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In this paper we consider the optimal discrimination of two mixed qubit states for a measurement
that allows a fixed rate of inconclusive results. Our strategy is to transform the problem of two
qubit states into a minimum error discrimination for three qubit states by adding a specific quantum
state ρ0 and a prior probability q0, which behaves as an inconclusive degree. First, we introduce

the beginning and the end of practical interval of inconclusive result, q
(0)
0 and q

(1)
0 , which are key

ingredients in investigating our problem. Then we obtain the analytic form of them. Next, we show

that our problem can be classified into two cases q0 = q
(0)
0 (or q0 = q

(1)
0 ) and q

(0)
0 <q0<q

(1)
0 . In fact,

by maximum confidences of two qubit states and non-diagonal element of ρ0, the our problem is

completely understood. We provide an analytic solution of our problem when q0 = q
(0)
0 (or q0 = q

(1)
0 ).

However, when q
(0)
0 <q0<q

(1)
0 , we rather supply the numerical method to find the solution, because

of the complex relation between inconclusive degree and corresponding failure probability. Finally
we confirm our results using previously known examples.

I. INTRODUCTION

The information encoded in the quantum state by a sender can be delivered to a receiver, who performs a mea-
surement to extract this information. A proper measurement strategy is required when the receiver wants to obtain
information from nonorthogonal quantum states because those states cannot be perfectly discriminated[1–4]. Mea-
surement strategies can be classified by the constraints on conclusive or inconclusive results. In quantum state discrim-
ination, inconclusive results indicate that the given quantum state cannot be definitely discriminated. Minimum-error
discrimination(MD)[5–18] is able to minimize the average error of conclusive results without inconclusive results.
Unambiguous discrimination(UD)[19–29] and maximum-confidence discrimination(MC)[30] strategies permit incon-
clusive results and minimize individual errors associated with the conclusive results.

In addition to these strategies, there is a scheme for minimizing the average error of conclusive results while main-
taining a fixed rate of inconclusive results(FRIR)[31–38]. FRIR is actually a generalization of other known strategies.
For example, when the fixed rate is zero, the FRIR is equivalent to the MD. If the fixed rate is sufficiently large,
the FRIR becomes equivalent to MC(or UD). For the MD, the solution of two mixed quantum states is explicitly
known[5, 10], however it is not known for the FRIR. The solution of the FRIR of two qubit states with identical
maximal confidences exists[35] but that of the general case does not.

Recently, Bagan et al.[36] changed the FRIR of N quantum states into the MD of N quantum states by modifying
prior probabilities and the quantum states. This approach can be useful for obtaining a solution to symmetric states
but it cannot be used for arbitrary quantum states and prior probabilities because it requires solving complicated
equations. On the other hand, Nakahira et al.[37] and Herzog[38] provided another method to transform the FRIR
into the MD. Their method does not modify the given quantum states or the prior probabilities. Instead, this method
only adds an appropriate density operator ρ0 with a suitable probability q0(which we will call an inconclusive degree)
for a given quantum system. Then, based on the FRIR of N quantum states, one can form the MD of N + 1 quantum
states by using a measurement operator that provides inconclusive results. In order to transform the problem of
optimal discrimination of N quantum states with a fixed rate of inconclusive results into that of minimum error dis-

crimination of N + 1 quantum states, one must deal with special inconclusive degrees q
(0)
0 and q

(1)
0 . Even though they

mentioned the relation between failure probability of original problem and inconclusive degree of modified problem,

they could not find special inconclusive degrees q
(0)
0 and q

(1)
0 in an analytic form, which appear naturally in modified

problem. Even more they could not solve even the simplest FRIR problem for two qubit mixed states. Here special

inconclusive degrees q
(0)
0 and q

(1)
0 are the beginning and the end of practical interval of inconclusive degree. In fact

q
(0)
0 and q

(1)
0 are the key to solve FRIR of two qubit states.

In fact, Nakahira et al.[37] and Herzog[38] could not give a solution to the FRIR of two mixed qubit states. In
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this paper we provide a solution to the FRIR of two mixed qubit states. In Section II we derive the detailed relation
between original FRIR problem and modified FRIR problem, which is given by MD of three qubit states. Furthermore

we introduce special inconclusive degrees q
(0)
0 and q

(1)
0 and investigate their feature. In Section III we divide FRIR

problem of two qubit states into two cases of q0 = q
(0)
0 (or q0 = q

(1)
0 ) and q

(0)
0 < q0 < q

(1)
0 , and specify that the problem

can be solved by maximum confidences of two qubit states and the non-diagonal element of ρ0. Using complemen-

tarity problem, we find the analytic form of q
(0)
0 and q

(1)
0 , and provide the complete understanding of modified FRIR

problem in q
(0)
0 ≤ q0 ≤ q(1)

0 . That is, we provide an analytic solution of original FRIR problem in case of q0 = q
(0)
0 (or

q0 = q
(1)
0 ). If q

(0)
0 < q0 < q

(1)
0 , because of complex relation between inconclusive degree and corresponding failure

probability, we provide the method to solve original problem numerically. Finally, we confirm our results by providing
the correct solutions to known examples[35]. In Section IV we summarize our result.

II. FRIR

We consider the quantum state ensemble {qi, ρi}Ni=1. This ensemble suggests that with the prior probability qi, one
prepares the quantum state corresponding to the density operator ρi on a d-dimensional complex Hilbert space Hd.
Without loss of generality, we assume that the eigenvectors of ρ0 ≡

∑N
i=1 qiρi (with nonzero eigenvalues) span Hd.

The quantum state of the system may be discriminated by the positive operator valued measure (POVM) {Mi}Ni=0.

The POVM consists of N + 1 positive semidefinite Hermitian operators on Hd and satisfies
∑N
i=0Mi = Id. Id is the

identity operator on Hd. Here M0 provides inconclusive results, while Mi( 6=0) gives conclusive results. The probability
that the quantum state ρi can be guessed to be ρj is tr[ρiMj ] by the Born rule. Therefore, the probability for

conclusive results PC turns out to be
∑N
i=1 tr[ρ0Mi], and the probability for inconclusive results PI becomes tr[ρ0M0].

The probability of correctly guessing the quantum state and the error probability are Pcor =
∑N
i=1 qitr[ρiMi] and

Perr = PC−Pcor respectively. We use Rcor(err) to denote the probability of correctly(or incorrectly) guessing when we
succeed in guessing the quantum state. That is, Rcor(err) = Pcor(err)/PC.

A. Original FRIR problem

Our discrimination strategy is to maximize(or minimize) Rcor(err) with fixed PI = Q(0 ≤ Q < 1). Because
PC + PI = 1, this is equivalent to maximizing(or minimizing) Pcor(err) with fixed PI = Q, which can be reformulated
into the following optimization problem:

max Pcor =

N∑
i=1

qitr[ρiMi]

subject to Mi ≥ 0 ∀i,
N∑
i=0

Mi = Id, tr[ρ0M0] = Q. (1)

In this paper, we use the superscript “opt” to denote the optimized value or variable. For example, P opt
cor (Q) and

Ropt
cor (Q) indicate the maximum of Pcor and Rcor when PI = Q, respectively.

B. Modified FRIR problem

Instead of simply attacking the problem as described above, we can modify it as follows. Here, we introduce a
positive number q0(called an inconclusive degree) which corresponds to the a priori probability of ρ0. Further, M0

denotes the measurement operator of guessing ρ0 in the system:

max P̄cor ≡
N∑
i=0

qitr[ρiMi]

subject to Mi ≥ 0 ∀i,
N∑
i=0

Mi = Id, q0 = q. (2)
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We use P̄ opt
cor (q) to denote the maximum value of P̄cor when q0 = q.

The following relation[37] between P opt
cor (Q) and P̄ opt

cor (q) implies that when the MD of {qi, ρi}Ni=0 can be completely
analyzed, Ropt

cor (Q) can be found in the FRIR of {qi, ρi}Ni=1.

Lemma II.1 If PI = Q and P̄cor = P̄ opt
cor (q) for some POVM, P opt

cor (Q) = P̄ opt
cor (q)− qQ.

The proof is given in Appendix A.
Equation (2) represents a convex optimization problem[39](or semidefinite program) to minimum-error discrimina-

tion problem for {qi, ρi}Ni=0 with non-normalized priori probabilities. For investigating the analytic structure of POVM
for an optimal solution of (2), we consider Karush-Kuhn-Tucker(KKT) optimality conditions, composed of constraints
of primal and dual problem and complementary conditions, instead of necessary and sufficient conditions[5–7].

C. Optimality conditions of modified FRIR problem

The optimization problem (2) is equivalent to MD of {qi, ρi}Ni=0 with non-normalized priori probabilities. Since the
semidefinite programming of MD[40] hold regardless of the normalization condtion, we can apply the results into this
modified FRIR problem. First, the modified problem (3) has the following Lagrange dual problem.

min tr[K] subject to K = qiρi + riτi ∀i, q0 = q. (3)

K is a Hermitian operator on Hd, which is a Lagrange multiplier of an equality constraint
∑N
i=0Mi = Id. riτi is

a Lagrange multiplier of an inequality constraint Mi ≥ 0, where ri and τi are a non-negative real number and a
density operator on Hd, respectively. riτi is separated into ri and τi, for geometric understanding of qubit state
discrimination. Second, the optimized values of two problems (2),(3) of q0 = q coincide. Finally, the complementary
slackness condition ritr[τiMi] = 0(∀i) is a necessary and sufficient condition for optimizing the feasible variables in
two problems(primal and dual problems)(2),(3) of q0 = q. We summarize the KKT optimality condition for modified
FRIR problem of q0 = q as follows:

(i) Mi ≥ 0 ∀i,
N∑
i=0

Mi = Id,

(ii) qρ0 + r0τ0 = qiρi + riτi ∀i,
(iii) ritr[τiMi] = 0 ∀i. (4)

In order to express KKT optimality condition (4) in a form that we can deal with, we define the following variables.

M̄i = ρ
1/2
0 Miρ

1/2
0 , ρ̄i = ρ

−1/2
0 qiρiρ

−1/2
0 , τ̄i = ρ

−1/2
0 riτiρ

−1/2
0 . (5)

In terms of these newly defined variables, the KKT condition can be rewritten as:

(i) M̄i ≥ 0 ∀i,
N∑
i=0

M̄i = ρ0,

(ii) qId + τ̄0 = ρ̄i + τ̄i ∀i,
(iii) tr[τ̄iM̄i] = 0 ∀i. (6)

We denote Ci and |νi〉 as the largest eigenvalue of ρ̄i and the corresponding eigenvector, respectively. Ci physically

represents the maximum achievable confidence of ρi in terms of MC[30]. Note that the product ropt
i τopt

i of ropt
i and

τopt
i satisfying optimality condition (4) is unique, but optimal POVM elements Mopt

i is not always unique[16]. τ̄opt
i

fulfilling another optimality condition (6) is unique. However M̄opt
i can be unique or non-unique. We will use the fact

to find the analytic expression of optimal POVM element Mopt
i or M̄opt

i .
When d = 2, by introducing a real number pi and Bloch vectors ui, vi, and wi, we can express POVM elements

Mi and density operators ρi, τi as:

Mi = pi(I2 + ui · σ), ρi =
1

2
(I2 + vi · σ), τi =

1

2
(I2 +wi · σ). (7)

Then, the KKT optimality condition (4) can be described as:

(i) pi ≥ 0 ∀i,
N∑
i=0

pi = 1,

N∑
i=0

piui = 0,
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(ii) q + r0 = qi + ri, qv0 + r0w0 = qivi + riwi ∀i,
(iii) piri(1 + ui ·wi) = 0 ∀i. (8)

In Section III we investigate optimal variables of primal problem (2) and dual problem (3), using two optimality
conditions (6) and (8). The approach is called complementarity problem[15, 16] in semidefinite programming.

D. Special inconclusive degrees

The fact that optimal measurement may not be unique in the MD leads us to introduce the following definition.

Definition II.1 When q is a positive number, we define PI(q) as follows:

PI(q) =

{
tr[ρ0M0] : Mi ≥ 0 ∀i,

N∑
i=0

Mi = Id, q tr[ρ0M0] +

N∑
i=1

qitr[ρiMi] = P̄ opt
cor (q)

}
. (9)

The case of Q ≥(=)a for any Q ∈ PI(q) will be denoted as PI(q) ≥(=)a, whereas that of Q ≥(=)Q′ for any Q ∈ PI(q)
and Q′ ∈ PI(q

′) will be written as PI(q) ≥(=)PI(q
′). Note that 0 ≤ PI(q) ≤ 1 for any q.

The following lemma shows how PI(q) behaves as q increases.

Lemma II.2 PI(q) is a convex set for any q, and PI(q) ≤ PI(q
′) for any q, q′ with q < q′.

The proof is given in Appendix A. Through Lemma II.2, PI(q) is generally an interval. However, when optimal
measurement of modified FRIR problem {qi, ρi}Ni=0(q0 = q) is unique, PI(q) becomes a point.

Lemma II.2 enables us to define the following special inconclusive degrees.

Definition II.2 (special inconclusive degrees) We define q
(0)
0 , q

(1)
0 as follows:

q
(0)
0 = max{q > 0 : 0 ∈ PI(q)},

q
(1)
0 = min{q > 0 : 1 ∈ PI(q)}. (10)

This implies that a proper inconclusive degree q, which satisfies 0 < PI(q) < 1, exists in the region [q
(0)
0 , q

(1)
0 ].

Therefore, Ropt
cor (Q) in 0 ≤ Q < 1 can be found from PI(q) and P̄ opt

cor (q) in q
(0)
0 ≤ q ≤ q(1)

0 . That is,

Ropt
cor (Q) =

P̄ opt
cor (q)− qQ

1−Q
∀Q ∈ PI(q). (11)

The following lemma provides the lower bound of q
(0)
0 and the upper bound of q

(1)
0 .

Lemma II.3 q
(0)
0 ≥ 1/N and q

(1)
0 ≤ maxi Ci.

The proof is given in Appendix A.

III. MAIN RESULT: FRIR OF TWO QUBIT MIXED STATES

In this section we analyze the FRIR of two qubit-mixed states(d = N = 2), using the transformed KKT optimality
condition which has two different forms. The first KKT optimality condition (6) is obtained by M̄i, ρ̄i, τ̄i of Eq. (5).
The second one (8) is expressed by Bloch vectors ui,vi,wi defined in Eq. (7). In certain situations, (6) or (8) is used.
For two qubit-mixed states, ρ̄1,ρ̄2 are two positive semidefinite Hermitian operators on two-dimensional Hilbert space
and they satisfy ρ̄1 + ρ̄2 = I2. (1−C1) and |ν1〉((1−C2) and |ν2〉) are the smallest eigenvalue and the corresponding
eigenvector of ρ̄2(ρ̄1), which implies 〈ν1|ν2〉 = 0. Therefore ρ̄1 and ρ̄2 become:

ρ̄1 = C1|ν1〉〈ν1|+ (1− C2)|ν2〉〈ν2|,
ρ̄2 = (1− C1)|ν1〉〈ν1|+ C2|ν2〉〈ν2|. (12)

We assume C1 ≤ C2, which does not spoil generality of the problem. Here e denotes the difference between q1 and
q2, and l expresses the distance between two weighted Bloch vectors q1v1 and q2v2.

e = |q1 − q2|, l = ‖q1v1 − q2v2‖2. (13)
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In this section, we divide our problem into two cases, by using two special inconclusive degrees q
(0)
0 ,q

(1)
0 . In

Subsection III A and III B, when fixed rate Q of inconclusive results belongs to PI(q
(1)
0 ) or PI(q

(0)
0 ), we obtain what

are optimal value Ropt
cor and optimal measurement operators Mopt

i (or M̄opt
i ). In Subsection III C, when fixed rate lies

in the other region(Q ∈ PI(q
(0)
0 )C ∩ PI(q

(1)
0 )C), we explain how complex optimal solution can be found. The result

obtained from KKT optimality condition (6) or (8) is classified, according to the relation of two maximum confidences
C1,C2 and that of ρ11,ρ12,ρ22 of ρ0.

More specifically, in Subsection III A, Corollary III.1, which is the result of the section, is expressed in two cases,
according to the equality between C1 and C2. Specially, the result of the case of C1 = C2 is shown in three types,
according the magnitude of three nonnegative numbers ρ11, ρ22, |ρ12|. In Subsection III B, Theorem III.1, which is the
final result of the section, is obtained in two cases, by comparision between 1

2 and C1. When 1
2 < C1, the result is

classified into two cases, by the existence of non-diagonal element ρ12 of ρ0. In Subsection III C, the case of ρ12 = 0
provides Theorem III.2 and that of ρ12 6= 0 gives Theorem III.3. The former one is the result corresponding to the

total range of fixed rate Q(that is, 0 ≤ Q ≤ 1). The latter one is the case of Q ∈ PI(q
(0)
0 )C ∩ PI(q

(1)
0 )C.

A. FRIR at PI = Q for all Q ∈ PI(q
(1)
0 )

In the following lemma modified FRIR problem to the case of q0 = C2 is completely analyzed.

Lemma III.1 P̄ opt
cor (C2) is C2. When C1 = C2, M̄opt

i to q0 = C2 is expressed as

M̄opt
0 = ρ0 − α|ν1〉〈ν1| − β|ν2〉〈ν2|,

M̄opt
1 = α|ν1〉〈ν1|, 0 ≤ α ≤ ρ11, 0 ≤ β ≤ ρ22,

M̄opt
2 = β|ν2〉〈ν2|, (ρ11 − α)(ρ22 − β) ≥ |ρ12|2, (14)

where

ρij = 〈νi|ρ0|νj〉. (15)

Then PI(C2) becomes

PI(C2) =

 [Q1, 1] if ρ11 < |ρ12| ≤ ρ22,
[Q2, 1] if ρ22 < |ρ12| ≤ ρ11,

[2|ρ12|, 1] if |ρ12| ≤ ρ11, ρ22,
(16)

where

Qi = ρii +
|ρ12|2

ρii
. (17)

However when C1 < C2, PI(C2) becomes [Q1, 1], and M̄opt
i for q0 = C2 is expressed as

M̄opt
0 = ρ0 − β|ν2〉〈ν2|, M̄opt

1 = 0,

M̄opt
2 = β|ν2〉〈ν2|, 0 ≤ β ≤ 1−Q1. (18)

The proof is given in Appendix B. Note that three real numbers Q1,Q2, and 2|ρ12| are less than 1. By Lemma II.2,

1 ∈ PI(q) implies q
(1)
0 = q and 1 ∈ PI(C2) derived by Lemma III.1 means q

(1)
0 = C2. Therefore, when d = N = 2,

inequality q
(1)
0 ≤ maxi Ci of Lemma II.3 becomes an equality.

Lemma III.1 tells how the analytic solution of original FRIR problem is changed according to Q ∈ PI(q
(1)
0 ). P̄ opt

cor (C2)
is C2 in any case and Ropt

cor (Q) is C2 for any Q ∈ PI(C2), because of Eq. (11). In case of C1 = C2, modified FRIR
measurement is represented by two variables α and β. However, in case of C1 < C2, modified FRIR measurement is
expressed only by β. This can be understood in terms of uniqueness of FRIR measurement. In case of C1 = C2, since
tr[M̄opt

0 ] = 1− α− β, there may exist different (α, β) providing the same value of tr[M̄opt
0 ], which implies that there

are different forms of FRIR measurement in a fixed PI. However, in case of C1 < C2, because of tr[M̄opt
0 ] = 1 − β,

different β provides different value of tr[M̄opt
0 ]. Therefore, according to Q ∈ PI(q

(1)
0 ), FRIR measurement uniquely

exists. In other words, FRIR measurement of C1 < C2 becomes FRIR measurement of C1 = C2 with α = 0. Then,
FRIR measurements of two cases can be represented by a variable ε = ρ11 − α. The following corollary summarizes
the result.
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Corollary III.1 (FRIR of Q ∈ PI(q
(1)
0 )) q

(1)
0 is C2, and PI(q

(1)
0 ) can be classified into

PI(q
(1)
0 ) =


[Q1, 1] if C1 < C2,
[Q1, 1] if C1 = C2, ρ11 < |ρ12| ≤ ρ22,
[Q2, 1] if C1 = C2, ρ22 < |ρ12| ≤ ρ11,

[2|ρ12|, 1] if C1 = C2, |ρ12| ≤ ρ11, ρ22.

(19)

Ropt
cor (Q) is C2, and M̄opt

i of PI = Q can be expressed as

M̄opt
0 = ε|ν1〉〈ν1|+ ρ12|ν1〉〈ν2|+ ρ21|ν2〉〈ν1|+ (Q− ε)|ν2〉〈ν2|,

M̄opt
1 = (ρ11 − ε)|ν1〉〈ν1|, M̄opt

2 = (ρ22 −Q+ ε)|ν2〉〈ν2|, (20)

where

ε = ρ11 if C1 < C2,

max

{
Q− ρ22,

Q
2 −

√
Q2

4 − |ρ12|2
}
≤ ε ≤ min

{
ρ11,

Q
2 +

√
Q2

4 − |ρ12|2
}

if C1 = C2.

The result implies that when Q ∈ PI(q
(1)
0 ), if C1 < C2, FRIR measurement to PI = Q is unique, but when C1 = C2, it is

not unique. In the region of PI(q
(1)
0 ), though fixed rate Q increases, Ropt

cor (Q) is fixed as C2 and the FRIR measurement
has a unique form. The FRIR can be regarded as a MC. In the case of C1 = C2, the FRIR, corresponding to the

left-bound of PI(q
(1)
0 ), is equivalent to an optimal MC. In other words, when C1 = C2, one of Q1, Q2, and 2|ρ12|

becomes the minimum failure probability of MC, according to the relation of ρ11, ρ22, ρ12 which are the component
of ρ0. However, since our strategy is to maximize average confidence at fixed failure probability, in case of C1 < C2,
the relation does not hold when ρ11 < |ρ12| ≤ ρ22 is not satisfied.

B. FRIR at PI = Q for all Q ∈ PI(q
(0)
0 )

When q0 = q
(0)
0 , we classify modified FRIR problem into three cases, using two maximum confidences and the

non-diagonal element ρ12 of ρ0. Then we analyze the three cases completely. The first case is C1 ≤ 1
2 < C2, and the

second one 1
2 < C1 ≤ C2, ρ12 = 0. The third case is 1

2 < C1 ≤ C2 and ρ12 6= 0. The following lemma shows the

complete analysis to modified FRIR problem in C1 ≤ 1
2 < C2 and q0 = 1− C1.

Lemma III.2 When C1 ≤ 1
2 < C2, P̄ opt

cor (1−C1) is q2, and PI(1−C1) is [0, 1−Q2]. If C1 < 1/2, M̄opt
i to q0 = 1−C1

becomes

M̄opt
0 = α|ν1〉〈ν1|, M̄opt

1 = 0,

M̄opt
2 = ρ0 − α|ν1〉〈ν1|, 0 ≤ α ≤ 1−Q2. (21)

However if C1 = 1/2, they can be expressed as

M̄opt
0 = α|ν1〉〈ν1|, M̄opt

1 = β|ν1〉〈ν1|,
M̄opt

2 = ρ0 − (α+ β)|ν1〉〈ν1|, α, β ≥ 0, α+ β ≤ 1−Q2. (22)

The proof is given in Appendix B. Note that 1−Q2 is larger than zero. By Lemma II.2, 0 ∈ PI(q) implies q
(0)
0 = q and

by Lemma III.2, 0 ∈ PI(1 − C1) means q
(0)
0 = 1 − C1. Therefore, when C1 ≤ 1

2 < C2, if C1 <
1
2 , inequality q

(0)
0 ≥ 1

2

of Lemma II.3 becomes strictly an inequality, but if C1 = 1
2 , it becomes equality.

Lemma III.2 shows how the analytic solution of original FRIR problem in the case of C1 ≤ 1
2 < C2 can be varied in

terms of Q ∈ PI(q
(0)
0 ). In this case, P̄ opt

cor (1−C1) is q2 and Ropt
cor (Q) is 1−C1 + C1−q1

1−Q for any Q ∈ PI(1−C1), because

of Eq. (11). However, the optimal measurements have different forms according to the case of C1 <
1
2 or C1 = 1

2 . It

is because in the case of C1 <
1
2 the modified FRIR measurement is expressed only by a variable α but in the case of

C1 = 1
2 the modified FRIR measurement is given by α and β. In fact, FRIR measurement of the case of C1 <

1
2 is

equivalent to FRIR measurement of the case of C1 = 1
2 with β = 0. Therefore, by introducing a variable ε = β, one

can find the following corollary.
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Corollary III.2 When C1 ≤ 1
2 < C2, q

(0)
0 is 1 − C1, and PI(q

(0)
0 ) is [0, 1 −Q2]. M̄opt

i for PI = Q(∈ PI(q
(0)
0 ) can be

expressed as

M̄opt
0 = Q|ν1〉〈ν1|, M̄opt

1 = ε|ν1〉〈ν1|,
M̄opt

2 = (ρ11 −Q− ε)|ν1〉〈ν1|+ ρ12|ν1〉〈ν2|+ ρ21|ν2〉〈ν1|+ ρ22|ν2〉〈ν2|, (23)

where

ε = 0 if C1 <
1
2 < C2,

0 ≤ ε ≤ 1−Q2 −Q if C1 = 1
2 < C2.

(24)

The result tells that when Q ∈ PI(q
(0)
0 ), if C1 < 1/2 < C2, FRIR measurement for PI = Q is unique, but when

C1 = 1/2 < C2 it is not unique.
The following lemma shows the solution to modified FRIR problem of 1

2 < C1 < C2, ρ12 = 0, q0 = C1.

Lemma III.3 When 1
2 < C1 ≤ C2 and ρ12 = 0, P̄ opt

cor (C1) becomes ρ11C1 + ρ22C2, and PI(C1) is [0, ρ11 + ρ22δC1,C2
].

If C1 < C2, M̄opt
i for q0 = C1 is expressed as

M̄opt
0 = α|ν1〉〈ν1|,

M̄opt
1 = (ρ11 − α)|ν1〉〈ν1|, 0 ≤ α ≤ ρ11

M̄opt
2 = ρ22|ν2〉〈ν2|. (25)

However, if C1 = C2, M̄opt
i for q0 = C1 is given by

M̄opt
0 = α|ν1〉〈ν1|+ β|ν2〉〈ν2|,

M̄opt
1 = (ρ11 − α)|ν1〉〈ν1|, 0 ≤ α ≤ ρ11,

M̄opt
2 = (ρ22 − β)|ν2〉〈ν2|, 0 ≤ β ≤ ρ22. (26)

The proof is given in Appendix B. Note that ρ11 is larger than zero. 0 ∈ PI(C1) in Lemma III.3 includes q
(0)
0 = C1

by Lemma II.2. Therefore, when 1
2 < C1 ≤ C2, inequality q

(0)
0 ≥ 1

2 in Lemma II.3 becomes strict.
From Lemma III.3, one can understand the behavior of analytic solution of original FRIR problem according to

Q ∈ PI(q
(0)
0 ) when 1

2 < C1 ≤ C2 and ρ12 = 0. In this case, P̄ opt
cor (C1) is ρ11C1 + ρ22C2 and Ropt

cor (Q) becomes

C1 + ρ22(C2−C1)
1−Q for any Q ∈ PI(C1), because of Eq. (11). When C1 < C2, the modified FRIR measurement is

expressed only by α. However, when C1 = C2, the modified FRIR measurement is given by α and β. In case
of C1 < C2, because of tr[M̄opt

0 ] = α, the FRIR measurement is uniquely determined at a fixed Q. In case of

C1 = C2, because of tr[M̄opt
0 ] = α+β, a fixed Q cannot uniquely determine α and β. Therefore, it implies that FRIR

measurement of PI = Q may not be unique. The FRIR measurement of the case of C1 < C2 may not be unique.
FRIR measurement of the case of C1 < C2 is the same as FRIR measurement of the case of C1 = C2 with β = 0.
Then, the following corollary can be obtained by introducing the variable ε = β.

Corollary III.3 When 1
2 < C1 ≤ C2 and ρ12 = 0, q

(0)
0 is C1, and PI(q

(0)
0 ) becomes [0, ρ11 + ρ22δC1,C2

]. M̄opt
i of

PI = Q(∈ PI(q
(0)
0 )) is expressed as

M̄opt
0 = (Q− ε)|ν1〉〈ν1|+ ε|ν2〉〈ν2|,

M̄opt
1 = (ρ11 −Q+ ε)|ν1〉〈ν1|,

M̄opt
2 = (ρ22 − ε)|ν2〉〈ν2|, (27)

where

ε = 0 if 1
2 < C1 < C2, ρ12 = 0,

max{0, Q− ρ11} ≤ ε ≤ min{ρ22, Q} if 1
2 < C1 = C2, ρ12 = 0.

(28)

This result implies that when Q ∈ PI(q
(0)
0 ), if 1/2 < C1 < C2 and ρ12 = 0, the FRIR measurement to PI = Q is

unique. However, if 1/2 < C1 = C2 and ρ12 = 0, it is not unique.
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From lemma III.4, q
(0)
0 and PI(q

(0)
0 ) can be found in modified FRIR problem to q0 = χ when 1/2 < C1 ≤ C2 and

ρ12 6= 0. Here χ is as follows:

χ =
χ1 + χ2 −

√
(χ1 − χ2)2 + 4|γ12|2

2
, (29)

where

γij =
l2 − e2

4l
〈νi|ρ−1

0 |νj〉, χi =
1

2
+ γii +

(2qi − 1)(2Ci − 1)

2l
. (30)

Lemma III.4 When 1
2 < C1 ≤ C2 and ρ12 6= 0, we find q

(0)
0 = χ, P̄ opt

cor (χ) = 1+l
2 , and PI(χ) = 0. Then Mopt

i to
PI = 0 is expressed as

Mopt
0 = 0,

Mopt
1 =

1

2

[
I2 +

(q1v1 − q2v2) · σ
‖q1v1 − q2v2‖2

]
,

Mopt
2 =

1

2

[
I2 −

(q1v1 − q2v2) · σ
‖q1v1 − q2v2‖2

]
. (31)

The proof is given in Appendix B. In Lemma III.4, optimal POVM of {qi, ρi}Ni=0(q0 = χ) is unique and we consider
PI(χ) not as a set {0} but as a value 0.

The following theorem summarizes the previous results.

Theorem III.1 (FRIR of Q ∈ PI(q
(0)
0 )) q

(0)
0 and PI(q

(0)
0 ) can be classified as follows:

q
(0)
0 = 1− C1, PI(q

(0)
0 ) = [0, 1−Q2] if C1 ≤ 1

2 < C2,

q
(0)
0 = C1, PI(q

(0)
0 ) = [0, ρ11 + ρ22δC1,C2

] if 1
2 < C1 ≤ C2, ρ12 = 0,

q
(0)
0 = χ, PI(q

(0)
0 ) = 0 if 1

2 < C1 ≤ C2, ρ12 6= 0.

(32)

Ropt
cor (Q) becomes

Ropt
cor (Q) =


1− C1 + C1−q1

1−Q if C1 ≤ 1
2 < C2,

C1 + ρ22(C2−C1)
1−Q if 1

2 < C1 ≤ C2, ρ12 = 0,
1+l
2 if 1

2 < C1 ≤ C2, ρ12 6= 0.

(33)

FRIR measurement of PI = Q becomes, if C1 ≤ 1
2 < C2, (23), and if 1

2 < C1 ≤ C2 and ρ12 = 0, is (27), and if
1
2 < C1 ≤ C2 and ρ12 6= 0, becomes (31).

When Q, corresponding to PI = Q, exists in PI(q
(0)
0 ), Ropt

cor (Q) and the FRIR measurement have different forms

in certain situations. In the case of C1 ≤ 1
2 < C2, PI(q

(0)
0 ) is neither {0} nor [0, 1], because of 0 < Q2 < 1.

PI, corresponding to q
(0)
0 or q

(1)
0 , exists not as a point but as an separate interval. It is not true in the case of

1
2 < C1 ≤ C2. If ρ12 6= 0, PI(q

(0)
0 ) = {0}. If ρ12 = 0 and C1 = C2, PI(q

(0)
0 ) = [0, 1]. This implies that q

(0)
0 = q

(1)
0 .

Then, the left-bound of PI(q
(1)
0 ) becomes 0. Since FRIR of PI = 0 is MD, MD is an optimal MC when ρ12 = 0 and

C1 = C2.

C. FRIR at PI = Q for all Q ∈ PI(q
(0)
0 )C ∩ PI(q

(1)
0 )C

In the previous section we considered the case that the failure probability PI is fixed as Q ∈ PI(q
(0)
0 ) ∩ PI(q

(1)
0 ).

In this section, to investigate FRIR in the other region, we classify modified FRIR problem of q
(0)
0 < q0 < q

(1)
0 into

two cases. The first case is C1 ≤ 1
2 < C2 and ρ12 6= 0, and the second one is 1

2 < C1 ≤ C2 and ρ12 6= 0. Note that
ρ12 = 0 is not included. It is because, from corollary III.1 and theorem III.1, when C1 = C2 and ρ12 = 0, we find

q
(0)
0 = q

(1)
0 . When C1 < C2 and ρ12 = 0, we have q

(0)
0 < q

(1)
0 . However, PI(q

(0)
0 ) = [0, ρ11] and PI(q

(1)
0 ) = [ρ11, 1]

implies PI(q) = ρ11(q
(0)
0 < q < q

(1)
0 ), which includes Ropt

cor (ρ11) = C2. In addition, the following lemma tells that FRIR
measurement to PI = ρ11 is unique.
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Lemma III.5 When C1 < C2 and ρ12 = 0, if q
(0)
0 < q < q

(1)
0 , M̄opt

i at q0 = q can be expressed as

M̄opt
0 = ρ11|ν1〉〈ν1|, M̄opt

1 = 0, M̄opt
2 = ρ22|ν2〉〈ν2|. (34)

The proof is given in Appendix B. The following theorem summarizes FRIR to ρ12 = 0.

Theorem III.2 (FRIR of ρ12 = 0) If C1 = C2, Ropt
cor (Q) becomes C2 at any Q, and M̄opt

i to PI = Q can be repre-
sentes as

M̄opt
0 = ε1|ν1〉〈ν1|+ (Q− ε1)|ν2〉〈ν2|,

M̄opt
1 = (ρ11 − ε1)|ν1〉〈ν1|,

M̄opt
2 = (ρ22 −Q+ ε1)|ν2〉〈ν2|, (35)

where

max{0, Q− ρ22} ≤ ε1 ≤ min{ρ11, Q}. (36)

When C1 < C2, if 0 ≤ Q ≤ ρ11, Ropt
cor (Q) becomes

Ropt
cor (Q) =

{
1− C1 + ρ22(C1+C2−1)

1−Q if C1 ≤ 1
2 ,

C1 + ρ22(C2−C1)
1−Q if 1

2 < C1.
(37)

Then M̄opt
i for PI = Q is expressed as

M̄opt
0 = Q|ν1〉〈ν1|, M̄opt

1 = ε2|ν1〉〈ν1|,
M̄opt

2 = (ρ11 −Q− ε2)|ν1〉〈ν1|+ ρ22|ν2〉〈ν2|, (38)

where

ε2 = 0 if C1 <
1
2 < C2,

0 ≤ ε2 ≤ ρ11 −Q if C1 = 1
2 < C2,

ε2 = ρ11 −Q if 1
2 < C1 < C2.

(39)

If ρ11 ≤ Q < 1, Ropt
cor (Q) is always C2, and M̄opt

i to PI = Q becomes

M̄opt
0 = ρ11|ν1〉〈ν1|+ (Q− ρ11)|ν2〉〈ν2|,

M̄opt
1 = 0, M̄opt

2 = (1−Q)|ν2〉〈ν2|. (40)

When ρ12 = 0, if C1 = C2, MD becomes an optimal MC. When C1 < C2, the right-bound of PI(q
(0)
0 ) is the same as

the left-bound of PI(q
(1)
0 ), which happens only when ρ12 = 0.

The following theorem describes modified FRIR to ρ12 6= 0 in q0 ∈ (q
(0)
0 , q

(1)
0 ).

Theorem III.3 When ρ12 6= 0 and q
(0)
0 < q < q

(1)
0 , the optimal POVM to q0 = q is unique. Then at least one of

Mopt
1 and Mopt

2 is nonzero. In the case of Mopt
x 6= 0,Mopt

y = 0({x, y} = {1, 2}), the index x turns out to be the index

i in maxi∈1,2[qi + ‖qv0 − qivi‖2]. In this case P̄ opt
cor (q) and PI(q) are given as

P̄ opt
cor (q) =

1

2
(q + qx + ‖qv0 − qxvx‖2) ,

PI(q) =
1

2

[
1 +

(qv0 − qxvx) · v0

‖qv0 − qxvx‖2

]
. (41)

The optimal POVM elements is represented as

Mopt
0 =

1

2

[
I2 +

(qv0 − qxvx) · σ
‖qv0 − qxvx‖2

]
,

Mopt
x =

1

2

[
I2 +

(qxvx − qv0) · σ
‖qv0 − qxvx‖2

]
, Mopt

y = 0. (42)
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If Mopt
i 6= 0(∀i), P̄ opt

cor (q) and PI(q) become

P̄ opt
cor (q) = q + ρ11λ1 + ρ22λ2 − 2|ρ12|

√
λ1λ2,

PI(q) =
[

(2C1−1)(2C2−1)−(2q−1)2

2(2q−1)2(C1+C2−1)

]
·
[

1− 2ρ11C1 − 2ρ22C2

+ |ρ12|(2C1−1)(2C2−1)[(C1−q)(C2−q)+(q−1+C1)(q−1+C2)]√
(2C1−1)(2C2−1)(C1−q)(C2−q)(q−1+C1)(q−1+C2)

]
,

(43)

where

λ1 =
(2C2 − 1)(C1 − q)(q − 1 + C1)

(2q − 1)(C1 + C2 − 1)
,

λ2 =
(2C1 − 1)(C2 − q)(q − 1 + C2)

(2q − 1)(C1 + C2 − 1)
. (44)

Then {M̄opt
i }2i=0 is expressed as

M̄opt
0 = η0

λ1+λ2

[
λ2|ν1〉〈ν1|+

ρ12
√
λ1λ2

|ρ12| |ν1〉〈ν2|+
ρ21
√
λ1λ2

|ρ21| |ν2〉〈ν1|+ λ1|ν2〉〈ν2|
]
,

M̄opt
1 = η1

λ1+λ2+2q−1−C1+C2

[
(λ2 + q − 1 + C2)|ν1〉〈ν1|+

ρ12
√
λ1λ2

|ρ12| |ν1〉〈ν2|

+ρ21
√
λ1λ2

|ρ21| |ν2〉〈ν1|+ (λ1 + q − C1)|ν2〉〈ν2|
]
,

M̄opt
2 = η2

λ1+λ2+2q−1+C1−C2

[
(λ2 + q − C2)|ν1〉〈ν1|+

ρ12
√
λ1λ2

|ρ12| |ν1〉〈ν2|

+ρ21
√
λ1λ2

|ρ21| |ν2〉〈ν1|+ (λ1 + q − 1 + C1)|ν2〉〈ν2|
]
.

(45)

Here η0 becomes PI(q) of (43), and η1 and η2 are given by

η1 =
[

(2C1−1)(2C2−1)+2(C2−C1)(2q−1)+(2q−1)2

2(2q−1)2(C1+C2−1)

]
·
[
ρ11(q − 1 + C1) + ρ22(C2 − q)

− |ρ12|(C2−q)(q−1+C1)[(2C1−1)(q−1+C2)+(2C2−1)(C1−q)]√
(2C1−1)(2C2−1)(C1−q)(C2−q)(q−1+C1)(q−1+C2)

]
,

η2 =
[

(2C1−1)(2C2−1)−2(C2−C1)(2q−1)+(2q−1)2

2(2q−1)2(C1+C2−1)

]
·
[
ρ11(C1 − q) + ρ22(q − 1 + C2)

− |ρ12|(C1−q)(q−1+C2)[(2C2−1)(q−1+C1)+(2C1−1)(C2−q)]√
(2C1−1)(2C2−1)(C1−q)(C2−q)(q−1+C1)(q−1+C2)

]
.

(46)

Two cases are distinguished by the signs of {λi}2i=1 and {ηi}3i=1. If λ1, λ2 ≥ 0 and η1, η2, η3 > 0, we have Mopt
i 6= 0(∀i).

Otherwise, we obtain Mopt
1 = 0 or Mopt

2 = 0.

The proof is given in Appendix C. In Theorem III.3, optimal POVM corresponding to q0 = q is always unique and
PI(q) becomes a set with only one element. In this case, we consider PI(q) as a value corresponding to the element of
the set, like (41) and (43).

The following lemma shows the result related with inconclusive degrees satisfying Mopt
1 = 0.

Lemma III.6 When ρ12 6= 0, if C1 ≤ 1
2 < C2 and q

(0)
0 < q0 < q

(1)
0 (or 1

2 < C1 ≤ C2 and C1 < q0 < q
(1)
0 ) can be

satisfied, the optimal POVM element Mopt
1 of modified FRIR problem becomes 0.

The proof is given in Appendix B.
To obtain Ropt

cor (Q), we need to express the inconclusive degree as a function of the failure probability. This task
is not easy since the relation between inconclusive degree and failure probability is very complex; see PI(q) of (41)
and (43). However, it should be noted that the relation between q and PI(q) is one-to-one, which implies that we can
obtain Ropt

cor (Q) numerically using Eq. (11) and theorem III.3.
For example, let us consider the following case of {qi, ρi}2i=1.

q1 = 0.4, ρ1 =

(
0.15 −0.30 + 0.10i

−0.30− 0.10i 0.85

)
,

q2 = 0.6, ρ2 =

(
0.80 −0.30 + 0.05i

−0.30− 0.05i 0.20

)
. (47)

The Bloch vectors of the two qubit states are

v1 = (−0.6,−0.2,−0.7) and v2 = (−0.6,−0.1, 0.6).
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FIG. 1: The behavior of PI(q), P̄
opt
cor (q), and Ropt

cor (Q) at v1 = (−0.6,−0.2,−0.7) and v2 = (−0.6,−0.1, 0.6) with q1 = 0.4 and

q2 = 0.6. We have |ρ12| = 0.3075,C1 = 0.8361,C2 = 0.9657, q
(0)
0 = χ = 0.6940, and q

(1)
0 = C2. The left figure shows PI(q)(solid

line) and P̄ opt
cor (q)(dashed-dotted line) in q

(0)
0 < q < q

(1)
0 . η0(red dashed line) and η2(blue dashed line) are always positive in

q
(0)
0 < q ≤ C1. However, η1(green dashed line) is equal to or less than 0 in the region 0.7902 ≤ q ≤ C1. In χ < q0 < 0.7902

we get Mopt
i 6= 0(∀i), and in 0.7902 ≤ q0 < C2 we have Mopt

0 6= 0, Mopt
1 = 0, and Mopt

2 6= 0. The right figure displays the
behavior of Ropt

cor (Q), obtained from PI(q) and P̄ opt
cor (q) of the left figure. In 0 < Q < 0.5805 we have Mopt

i 6= 0(∀i), and in
0.5805 ≤ Q < Q1 = 0.6635 we get Mopt

0 6= 0, Mopt
1 = 0, and Mopt

2 6= 0.

Then, |ρ12|, C1, and C2 become 0.3075, 0.8361, and 0.9657, respectively. From corollary III.1 and theorem III.1, q
(0)
0

and q
(1)
0 are χ = 0.6940 and C2, respectively. In the region of χ < q ≤ C1, λ1 and λ2 are non-negative, and η0

and η2 are positive, but η1 is not. In χ < q < 0.7902, η1 is positive. However, in 0.7902 ≤ q ≤ C1, η1 is negative
or equal to zero. Therefore, in χ < q0 < 0.7902, we find Mopt

i 6= 0(∀i). However, in 0.7902 ≤ q0 ≤ C1, because

of q1 + ‖q0v0 − q1v1‖2 < q2 + ‖q0v0 − q2v2‖2, we have Mopt
1 = 0. In addition, by lemma III.6, in C1 < q0 < C2,

Mopt
1 becomes 0. Therefore if fixed failure probability PI is 0 < PI < 0.5805, we find Mopt

i 6= 0. However, if

0.5805 ≤ PI < Q1 = 0.6635, we have Mopt
0 6= 0, Mopt

1 = 0, and Mopt
2 6= 0. Figure 1 shows, in this example, the

behavior of PI(q0) and P̄ opt
cor (q)(Ropt

cor (Q)) in q
(0)
0 < q0 < q

(1)
0 (0 < Q < 1).

To confirm the effectiveness of our results, we consider the case of C1 = C2(= C) and ρ12 6= 0. By corollary III.1

and theorem III.1, in this case, q
(0)
0 = χ and q

(1)
0 = C. If C1 = C2 is applied to λ1,λ2, η0, η1, and η2, we have the

following expresssion.

λ1 = λ2 =
(C − q)(q − 1 + C)

2q − 1
, (48)

and

η0 = 2
(2q−1)2

[
|ρ12|(C − q)2 + |ρ12|(q − 1 + C)2 − (C − q)(q − 1 + C)

]
,

η1 = (2C−1)2+(2q−1)2

2(2q−1)2(2C−1)

[
ρ11(q − 1 + C) + ρ22(C − q)− |ρ12|(2C − 1)

]
,

η2 = (2C−1)2+(2q−1)2

2(2q−1)2(2C−1)

[
ρ11(C − q) + ρ22(q − 1 + C)− |ρ12|(2C − 1)

]
.

(49)

When ρ11, ρ22 ≥ |ρ12|, in χ < q < C, these are all positive, and we have Mopt
i 6= 0(∀i). Then q0(= q) can be expressed

in terms of the failure probability Q:

q =
1

2
+

2C − 1

2

√
1− 2|ρ12|

1 + 2|ρ12| − 2Q
. (50)

Applying this q to P̄ opt
cor (q)− qQ, we find P opt

cor (Q) in 0 < Q < 2|ρ12|, which agrees with the previous result:

P opt
cor (Q) =

1−Q
2

+
2C − 1

2

√
(1− 2|ρ12|)(1 + 2|ρ12| − 2Q). (51)



12

When ρ11 < |ρ12| ≤ ρ22, then λ1, λ2, η0, and η2 are always positive in the region of χ < q < C; however, η1 can be
found only in the following case

χ < q <
1

2
+

(1− 2|ρ12|)(2C − 1)

2(ρ22 − ρ11)
. (52)

In this region, like (50), q can be expressed by Q. Therefore, in the following region of the failure probability, P opt
cor (Q)

is the same as (51), and we have Mopt
i 6= 0(∀i).

0 < Q <
2(ρ11ρ22 − |ρ12|2)

1− 2|ρ12|
. (53)

In the other region, we get Mopt
0 6= 0,Mopt

1 = 0, and Mopt
2 6= 0, which coincides with the previous result[35].

IV. CONCLUSION

In this paper, we provided a solution to the FRIR of two mixed qubit states. The solution was obtaind by
considering the modified FRIR problem(MD of three qubit states). In fact, since the added specific quantum state ρ0

with the prior probability q0(called an conclusive degree) was obtained from the given two qubit states, the structure
of the modified problem is more complex than that of the MD of three qubit states with no constraint[17]. First,

we introduced special inconclusive degrees q
(0)
0 and q

(1)
0 , which are the beginning and the end of proper inconclusive

degrees. Using this, we divided the problem into the two cases of q0 = q
(0)
0 (or q0 = q

(1)
0 ) and q

(0)
0 < q0 < q

(1)
0 . By

maximum confidences of two qubit states and non-diagonal element of ρ0, we solved each case. We obtained q
(0)
0

and q
(1)
0 in the analytic form, and completely understood modified FRIR problem when q

(0)
0 ≤ q0 ≤ q(1)

0 . Finally, we
verified that our results also provide the same solutions as known examples in the literature.
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Appendix A: Proofs of Lemmas in Section II

Proof of Lemma II.1 Suppose that when {qi, ρi}Ni=1 is given, POVM {Mi}Ni=0 can cause PI = Q and P̄cor = P̄ opt
cor (q).

It follows that the POVM can make Pcor(Q) = P̄ opt
cor (q) − qQ. If there exists a POVM that can build PI = Q and

Pcor(Q)=P >P̄ opt
cor (q)− qQ, it can also construct P̄cor(q)=P + qQ. However since P + qQ is larger than P̄ opt

cor (q), this
is contradictory. Therefore {Mi}Ni=0 should produce P opt

cor (Q), which means P opt
cor (Q) = P̄ opt

cor (q)− qQ. �

Proof of Lemma II.2 Assume that when {qi, ρi}Ni=1 is given, the POVM {Mi}Ni=0({M ′i}Ni=0) can produce PI = Q
and P̄cor = P̄ opt

cor (q)(PI = Q′ and P̄cor = P̄ opt
cor (q′)). If q = q′ and Q < Q′, the POVM {M ′′i }Ni=0 composed of

M ′′i = pMi + (1 − p)M ′i(0 ≤ p ≤ 1) will build P̄cor = P̄ opt
cor (q) and PI = pQ + (1 − p)Q′. Therefore PI(q) becomes a

convex set.
Now suppose that q < q′. {Mi}Ni=0 constructs P̄cor = (q′ − q)Q + P̄ opt

cor (q) when q0 = q′, and the value should be
equal to or less than P̄ opt

cor (q′) = (q′ − q)Q′ + P̄ , where P̄ is P̄cor corresponding to {M ′i}Ni=0 when q0 = q. This means
that (Q′ −Q) ≥ (P̄ opt

cor (q)− P̄ )/(q′ − q). Therefore we have Q ≤ Q′. This means that PI(q) ≤ PI(q
′). �

Proof of Lemma II.3. When q0 < 1/N , we get τ̄opt
0 = (1/N − q0)Id + (1/N)

∑N
i=1 τ̄

opt
i by (ii) of (6). If we multiply

M̄opt
0 to both sides of the equation and take the trace of the result, we obtain (1/N − q0)tr[M̄opt

0 ] ≤ 0 by (iii) and the

positivity of τ̄opt
i (∀i). From the assumption on q0, M̄opt

0 should be zero and we find PI(q) = 0(∀q < 1/N). Therefore

using lemma II.2, we have q
(0)
0 ≥ 1/N .

When C = maxi Ci, M̄i = δi0ρ0 and τ̄i = CId − ρ̄i satisfy the optimality condition (6) of q0 = C, and 1 ∈ PI(C).

Therefore we get q
(1)
0 ≤ C by lemma II.2. �



13

Appendix B: Proofs of Lemmas in Section III

Proof of Lemma III.1. When q0 = C2, since {M̄i = δi0ρ0}2i=0 and {τ̄?i = C2I2− ρ̄i}2i=0 satisfy the KKT optimality

condition (6), P̄ opt
cor (C2) = C2. This means that τ̄opt

i = τ̄?i (∀i). Since the rank of τ̄opt
2 should be one by C1 + C2 > 1,

we have M̄opt
2 = β|ν2〉〈ν2| from (iii). The form of M̄opt

0 and M̄opt
1 can be classified into the cases of C1 = C2 and

C1 < C2.
If C1 = C2, the rank of τ̄opt

1 becomes 1, and we get M̄opt
1 = α|ν1〉〈ν1| from (iii). Furthermore (i) indicates

that M̄opt
0 = ρ0 − α|ν1〉〈ν1| − β|ν2〉〈ν2|, 0 ≤ α ≤ ρ11, 0 ≤ β ≤ ρ22, and (ρ11 − α)(ρ22 − β) ≥ |ρ12|2. Since

tr[M̄opt
0 ] = 1 − α − β, the maximum can be found at α = β = 0. α and β corresponding to its minimum can be

different. When ρ11 < |ρ12| ≤ ρ22, we have α = 0 and β = 1 − Q1. When ρ22 < |ρ12| ≤ ρ11, we obtain α = 1 − Q2

and β = 0. When |ρ12| ≤ ρ11, ρ22, we have α = ρ11 − |ρ12| and β = ρ22 − |ρ12|. Therefore PI(C2) becomes (16).

If C1 < C2, the rank of τ̄opt
1 becomes 2, and (iii) implies that M̄opt

1 = 0. Then (i) means M̄opt
0 = ρ0 − β|ν2〉〈ν2| and

0 ≤ β ≤ 1−Q1. Since tr[M̄opt
0 ] = 1− β, the minimum(maximum) can be found at β=1−Q1(β = 0). Therefore we

get PI(C2)=[Q1, 1]. �

Proof of Lemma III.2. When C1 ≤ 1/2 < C2, since {M̄i = δi2ρ0}2i=0 and the following {τ̄?i }2i=0 satisfies the
optimality condition (6) of q0 = 1− C1, P̄ opt

cor (1− C1) = q2.

τ̄?0 = (C1 + C2 − 1)|ν2〉〈ν2|, τ̄?1 = (1− 2C1)|ν1〉〈ν1|+ (2C2 − 1)|ν2〉〈ν2|, τ̄?2 = 0. (B1)

This implies that τ̄opt
i = τ̄?i (∀i) when q0 = 1 − C1. Since the rank of τ̄opt

0 is 1 given that C1 + C2 > 1, (iii) implies

M̄opt
0 = α|ν1〉〈ν1|. However M̄opt

1 and M̄opt
2 are classified into cases where C1 < 1/2 and C1 = 1/2.

When C1 < 1/2, since the rank of τ̄opt
1 becomes 2, (iii) gives M̄opt

1 = 0 and (i) means M̄opt
2 = ρ0 − α|ν1〉〈ν1|

and 0 ≤ α ≤ 1 − Q2. Then, since tr[M̄opt
0 ] = α shows a minimum at α = 0 and a maximum at α = 1 − Q2, we

have PI(1 − C1) = [0, 1 − Q2]. However, when C1 = 1/2, the rank of τ̄opt
1 is 1 and (iii) implies M̄opt

1 = β|ν1〉〈ν1|.
Therefore (i) means M̄opt

2 = ρ0 − (α + β)|ν1〉〈ν1| and we have α, β ≥ 0, and α + β ≤ 1 − Q2. tr[M̄opt
0 ] = α has a

minimum(maximum) at α = 0(α = 1−Q2 and β = 0). Therefore, we obtain PI(1− C1) = [0, 1−Q2]. �

Proof of Lemma III.3. When 1/2 < C1 ≤ C2,ρ12 = 0, since the following {M̄i}2i=0, {τ̄?i }2i=0 satisfies the optimality
condition (6) of q0 = C1, P̄ opt

cor (C1) = ρ11C1 + ρ22C2.

M̄0 = 0, M̄1 = ρ11|ν1〉〈ν1|, M̄2 = ρ22|ν2〉〈ν2|,
τ̄?0 = (C2 − C1)|ν2〉〈ν2|, τ̄?1 = (2C2 − 1)|ν2〉〈ν2|, τ̄?2 = (2C1 − 1)|ν1〉〈ν1|. (B2)

This means that τ̄opt
i = τ̄?i (∀i) when q0 = C1. Since, if C1 < C2, the rank of τ̄opt

i is one, (iii) tells that M̄opt
0

and M̄opt
1 are proportional to |ν1〉〈ν1|, and M̄opt

2 is proportional to |ν2〉〈ν2|. By (i), M̄opt
i can be expressed as (25).

However, since C1 = C2 implies τ̄opt
0 = 0, M̄opt

i becomes (26). Therefore PI(C1) can be written as [0, ρ11+ρ22δC1,C2
]. �

Proof of Lemma III.4. When 1/2 < C1 ≤ C2 and ρ12 6= 0, lemma II.2 and corollary III.1 reveal that q
(0)
0 < C2.

By (ii) of optimality condition (6) and the nonnegativity of τ̄i(∀i), τ̄opt
0 = 0 includes q0 ≥ C2, and τ̄opt

1(2) = 0 contains

C2(1) ≤ 1/2. This implies that τ̄opt
i 6= 0(∀i) if q0 < q

(1)
0 . Then M̄opt

0 = 0 means that M̄opt
1 , M̄opt

2 6= 0 because

M̄opt
0 = M̄opt

1 = 0 implies τ̄opt
2 = 0 and M̄opt

0 = M̄opt
2 = 0 contains τ̄opt

1 = 0. When M̄opt
0 = 0, in order to obtain the

explicit form of {M̄opt
i , τ̄opt

i }2i=1, we use the optimality condition (8). Since M̄0 = 0 includes p0 = 0, it has no effect
on r0 and w0. M̄i, τ̄i 6= 0(i = 1, 2) implies pi, ri 6= 0(i = 1, 2), and by (iii) we have ‖wi‖2 = 1, ui = −wi(i = 1, 2).

Since r1 + r2 = l and r2 − r1 = q1 − q2 should be satisfied by (ii), {popt
i ,uopt

i }2i=1 and {ropt
i ,wopt

i }2i=1 can be obtained
as follows:

popt
1 = popt

2 =
1

2
, ropt

1 =
1 + l

2
− q1, r

opt
2 =

1 + l

2
− q2,

uopt
1 = wopt

2 =
q1v1 − q2v2

‖q1v1 − q2v2‖2
, uopt

2 = wopt
1 =

q2v2 − q1v1

‖q1v1 − q2v2‖2
. (B3)

From these, we find P̄ opt
cor (q) = (1 + l)/2(∀q ≤ q

(0)
0 ), and can decide the explicit form of {Mopt

i }2i=0 and {τopt
i }2i=1.

However ropt
0 and wopt

0 are not decided yet. These are affected only by (ii). The triangle made of {qivi}2i=0 lies in

the plane with the origin, and the triangle consisting of {−ropt
i wopt

i }2i=0 should be located in the same plane. Since

the two triangles are congruent, then as ‖ropt
0 wopt

0 ‖2 grows larger ‖q0v0‖2 becomes larger. Since q0 + ropt
0 is fixed as
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(1 + l)/2, when ‖wopt
0 ‖2 reaches the maximum(that is, when ‖wopt

0 ‖2 = 1), q0 reaches the maximum. Therefore the

determinant of τ̄opt
0 is 0 when q0 = q

(0)
0 . From (ii), we have (χ1 − q(0)

0 )(χ2 − q(0)
0 ) = |γ12|2. Though there are two

roots of this equation, the nonnegativity of τ̄opt
0 implies that q

(0)
0 ≤ min{χ1, χ2}, and the analytic form of q

(0)
0 can be

obtained as χ of (29). The optimal POVM of q0 = χ is unique since ropt
i 6= 0(∀i) and {qivi}2i=0 forms a triangle; see

the Appendix D. This means that PI(χ) = 0. �

Proof of Lemma III.5. When C1 < C2 and ρ12 = 0, if q
(0)
0 < q < q

(1)
0 , POVM, defined as (34), and {τ?i }2i=0 satisfies

KKT optimality condition (6) to q0 = q:

τ̄?0 = (C2 − q)|ν2〉〈ν2|,
τ̄?1 = (q − C1)|ν1〉〈ν1|+ (2C2 − 1)|ν2〉〈ν2|,
τ̄?2 = (q − 1 + C1)|ν1〉〈ν1|. (B4)

This means that τ̄opt
i = τ̄?i (∀i). Since the rank of τ̄opt

1 is two, (iii) implies M̄opt
1 = 0. However, since the rank of τ̄opt

0

and τ̄opt
2 are one, M̄opt

0 and M̄opt
2 are proportional to |ν1〉〈ν1| and |ν2〉〈ν2|, respectively. Therefore (i) means that

M̄opt
i is unique as (34). �

Proof of Lemma III.6. First of all, let us consider the case of C1 ≤ 1
2 < C2 and ρ12 6= 0. In the region of

q
(0)
0 < q0 < q

(1)
0 , since λ1 of (44) is less than 0, we find Mopt

1 = 0 or Mopt
2 = 0 by theorem III.3. If Mopt

2 = 0,

since optimality condition (6) means τ̄opt
1 = τ̄opt

0 + q0I2 − ρ̄1 and det(τ̄opt
0 ) = det(τ̄opt

1 ) = 0, ti = 〈νi|τ̄opt
0 |νi〉 satisfies

t1t2 = (t1 + q0 −C1)(t2 + q0 − 1 +C2). However, this result is contradictory because (t1 + q0 −C1)(t2 + q0 − 1 +C2)

is greater than t1t2 in the region of (C1, 1− C2 ≤ 1− C1 =)q
(0)
0 < q0 < q

(1)
0 . Therefore we get Mopt

1 = 0.

Next, let us consider the case of 1
2 < C1 ≤ C2 and ρ12 6= 0. Here (q

(0)
0 , q

(1)
0 ) is divided into two cases: (χ,C1] and

(C1, C2). In latter case, because of λ1 < 0, we can obtain Mopt
1 = 0. �

Appendix C: Proof of Theorem III.3

Proof. When ρxy 6= 0 and q0 = q ∈ (q
(0)
0 , q

(1)
0 ), the line intersecting v1 and v2 does not contain the origin, and

{qivi}2i=0 forms a triangle. ropt
0 = 0 implies that {Mi = δi0I2}2i=0 provide an optimal POVM, which includes q

(1)
0 ≤ q.

Since ropt
k = 0(k ∈ {1, 2}) indicates that {Mi = δikI2}2i=0 yields the optimal POVM, this means q ≤ q

(0)
0 . Therefore

the element of {ropt
i }2i=0 are all nonzero. In this case, the optimal POVM is unique; see the Appendix D. In addition,

Mopt
0 is nonzero, and at least one of Mopt

1 and Mopt
2 is nonzero.

In the case of Mopt
x 6= 0,Mopt

y = 0({x, y} = {1, 2}), the index x turns out to be the index i in maxi∈1,2[qi + ‖qv0 −
qivi‖2] because P̄ opt

cor (q) = maxi∈1,2[q + qi + ‖qρ0 − qiρi‖1]/2. The optimal POVM, by the optimality condition (8),
can be expressed as (42).

In the case of Mopt
i 6= 0(∀i), by the optimality condition (6), {M̄opt

i , τ̄opt
i }2i=0 can be found explicitly. From condition

(ii), {τ̄opt
i }2i=0 are given as follows.

τ̄opt
0 = τ11|ν1〉〈ν1|+ τ12|ν1〉〈ν2|+ τ21|ν2〉〈ν1|+ τ22|ν2〉〈ν2|,
τ̄opt
1 = (τ11 + q − C1)|ν1〉〈ν1|+ τ12|ν1〉〈ν2|+ τ21|ν2〉〈ν1|+ (τ22 + q − 1 + C2)|ν2〉〈ν2|,
τ̄opt
2 = (τ11 + q − 1 + C1)|ν1〉〈ν1|+ τ12|ν1〉〈ν2|+ τ21|ν2〉〈ν1|+ (τ22 + q − C2)|ν2〉〈ν2|. (C1)

By the complementary slackness condition (iii) of (6), the every rank of {M̄opt
i , τ̄opt

i }2i=0 is one. Therefore their
determinants become 0, which means

|τ12| =
√
τ11τ22 and M̄opt

i = tr[M̄opt
i ] ·

[
I2 −

τ̄opt
i

tr[τ̄opt
i ]

]
∀i. (C2)

Then, we have τ11 = λ1 and τ22 = λ2. Since tr[M̄opt
i ] is the probability that Mopt

i may be detected, tr[M̄opt
0 ] becomes

PI(q). The phase of τ12 and the form of tr[M̄opt
i ] can be obtained by condition (i). The completeness condition of the

POVM is represented as

tr[M̄opt
0 ]

tr[τ̄opt
0 ]

· τ̄opt
0 +

tr[M̄opt
1 ]

tr[τ̄opt
1 ]

· τ̄opt
1 +

tr[M̄opt
2 ]

tr[τ̄opt
2 ]

· τ̄opt
2 = I2 − ρ0. (C3)
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ρ12 and τ12 have the relation of ρ12/τ12 = −
∑2
i=0(tr[M̄opt

i ]/tr[τ̄opt
i ]). By Mopt

i 6= 0(∀i) and the non-negativity
of POVM, the right hand side of the equation is always negative, and we get ρ12/τ12 = −|ρ12|/|τ12|. That is,

τ12 = −(ρ12/|ρ12|)
√
λ1λ2. And P̄ opt

cor (q) is found as (43). Then we have tr[M̄opt
i ] = ηi by the following relation: tr[M̄opt

0 ]

tr[M̄opt
1 ]

tr[M̄opt
2 ]

 =

 1 1 1
1

tr[τ̄opt
0 ]

1
tr[τ̄opt

1 ]
1

tr[τ̄opt
2 ]

λ1

tr[τ̄opt
0 ]

λ1+q−C1

tr[τ̄opt
1 ]

λ1+q−1+C1

tr[τ̄opt
2 ]


−1 1

|ρ12|√
λ1λ2

ρ22

 . (C4)

Therefore M̄opt
i is represented as (45). The result implies the following. If λi ≥ 0(∀i) and ηi > 0(∀i), we have

Mopt
i 6= 0(∀i). Otherwise, we find Mopt

1 = 0 or Mopt
2 = 0. �

Appendix D: Proof of Uniqueness of Optimal POVM

Here we prove the following fact: When {qivi}2i=0 forms a triangle, if ropt
i 6= 0(∀i), then the POVM {Mi =

pi(I2 + ui · σ)}2i=0 fulfilling the optimality condition (8) is unique. For the proof, we use v0 as an arbitrary Bloch

vector extrinsic to v1,v2. Since Mopt
k = I2 implies ropt

k = 0, at least two of {Mopt
i }2i=0 are nonzero.

First, we consider the case that there exists {pi 6= 0,ui}2i=0 and {ri 6= 0,wi}2i=0 fulfilling optimality condition
(8). Without loss of generality, we can set q0 ≥ q1, q2. Then (iii) becomes ui ·wi = −1(∀i). This can be rewritten
as ‖ui‖2 = 1, wi = −ui(∀i), and (ii) is as follows: ri − r0 = ei, R ≡ qivi − riui(i = 0, 1, 2). ei is the difference
between two prior probabilities q0 and qi. This condition means the following; {riui}2i=0 forms a triangle congruent to
a triangle {qivi}2i=0, and {riui}2i=0 coincides with {qivi}2i=0 by parallel transport R. Then (i) contains the following
statement. R lies in the interior of the triangle {qivi}2i=0, and the distance from this point to the vertex of the triangle
qivi is ri. The points fulfilling ri − r0 = ei satisfy the following hyperbolic equation:

r0 =
l2i − e2

i

2(li cos θi + ei)
. (D1)

Above li is the distance between two vectors q0v0 and qivi, and θi is the angle between two sides {R, q0v0} and
{q0v0, qivi}. As θi increases, r0 also increases, and inside the triangle {qivi}2i=0 the position of R is unique. This
means that the {pi,ui}2i=0 are unique. Therefore, the optimal POVM in which every element is nonzero is unique.
To make a distinction, we denote this POVM as {M ′i}2i=0. Suppose that there exists another POVM satifying the
optimality condition and denote it as {M ′′i }2i=0. Then the POVM consisting of Mi = εM ′i + (1− ε)M ′′i (0 < ε < 1) is
optimal, and we have Mi 6= 0(∀i). This is contradictory, and therefore the optimal POVM is unique.

Next, we consider the case that there exist {pi,ui}2i=0 and {ri 6= 0,wi}2i=0 fulfilling optimality condition (8) and
one of {pi}2i=0 is zero and the others are nonzero. Without loss of generality, we can set p0 = 0. Then (iii) becomes
ui ·wi = −1(i = 1, 2). This can turn into ‖ui‖2 = 1, wi = −ui(i = 1, 2), and (ii) can be expressed in the following
way: r1 − r2 = q2 − q1, R ≡ q1v1 − r1u1 = q2v2 − r2u2. This condition implies that {riui}2i=1 coincides with the
line segment {qivi}2i=1 by parallel translation R. (i) means that R lies in the interior of {qivi}2i=1 and the distance
from the point to qivi is ri. That is, we have r1 + r2 = l12. l12 is the distance between two vectors q1v1 and q2v2.
Then r1 and r2 satisfying r1− r2 = q2− q1 are apparently unique. This implies that {pi,ui}2i=1 are unique. Therefore
the optimal POVM satisfing M0 = 0,M1 6= 0,M2 6= 0 is unique. To differentiate from the other POVM, we represent
this POVM as {M ′i}2i=0. We assume that there exists a POVM satisfying M0 6= 0 and the optimality condition, and
denote it as {M ′′i }2i=0. Then the POVM consisting of Mi = εM ′i + (1− ε)M ′′i (0 < ε < 1) is optimal. The result is that
POVM fulfilling Mi 6= 0(∀i) and geometric optimality condition is not unique. This contradicts the previous result,
and the optimal POVM is unique.

In conclusion, when {qivi}2i=0 forms a triangle and ropt
i 6= 0(∀i), the optimal POVM is unique. �

[1] Chefles, A.: Quantum state discrimination. Contemp. Phys. 41, 401 (2000)
[2] Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238 (2009)
[3] Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)
[4] Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. A: Math. Theor. 48, 083001 (2015)
[5] Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
[6] Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland (1979)
[7] Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans.

Inf. Theory 21, 125 (1975)



16

[8] Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum Measurements for Discrimination Among Symmetric Quantum
States and Parameter Estimation. Int. J. Theor. Phys. 36, 1269 (1997)

[9] Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305
(2003)

[10] Herzog, U.: Minimum-error discrimination between a pure and a mixed two-qubit state. J. Opt. B: Quantum Semiclass.
Opt. 6, S24 (2004)

[11] Samsonov, B.F.: Minimum error discrimination problem for pure qubit states. Phys. Rev. A 80, 052305 (2009)
[12] Deconinck, M.E., Terhal, B.M.: Qubit state discrimination. Phys. Rev. A 81, 062304 (2010)
[13] Jafarizadeh, M.A., Mazhari, Y., Aali, M.: The minimum-error discrimination via Helstrom family of ensembles and convex

optimization. Quantum Inf. Process. 10, 155 (2011)
[14] Khiavi, Y.M., Kourbolagh, Y.A.: Minimum-error discrimination among three pure linearly independent symmetric qutrit

states. Quantum Inf. Process. 12, 1255 (2013)
[15] Bae, J., Hwang, W.Y.: Minimum-error discrimination of qubit states: Methods, solutions, and properties. Phys. Rev. A

87, 012334 (2013)
[16] Bae, J.: Structure of minimum-error quantum state discrimination. New. J. Phys. 15, 073037 (2013)
[17] Ha, D., Kwon, Y.: Complete analysis for three-qubit mixed-state discrimination. Phys. Rev. A 87, 062302 (2013)
[18] Ha, D., Kwon, Y.: Discriminating N -qudit states using geometric structure. Phys. Rev. A 90, 022330 (2014)
[19] Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)
[20] Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)
[21] Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)
[22] Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83 (1995)
[23] Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301(R)

(2003)
[24] Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301(R)

(2005)
[25] Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320

(2009)
[26] Kleinmann, M., Kampermann, H., Bruß, D.: Structural approach to unambiguous discrimination of two mixed quantum

states J. Math. Phys. 51, 032201 (2010)
[27] Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure

states with real inner products. Phys. Rev. A 82, 032338 (2010)
[28] Bergou, J.A., Futschik, U., Feldman, E.: Optimal Unambiguous Discrimination of Pure Quantum States. Phys. Rev. Lett.

108, 250502 (2012)
[29] Ha, D., Kwon, Y.: Analysis of optimal unambiguous discrimination of three pure quantum states. Phys. Rev. A 91, 062312

(2015)
[30] Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys.

Rev. Lett. 96, 070401 (2006)
[31] Chefles, A., Barnett, S.M.: Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt. 45, 1295

(1998)
[32] Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A 261, 25 (1999)
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