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In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-

Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher infor-

mation) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the

upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the opti-

mal initial state and optimal measurement. The bound is based on the underling dynamics and its calculation is

straightforward and requires only the matrix representation of the quantum maps responsible for encoding the

parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either

semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision

limit are demonstrated by three main examples.

PACS numbers: 03.65.Yz, 42.50.Lc, 03.65.Ud, 05.30.Rt

I. INTRODUCTION

Parameters estimation is a principal part of the scientific

analysis of experimental data. It plays an important role at a

very fundamental level, involving the measurement of funda-

mental constants of Nature like the Planck constant, the speed

of light in vacuum and the gravitational constant. Further-

more, it has widespread practical implications ranging from

determination of atomic transition frequency [1–3] to a phase

shift in an interferometric measurement due to the presence of

gravitational waves [4–6].

Since errors and statistical uncertainties are unavoidable in

realistic experimental data, specifying the estimation error is

a central task in parameter estimation. The error in an estima-

tion is quantified by the square root of the statistical average of

the squared differences between the true and the estimated val-

ues of the parameter. It is lower bounded by the Cramér-Rao

bound which, in turn, is inversely proportional to the quan-

tum Fisher information (QFI) in quantum metrology [7, 8]. In

viewpoint of the information theory, the QFI gives the amount

of information about an unknown parameter which can be ex-

tracted from scientific analysis of experimental data. So, it

can be used to characterize the statistical distinguishability of

states which are dependent on the parameter and, hence, to in-

dicate the non-Markovian behavior [9]. It should be point that,

the QFI depends on the probe characteristics, the type of the

parameter encoding process and the measurement. Calculat-

ing this quantity, finding ways to maximize it, and designing

protocols which allow for better estimation, are central to the

quantum metrology.

For a general probe state under a general encoding pro-

cess (specially noisy process), due to growing the size of the

evolved state exponentially with the number N of the probes,

it is a difficult task to compute the QFI and maximize it with

respect to the initial probe state and measurement. To solve

this challenge, in addition to some efforts to calculate the max-

imal QFI in special cases [10, 11], some alternative frame-

∗Electronic address: shsalimi@uok.ac.ir

works have been proposed by deriving fundamental metro-

logical bounds. Regarding the Kraus representations of the

parameter encoding map, some upper bounds on the QFI have

been defined [12, 13]. These bounds are not necessarily tight

even after optimization over the equivalent Kraus operators

which require numerical methods. Furthermore, this bound

cannot be reached by any measurement strategy. A more ac-

curate judgment about the true maximal value of the QFI in

addition to an upper bound needs a tight and saturable lower

bound. Moreover, to predict the scaling behavior of the QFI,

considering the behavior of its lower bound (which gives a

guaranteed precision) is more reliable than that of its upper

bounds.

Motivated by this, here, a saturable and tight-fitting lower

bound on the QFI in open quantum systems under general

dynamics (either semigroup or non-semigroup maps) is pre-

sented. The bound is directly related to the underlying dy-

namics and its calculation requires only the matrix representa-

tion of the parameter encoding map which is obtained through

tomography process. By focusing on the frequency estima-

tion in the presence of phase-covariant noise, as the first main

example to demonstrate the reliability and efficiency of the

method, a useful prescription for practical estimation is pro-

vided, by determining the optimal initial state and the optimal

measurement. Surprisingly, the method shows competency

to offer the exact precision limit and the optimal initial state

in open quantum systems under correlated noise (dephasing),

as the second example. In the last example, the performance

of the bound in predicting the optimal initial subspace for a

phase estimation in an optical interferometry with photon loss

is briefly discussed. Note that, in a variant approach, Alipour

et al. [14] and Beau et al. [15], have presented some bounds

on the QFI for determined initial state in open quantum sys-

tems only with dynamical semigroup maps.

II. BOUND ON THE QUANTUM FISHER INFORMATION

In measuring a parameter x, the uncertainty δx with which

the parameter can be measured is lower bounded by the

http://arxiv.org/abs/1602.01691v5
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Cramér-Rao bound [7, 8]

(δx)2 ≥ 1
T
t maxρ0 F(ρx)

, (1)

where t is the duration of each single measurement on the

N probes and T
t is the times that one repeats the measure-

ment in a given fixed time T . F(ρx) is the QFI which is a

measure of the amount of information in the encoded state ρx
about the parameter x and can be maximized over different

initial states. Due to the convexity of the QFI [17], the optimal

initial states are pure. From mathematical point of view, the

QFI is defined as F(ρx) = tr(ρxL
2
x) where Lx is a symmet-

ric logarithmic derivative operator which satisfies the equation

∂xρx = 1
2 (ρxLx+Lxρx). If the eigenvalues and eigenvectors

of ρx are known, the calculation of the QFI will be an easy

task [8]. However, very often the analytical diagonalization

of ρx turns out not to be feasible.

On the other hand, the QFI is naturally related to distin-

guishability of the states in the manifold of quantum states and

is proportional to the Bures distance [8, 18] between ρx and

its neighbor states ρx+dx via F(ρx)dx
2 = 4d2B(ρx, ρx+dx),

where

d2B(ρx, ρx+dx) = 2

(
1− tr

√√
ρxρx+dx

√
ρx

)
. (2)

Therefore, one will exploit the above relation to access the an-

alytical formula of QFI if one obtains the explicit expression

of the Bures distance which is difficult to obtain. Here, this

difficulty is circumvented by studying the statistics of an open

quantum system through the behavior of states in the Liouville

space, L(H), which is the vector space formed by the set of all

linear operators acting on the Hilbert space H. The Liouville

vectors, {|A)}, which correspond to the operators {A} acting

on H, satisfy an inner product as (A|B) = tr[A†B]. Let Φ
be a linear map defined on L(H) which relates one Liouville

vector to another as Φ̃|A) = |ΦA), where Φ̃ is the matrix rep-

resentation of Φ. The one-to-one correspondence between Φ
and Φ̃ is induced by the inner product. On this basis, any state

such as ρx on the Hilbert space H has a corresponding vec-

tor |ρx) in L(H). Now, by defining a normalized pure state

as ρ̃x = |Ψx)(Ψx| with |Ψx) = |ρx)/
√
(ρx|ρx), the Bures

distance between ρ̃x and ρ̃x+dx is written as

d̃2B(ρ̃x, ρ̃x+dx) = 2
(
1−

√
(Ψx|ρ̃x+dx|Ψx)

)
. (3)

Considering the Taylor series of ρ̃x+dx around x and ignoring

the third and higher powers of dx, Eq. (3) reduces to

d̃2B(ρ̃x, ρ̃x+dx) =
(ρ′x|ρ′x)(ρx|ρx)− (ρ′x|ρx)(ρx|ρ′x)

(ρx|ρx)2
dx2

=
1

4
F̃(ρ̃x)dx

2, (4)

where ρ′x = ∂xρx and F̃(ρ̃x) = tr(ρ̃xL̃
2
x) is an associated

QFI which quantifies the amount of information in ρ̃x and

L̃x = 2∂xρ̃x. To find the relation between F(ρx) and F̃(ρ̃x),

one should use the definition of the QFI in terms the sym-

metric logarithmic derivative operator, Lx. Replacing ρ′x by
1
2 (ρxLx + Lxρx) in the first term of F̃(ρ̃x) results in

F̃(ρ̃x) =
4

(ρx|ρx)
1

2
(tr(LxρxLxρx) + tr(L2

xρ
2
x))− χ, (5)

where χ = 4(ρ′x|ρx)(ρx|ρ′x)/(ρx|ρx)2. Employing the posi-

tivity of ρx, LxρxLx, and
√
ρxL

2
x
√
ρx, we obtain

tr(LxρxLxρx)+tr(
√
ρxL

2
x

√
ρxρx) ≤ 2tr(L2

xρx) = 2F(ρx).
(6)

By combining Eq. (5) and (6), one will have

F̃(ρ̃x) ≤
4

(ρx|ρx)
F(ρx)− χ, (7)

which, in turn, can be rearranged as

(ρx|ρx)
4

F̃(ρ̃x) ≤
(ρx|ρx)

4
(F̃(ρ̃x) + χ) ≤ F(ρx). (8)

The left hand side of this equation which can be simplified to

F ↓(ρx) = (ρ′x|ρ′x)−
(ρ′x|ρx)(ρx|ρ′x)

(ρx|ρx)
, (9)

is our lower bound of the QFI. The optimal measurement

which saturates this lower bound uses positive operator-

valued measures {Ej} which are one-dimensional projection

operators onto the non-degenerate eigenspace of the Hermi-

tian operator L̃x.

In a typical estimation setting, the parameter x is encoded

on sensing probes by a given physical dynamics Φx with Φ̃x

as the corresponding matrix representation. So, Eq. (9) can be

rewritten as

F ↓(ρx) = {(ρ0|Φ̃′†
x Φ̃

′
x|ρ0)−

|(ρ0|Φ̃′†
x Φ̃x|ρ0)|2

(ρ0|Φ̃†
xΦ̃x|ρ0)

}. (10)

As can be seen, the bound is directly related to the underlying

dynamics and its determination only needs the knowledge of

the matrix representation of the parameter encoding map. This

property allows one to use the bound in open quantum systems

which are governed by either semigroup or non-semigroup dy-

namical maps.

In particular, for a closed system evolving under a unitary

transformation,Ux, and being prepared in initial pure state ρ0,

one can show that (ρx|ρ′x) = 0 and the bound reduces to

F ↓ = (ρ0|Ũ ′†
x Ũ ′

x|ρ0) =
1

2
F(ρx). (11)

However, maxρ0(ρ0|Ũ ′†
x Ũ ′

x|ρ0) 6 F(ρx) does hold in gen-

eral, if the maximization were not restricted to physical state,

but extended to all normalized vectors in Liouville space, one

would end up calculating the operator norm ‖Ũ ′†
x Ũ ′

x‖, which

equals to the largest eigenvalue of the enclosed matrix. For

the closed system, this quantity yields F(ρx) and ,as will be

illustrated bellow, the subspace of the optimal initial state is

determined by the components of the associated eigenstate.
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Since, one deals only with matrix representation of the en-

coding map, our framework can be used to randomly sampled

generators, as is provided by Nichols et al. [19].

Furthermore, while F̃(ρ̃x) is an additive function, i.e.,

F̃(ρ̃⊗ν
x ) = νF̃(ρ̃x), the lower bound is a subadditive func-

tion, F ↓(ρ⊗ν
x ) ≤ νF ↓(ρx).

In the following, the attention is paid to the utility of the

bound in predicting correct behavior (e.g., scaling) of the esti-

mation error in an atomic spectroscopy (or equivalently mag-

netic field sensing) in the presence of uncorrelated and corre-

lated noise. Derived results are widely applicable to a broad

range of relevant physical processes including noisy depolar-

ization, such as spin-lattice relaxation at room temperature.

Moreover, we complete the paper by a brief discussion on the

performance of the bound for phase estimation in a lossy in-

terferometry.

III. FREQUENCY ESTIMATION

In a frequency estimation scenario, a parameter ω will be

encoded on each qubit by a unitary encoding map as Uω[O] =

e
−iωt

2 σzOe
iωt
2 σz , where σz is the Pauli operator generating a

rotation of the qubit state around the z-axis in the Bloch ball

representation. Selecting the computational basis as {|µν)} in

L(H) ({µν = |µ〉〈ν|} with µ, ν ∈ {0, 1}) the matrix repre-

sentation of Uω can be obtained as Ũω =
∑

µν e
iαωt|µν)(µν|,

where α = µ−ν. In the case of N identical qubits, the matrix

representation of U⊗N
ω can be obtained by the matrix product

Ũ⊗N
ω which is a 22N × 22N diagonal matrix whose elements

are eiαN
ωt, where −N ≤ αN ≤ N . Recall from the previous

discussions that

F ↓ ≤ ‖(Ũ⊗N
ω )′†(Ũ⊗N

ω )′‖ = N2t2. (12)

Associated eigenstate leads one to preparing the initial state in

the Greenberger-Horne-Zeilinger (GHZ) form (see Appendix

A).

A. Frequency estimation in the presence of uncorrelated

phase-covariant noise

In this case each qubit is locally affected by a special noise

type named as phase-covariant noise, that is, a noise type

commuting with the parameter encoding Hamiltonian, σz ,

[16, 20]. In the case of semigroup dynamics, the noise type is

one of the most destructive noise due to constraining the quan-

tum enhancement to a constant factor [12, 14, 21]. However,

this is not the case for a non-semigroup dynamics [16, 22–

25]. Regarding Uω as the encoding unitary map and J as the

parameter-independent noise map, the state of N probes at

any instant is described as

ρω = Φ⊗N
ω [ρ0], (13)

with

Φω = Uω ◦ J = J ◦ Uω. (14)

Considering the most general form of the phase-covariant

noise, the matrix form of Φω in the computational basis is

obtained as [16]

Φ̃ω =




J++ 0 0 J+−
0 0 η⊥e−iφ 0
0 η⊥eiφ 0 0

J−− 0 0 J−+


 , (15)

where J±± =
1±k±η‖

2 . The map includes a rotation around

the z-axis by an angle φ containing the encoded parameter, ω,

as φ = ωt + θ, a symmetric contraction in the xy plane by a

factor 0 ≤ η⊥ ≤ 1, a contraction in the z direction by a factor

−1 ≤ η‖ ≤ 1 ( the case η‖ ≤ 0 corresponds to an additional

reflection with respect to the xy plane), and a displacement

in the z direction by −1 ≤ k ≤ 1. The map in Eq. (15)

fulfils the completely positive and trace preserving conditions

as long as η‖ ± k ≤ 1 and 1 + η‖ ≥
√
k2 + 4η2⊥ [16]. In

particular, by setting special instances of the noise parameters,

typical qubit channels like pure dephasing (k = 0, η‖ = 1 and

η⊥ > 0), isotropic depolarisation (k = 0 and η‖ = η⊥ > 0)

and amplitude damping (η‖ = 1 − k and η⊥ =
√
1− k) can

be obtained. The following theorem provides an alternative

way of evaluating the maximum of F ↓ in the presence of the

phase-covariant noise.

Theorem: Let Φω be the encoding map in the presence of a

phase-covariant noise. Then

F ↓ ≤ ‖(Φ̃⊗N
ω )′†(Φ̃⊗N

ω )′‖, (16)

and initially preparing qubits in the GHZ state results in F ↓ =
1
2‖(Φ̃⊗N

ω )′†(Φ̃⊗N
ω )′‖.

Proof: Since Uω and J commute, one can have |ρ′ω) =

(Ũ⊗N
ω )′(J̃ ⊗N)|ρ0). Therefore, one obtains (ρ′ω|ρω) =

(ρ0|(J̃ ⊗N )†(Ũ⊗N
ω )′†(Ũ⊗N

ω )(J̃ ⊗N )|ρ0) = 0. This also oc-

curs when the parameter independent noise do not com-

mute with Uω but can be suppressed after the sensing trans-

formation, that is, states to be measured are Ũ⊗N
ω |̺) with

|̺) = J̃⊗N |ρ0). As discussed in the Appendix A, the

largest eigenvalue of (Ũ⊗N
ω )′†(Ũ⊗N

ω )′ is N2t2 with the cor-

responding eigenvectors |01⊗N) and |10⊗N) which under

the action of (J̃ ⊗N ) are changed to (η⊥e−iθ)N |10⊗N)
and (η⊥eiθ)N |01⊗N), respectively. This shows that

the eigenspace corresponding to the largest eigenvalue of

(Ũ⊗N
ω )′†(Ũ⊗N

ω )′ is invariant under the phase-covariant noise.

This also occurs for the eigenspace corresponding to the

smallest eigenvalue of (Ũ⊗N
ω )′†(Ũ⊗N

ω )′ (i.e., zero), which is

spanned by (|00) + |11))⊗N , due to

J̃ |00) = J++|00) + J−−|11),
J̃ |11) = J+−|00) + J−+|11), (17)

where J±± =
1±k±η‖

2 . So, preparing the initial state

as |ρ0) = |umax)+|umin)√
2

with |umax) = |01⊗N )+|10⊗N )√
2

and |umin) = |00⊗N )+|11⊗N )√
2

provides us with F ↓ =
1
2‖(Φ̃⊗N

ω )′†(Φ̃⊗N
ω )′‖. �
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The theorem shows that as long as 0 ≤ t < τ , the maximum

of the lower bound grows quadratically for small t and is fully

determined by η⊥ in the plane perpendicular to the rotation

axis, as (Appendix B)

‖(Φ̃⊗N
ω )′†(Φ̃⊗N

ω )′‖ = N2t2η2N⊥ , (18)

and τ is the largest time satisfying

2N2

(N − 1)2
η2⊥ = 1+k2+η2‖+

√
(1 + k2 + η2‖)

2 − 4η2‖, (19)

for the short-time expansion of the noise parameters,

η⊥ = 1− α⊥t
β⊥ + ...,

η‖ = 1− α‖t
β‖ + ...,

k = αkt
βk + ... . (20)

In a noisy metrology, after a time, the noise wins over the

unitary encoding process and the extractable information is

extremely degraded. So, we need to find the optimal interro-

gation time, topt. Equivalently, this corresponds to comput-

ing mint(
t

maxρ0 F↓ ), which results in topt = (2α⊥N(β⊥ +

1))−1/β⊥ < τ . Therefore, interrogating the probes in inter-

val 0 < t ≤ topt leads to the following upper bound for the

Cramér-Rao bound

min
t

t

T maxρ0 F(ρx)
≤ C↓

N (2β⊥−1)/β⊥
, (21)

where C↓ = (2α⊥)1/β⊥(1 + β⊥)(β⊥+1)/β⊥/Tβ⊥. Cru-

cially, this result proves that the scaling of the uncertainty,

N−(2β⊥−1)/β⊥ , predicted by the finite-N channel extension

method C↑

N(2β⊥−1)/β⊥
[16] is indeed always achievable up to

a constant factor. However, the lower bound of the Cramér-

Rao bound predicts the ultimate precision limit (which can-

not be reached by any measurement strategy), by limiting the

Cramér-Rao bound from both sides

FIG. 1: (Color online) Dynamics of C↓ (up) and C↑ (down) for

β⊥ < β‖ and α⊥ = 1/2.

C↑

N (2β⊥−1)/β⊥
≤ min

t

t

T maxρ0 F(ρx)
≤ C↓

N (2β⊥−1)/β⊥
,

(22)

one has a more accurate judgment about the true maximal

value of the precision (Fig. 1). While, for semigroup dynam-

ics (β⊥ = 1) one accordingly recovers the standard quantum

limit scaling, N−1, one can find more favourable scaling by

going beyond the semigroup regime (e.g., by exploiting the

non-semigroup dynamics arising at short times in the Zeno

regime, β⊥ = 2).

Saturating the quantum Cramér-Rao bound is subject to the

initial preparation of the probes in an optimal state and choos-

ing the optimal measurement strategy, on one hand, and re-

peating the above-mentioned actions infinite times (T → ∞),

on the other hand. Although a general solution has not yet

been known for the optimal measurements which saturates

the quantum Cramér-Rao bound, the sufficient condition for

a measurement to be an optimal one is that it projects the state

onto the eigenspaces of the symmetric logarithmic deriva-

tive operator [8]. Similar investigation leads to a sufficient

condition for obtaining the optimal measurements providing

Eq. (16) and, therefore, the upper bound of the Cramér-Rao

bound. This condition restricts the measurements to one-

dimensional projectors onto the non-degenerate eigenspaces

of ρ′x (Appendix C). The construction yields the measure-

ments which are in principle not only collective, i.e. act on

all the particles, but also local in the parameter space.

B. Frequency estimation in the presence of correlated noise

For closely spaced particles, particulary ions stored in linear

Paul traps or atoms in optical lattices, correlated dephasing is a

major source of noise [27–31]. Consider a scheme consisting

of N identical probes. Every single probe, in turn, comprises

two two-level atoms with different transition frequencies ω1

and ω2. The frequency difference ω̄ = ω1 − ω2 is going to be

estimated by performing the standard Ramsey-type measure-

ment. In the presence of correlated dephasing, the encoding

process changes the state of the N probes to

ρω1,ω2 = Φω1,ω2 [ρ0]. (23)

Deriving the matrix form of Φω1,ω2 in the computational basis

{|µ1ν1 ⊗ µ2ν2 ⊗ ..⊗ µNνN )} in L(H⊗N ) (with µ1ν1 ⊗ ..⊗
µNνN = |µ1〉〈ν1| ⊗ .. ⊗ |µN 〉〈νN | and µi, νi ∈ {0, 1} for

i = 1, .., N ), results in a diagonal matrix with the elements

ei(α1ω1+α2ω2)t−α2γt, where

α1 =
∑

i=1,3,..,2N−1

(µi − νi),

α2 =
∑

i=2,4,..,2N

(µi − νi),

α = α1 + α2, (24)

and γ is dephasing rate. Since the noise is compatible with the

encoding Hamiltonian, the maximum of the lower bound is

given by Eq. (16). After some straightforward computations,
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one finds the elements of the diagonal matrix Φ̃′†
ω1,ω2

Φ̃′
ω1,ω2

as α2
1,2t

2e−2(|α1|−|α2|)γt and α2
1,2t

2. These results lead to

‖Φ̃′†
ω1,ω2

Φ̃′
ω1,ω2

‖ = N2t2 which predicts that the correlated

dephasing may not destroy our frequency measurements and

the eigencpace corresponding to the eigenvalue N2t2 form a

decoherence-free subspace with respect to the noise. Hence,

frequency measurements in the presence of the correlated

noise can be done by the Heisenberg precision scaling as was

shown in [31].

IV. PHASE ESTIMATION IN A LOSSY

INTERFEROMETRY

It is interesting to briefly discus the well known issue of

phase estimation in an optical two-arm interferometry in the

presence of photon loss in one arm. It is known that, for this

case, among quantum states with a definite photon number,N ,

states as
√
p|m,N−m〉+√

1− p|N, 0〉 withm 6= N are more

beneficial than N00N state (i.e., 1√
2
(|N, 0〉+ |0, N〉)) which

completely miss their coherence by losing a photon [32]. In an

optical interferometry, loss can be modeled by fictitious beam

splitter of transmissivity η (ranging between 0 for complete

losses and 1 for no losses) on the same arm which accumulate

phase shift throughUϕ = e−iϕâ†â, where â is the annihilation

operator for arm a. Since the noise operation and the phase

accumulation commute, the maximum of our lower bound is

given by the largest eigenvalue of Φ̃′†
ϕ Φ̃

′
ϕ which is a diagonal

matrix in Fock basis {
∣∣∣∣|k,N − k〉〈m,N −m|

)
}Nk,m=0 in Li-

ouville space. After some straightforward computations, the

elements of the diagonal matrix Φ̃′†
ϕ Φ̃

′
ϕ can be obtained as

N∑

l=0

(k −m)2
(
k
l

)(
m
l

)
ηk+m−2l(1− η)2l, (25)

where l is associated with the number of lost photons. Our

considerations show that the largest eigenvalue is obtained for

k = N and m 6= N . By decreasing the noise parameter, η, the

optimalmmax increases (see Fig. 2). This shows that our lower

bound can exactly predict the subspace {|m,N −m〉, |N, 0〉}
as the optimal subspace.

Recently the performance of other states such as en-

tangled coherent states, Nα(|α, 0〉 + |0, α〉) with Nα =

[2(1 + e−|α|2)]−1/2 as normalization constant, for quantum-

enhanced phase estimation is investigated [33]. For these spe-

cial initial states, our bound leads to F ↓ = 2nηfC+(nη)2fH ,

where n = 〈n̂〉 = 2N 2
α|α|2, fC =

N 2
α

4 ξ, fH = 1
2 (−1 +

ξ/2) and ξ = (1 + e−(1−η)|α|2)2(1 + e−η|α|2) + (1 −
e−(1−η)|α|2)2(1−e−η|α|2). Under practical conditions: η ∼ 1

and |α|2 ≫ 1, one has fC = (1 + e−2(1−η)|α|2)/4 and fH =

e−(1−η)|α|2/2. When the number of photons being lost (1 −
η)|α|2 ≪ 1, the Heisenberg term, F ↓ ≈ (nη)2e−(1−η)|α|2 ,

dominates. With the increase of (1 − η)|α|2, the classical

term, nη, becomes important. So, even for such special ini-

tial states, the bound leads to the same results of [33] both in

terms of scaling and in terms of dominant behavior.

V. CONCLUSIONS

Specifying the effect of noise on the ultimate precision limit

is a crucial element in developing quantum techniques for

metrological tasks. However, determination of the ultimate

precision limit which is given by the Cramér-Rao bound in

noisy metrology becomes more and more cumbersome when

the number of resources increases. Although, some previously

derived lower bounds on the precision delimits the Cramér-

Rao bound from bellow, a more accurate judgment about the

true maximal value and the scaling behavior of the preci-

sion needs an upper bound which give a guaranteed precision.

Here, a reliable and saturable lower bound on the QFI in a

single-parameter estimation has been introduced to provide

this necessity. This bound provides us with a guaranteed pre-

cision and allows us to estimate the ultimate precision limit

with an acceptable accuracy. It has been shown that the lower

bound depends only on the underlying dynamics and its calcu-

lation requires only the matrix representation of the parameter

encoding map. This property allows one to use the bound in

open quantum systems which are governed by either semi-

group or non-semigroup dynamical maps. Moreover, unlike

the previously introduced bounds on the QFI, determining the

optimal probe state and optimal measurement in our frame-

work suggests a useful prescription for practical frequency es-

timation. The accuracy and efficiency of our method to predict

the ultimate precision limit and the optimal initial state have

been illustrated through three main examples: frequency es-

timation in the presence of uncorrelated and correlated noise

and phase estimation in a lossy interferometry.

Acknowledgment: We would like to thanks V. Karimipour

and L. Maccone, for helpful discussions.

FIG. 2: (Color online) Dynamics of mmax versus in two-arm interfer-

ometry with N = 20 (down) and N = 50 (up) particles.
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Appendix A: Derivation of Eq. (12)

In the case of N identical qubits, one can consider the basis

{|µ1ν1 ⊗ µ2ν2 ⊗ ..⊗ µNνN )} in L(H⊗N ) (with µ1ν1 ⊗ ..⊗
µNνN = |µ1〉〈ν1| ⊗ .. ⊗ |µN 〉〈νN | and µi, νi ∈ {0, 1} for

i = 1, .., N ). In this basis

Ũ⊗N
ω =

∑
eiαN

ωt|µ1ν1 ⊗ ..⊗ µNνN )(µ1ν1 ⊗ ..⊗ µNνN |,
(A1)

where α
N
=

∑N
i=1(µi − νi) which leads to −N ≤ α

N
≤

N . Calculation of (Ũ⊗N
ω )′†(Ũ⊗N

ω )′ results in diagonal ma-

trix with the elements (α
N
t)2. Obviously, the largest eigen-

value (Nt)2 is doubly degenerate with the corresponding

eigenstates |10⊗N) ≡ |1〉〈0|⊗N and |01⊗N) ≡ |0〉〈1|⊗N .

This leads one to prepare the initial state from the subspace

{|0〉⊗N , |1〉⊗N} which results in ρ0 = |GHZ〉〈GHZ| (as

expected).

Appendix B: Derivation of Eq. (18)

In the case of an uncorrelated encoding process, Φ⊗N
ω =

ΠiΦ
(i)
ω (Φ

(i)
ω denotes a parameter encoding map which acts

on the ith probe), it is shown that (ΠiΦ̃
(i)
ω )′†(ΠiΦ̃

(i)
ω )′ can be

decomposed into two parts as

N∑

i=1

Φ̃(1)†
ω Φ̃(1)

ω ...Φ̃(i)′†
ω Φ̃(i)′

ω ...Φ̃(N)†
ω Φ̃(N)

ω

+

N∑

i6=j=1

Φ̃(1)†
ω Φ̃(1)

ω ...Φ̃(i)′†
ω Φ̃(i)

ω ...Φ̃(j)†
ω Φ̃(j)′

ω ...Φ̃(N)†
ω Φ̃(N)

ω .

(B1)

The first summation involves the sum of N terms whereas

the second one involves the sum of N(N − 1) terms. In the

case of identical parameter encoding processes for N probes,

the above summations can be simplified to

N∑

i=1

Ã(1)
ω ...B̃(i)

ω ...Ã(N)
ω +

N∑

i6=j=1

Ã(1)
ω ...C̃(i)

ω ...C̃(j)†
ω ...Ã(N)

ω ,

(B2)

where

Ã(i)
ω = I⊗(i−1) ⊗ Φ̃†

ωΦ̃ω ⊗ I⊗(N−i),

B̃(i)
ω = I⊗(i−1) ⊗ Φ̃′†

ω Φ̃
′
ω ⊗ I⊗(N−i),

C̃(i)
ω = I⊗(i−1) ⊗ Φ̃′†

ω Φ̃ω ⊗ I⊗(N−i), (B3)

for i = 1, .., N , and I is the identity matrix on the Liouville

space L(H).
For the most general phase-covariant qubit map, Φω, whose

matrix form is

Φ̃ω =




J++ 0 0 J+−
0 0 η⊥e−iφ 0
0 η⊥eiφ 0 0

J−− 0 0 J−+


 , (B4)

one obtains

Φ̃†
ωΦ̃ω =




1+(k+η‖)
2

2 0 0
1+k2−η2

‖

2
0 η2⊥ 0 0
0 0 η2⊥ 0

1+k2−η2
‖

2 0 0
1+(k−η‖)

2

2


 ,

Φ̃′†
ω Φ̃

′
ω =



0 0 0 0
0 t2η2⊥ 0 0
0 0 t2η2⊥ 0
0 0 0 0


 ,

Φ̃′†
ω Φ̃ω =



0 0 0 0
0 −itη2⊥ 0 0
0 0 itη2⊥ 0
0 0 0 0


 .

Considering the short-time expansion of the noise parame-

ters as

η⊥ = 1− α⊥t
β⊥ + ...

η‖ = 1− α‖t
β‖ + ...

k = αkt
βk + ..., (B5)

one finds that as long as 0 ≤ t < τ , the largest eigenvalue

of (ΠiΦ̃
(i)
ω )′†(ΠiΦ̃

(i)
ω )′ is N2t2η2N⊥ , and τ is the largest time

that satisfies

2N2

(N − 1)2
η2⊥ = 1+k2+η2‖+

√
(1 + k2 + η2‖)

2 − 4η2‖. (B6)

In the case of unital channels which preserve identity, k =
0, one obtains τ = (α⊥N)−1/β⊥ .

Appendix C: Sufficient condition for obtaining the optimal

measurement

In quantum mechanics, a general measurement is mathe-

matically represented by a collection of Hermitian positive

semidefinite operators {Ej}which satisfy
∑

j Ej = I and are

named as positive operator-valued measures (POVM). Since

the probability of obtaining an experimental result j is given

by tr(Ejρω), where ω is a specific value of the parameter, the

classical version of (ρ′ω|ρ′ω) is written as
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F ↓
c =

∑

j

|∂ωp(j|ω)|2 =
∑

j

|tr(Ejρ
′
ω)|2. (C1)

Applying the Cauchy-Schwarz inequality to Eq.(C1), one

has

F ↓
c ≤

∑

j

tr(Ej)tr(Ejρ
′2
ω ). (C2)

Equality in the Cauchy-Schwarz inequality is saturated if

and only if E
1/2
j ρ′ω = λjE

1/2
j with λj = tr(Ejρ

′
ω)/tr(Ej).

This shows that E
1/2
j and, hence, Ej are one-dimensional

projectors onto the non-degenerate eigenspace of ρ′ω corre-

sponding to the eigenvalue λj . For such measurements F ↓
c =

tr(ρ′2ω ) and the saturability of Eq. (16) in the main context is

guaranteed.
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