state on a Bloch sphere. In this simplified view, we find RT dynamics follows a very different path
than the AQC model on the Bloch sphere. In conclusion, while our algorithmic translation scheme
might deceptively convey the impression that both models are almost identical at a conceptual
level, the detailed dynamical analyses reveal the irreconcilable differences between the two under
the hood.

Our second focus is to assess straightforward approaches one can take to fine tune the per-
formance of a RT model in a highly non-trivial algorithmic context. In particular, we choose to
illustrate these points by generalizing the original EC3-solving algorithm[8] to consider the infamous

4On Mathematica, (harmonicnumber ((M ∗ (M + 1)/2), 1/2))/M converges around 1.5. Since K = M(M+1)
2

, then

O( 2×1.5
√
N

γ(M+1)
) ' O(

√
N/(nγ)).
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3-SAT problem. Through this NP-complete example, we demonstrate an enhanced performance of
the RT model by adopting a modified energy function in Sec. 4.2.2 that reduces the degeneracy
structure of the Hamiltonian’s spectrum and suppresses decay errors due to off-resonant transitions.
In Table 2, the time complexity of RT algorithms based on the two different energy functions is
summarized.

Method Worst Case Average Case

Costant Energy Function O(
√
N) O(

√
N
n )

Clause Dependent Energy Function O(
√
N/γ) O(

√
N/nγ)

Table 2: Time complexity for the two energy functions.

In summary, we find a RT model to be a convenient and practical alternative to AQC in certain
contexts. A simple criterion to decide which model to use is to compare the running time, which
can be deduced from the spectral gap size of adiabatically connected Hamiltonians and the spectral
degeneracies of the target Hamiltonian. The fact that one does not have to design an entirely new
algorithm for the RT model should be a particularly desirable trait. For instance, the EC3 and 3-
SAT algorithms presented above are clearly adapted from the original adiabatic versions. Similar to
the efforts to introduce ultra-fast adiabatic process in the adiabatic computing community, there are
potential ways to further enhance the physics of resonant transitions[26, 28, 29], such as exploiting
the additional quantum effects when multiple probe qubits are introduced.
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