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parallelism, has significant advantage in terms of speed over the classical compu-
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science because it comes as a subroutine in many important algorithms. Quan-

tum database search of Grover achieves the task of finding the target element in an

unsorted database in a time quadratically faster than the classical computer. We re-
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I. INTRODUCTION

Quantum computation has the advantage of speed [1, 2] over its classical counterpart

which makes the quantum computation more favorable. Although building a full-fledged

quantum computer [3] is still far from reality, some of the research works such as Shor’s

algorithm and Grover algorithm have attracted much attention in the theoretical side. In

the experimental side some success with a small number of quantum bits have already been

achieved.

Peter Shor showed [4, 5] that it is possible for a quantum algorithm to compute factor-

ization in polynomial-time. L. K. Grover, on the other hand, showed [6–8] that it is possible

to search for a single target item in an unsorted database, i.e., the elements of the database

are not arranged in any specific order, in a time which is quadratically faster than what

a classical computer needs to complete the same task. Here time is measured in terms of

the number of queries to the oracle one needs to complete a task. Grover algorithm needs

O(
√
N) queries to the oracle. Although Grover algorithm can not perform a task expo-

nentially faster than classical computer still it is quite popular because of its wide rage of

applications such as a subroutine of some large algorithms in computer science. It can be

shown that the quantum algorithm of Grover is the fastest algorithm, i.e., optimal [9–11] to

search in an unsorted database.

Instead of looking for the target element in the whole database at once it is sometimes

natural to divide the database into several blocks and then look for the particular block

which contains the target element. This is called quantum partial search algorithm, first

studied by Grover and Radhakrishnan [12], which can be optimized [13–16] and further

generalized to hierarchical quantum partial search algorithm [2, 17, 18].

The purpose of this article is to review the basic concepts of quantum search algorithms.

In our daily life we encounter databases which contain many elements. The database may

be arranged in a particular order, i.e. sorted or may not have any order at all, i.e. unsorted.

For example, consider the telephone directory which has a large number of contact details of

individuals. This example is particularly interesting because it serves both as a sorted and

an unsorted database. When we look for the names, which are arranged in lexicographical

order, then the the telephone directory is an example of sorted database. However when we

look for a telephone number then the telephone directory becomes an example of an unsorted
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database. The job of a quantum search algorithm is to find a specific element, usually called

the target item or the solution from the vast number of elements in a database. Typically

classical computer takes a time proportional to the size of the database. Quantum search

algorithms, which are based on the principle of quantum mechanics, promise to significantly

reduce the computation time for the same database search.

This review article is arranged in the following fashion. In section I we provide an

introduction to the quantum search algorithms. To understand how quantum mechanics can

be exploited in our favor a set of historically important quantum algorithms are discussed

in II which distinguish between balanced and constant functions. In section III we give an

elaborate account of the famous Grover search algorithm and in section IV we discuss the

quantum partial search algorithm and its optimized version known as GRK algorithm [2].

Finally in section V we conclude.

II. FIRST QUANTUM ALGORITHMS

Here we discuss how quantum mechanics and its principle of superposition can have

profound impact on computations. Algorithms such as Deutsch’s algorithm, Deutsch-Jozsa

algorithm, Bernstein-Vazirani algorithm, Simon algorithm, Shor’s algorithm are the first

algorithms which made use of quantum superposition to perform a certain task sufficiently

faster than classical computer [19]. Therefore, before we move to quantum search algorithms

we in this section discuss some of these algorithms.

A. Deutsch’s algorithm

Consider Boolean functions f which act on qubits as

f : {0, 1} → {0, 1} (1)

The four functions in eq. (1) are the following f(0) = 0, f(0) = 1, f(1) = 0 and f(1) = 1.

Alternatively we can say there are two constant functions f(0) = f(1) = 0, f(0) = f(1) = 1

and two balanced functions f(0) = 0 6= f(1) = 1, f(0) = 1 6= f(1) = 0. If we use a classical

computer to know what the functions f do then we have to run the classical computer twice.

First we have to find f(0) which could be either 0 or 1 and then f(1) which could be again

either 0 or 1.
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However in quantum computing each input corresponds to a quantum state vector. So

there are two state vectors |0〉 and |1〉. Instead of feeding single basis state we can prepare

a superposition of these two states to extract global information regarding the function f .

There is a quantum black box, called oracle, which does a unitary transformation on the

input vectors. The unitary operator Uf corresponding to the function f acts on a two-qubit

state as the following

Uf |x〉 ⊗ |y〉 → |x〉 ⊗ |f(x)⊕ y〉 , (2)

where x, y ∈ {0, 1}, ⊕ is the addition modulo 2 and ⊗ is the tensor product. Note that if we

use |0〉 or |1〉 as the input state then still in quantum computer we have to query the oracle

twice. It can be easily understood from the fact that the qubit |y〉 flips if the input of the

first qubit is mapped to f(x) = 1. For f(x) = 0 |y〉 remains in the same state. Therefore the

function is constant if for both inputs, which we have to provide twice, we see that |y〉 either
flip or remains unchanged. For balanced function |y〉 will flip for one input and remains

unchanged for other input.

To speedup the process we can instead prepare a superposition of basis inputs which is

done using Hadamard transform H to the qubits as

H|x〉 =
√

1

2

1
∑

y=0

(−1)xy|y〉 , x ∈ {0, 1} (3)

In |0〉 and |1〉 basis the matrix representation of the Hadamard transform is

H =

√

1

2





1 1

1 −1



 (4)

The state of the two qubits after the Hadamard transform becomes

H|0〉 =
√

1

2
(|0〉+ |1〉) , H|1〉 =

√

1

2
(|0〉 − |1〉) . (5)

The unitary operator Uf acts on the state |x〉 ⊗H|1〉 as the eigenvalue equation

Uf |x〉 ⊗H|1〉 = |x〉 ⊗
√

1

2
(|0 + f(x)〉 − |1 + f(x)〉)

= (−1)f(x)|x〉 ⊗
√

1

2
(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗H|1〉 . (6)
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Since the oracle state H|1〉 is fixed we can discard it from eq. (6) and simply write

Uf |x〉 = (−1)f(x)|x〉 . (7)

Here we remark that eq. (7) can be regarded as the reflection about a plane perpendicular

to the target element. We have considered x to be a single qubit here, however eq. (7) is

also valid when x is a n-qubit.

In Deutsch’s algorithm Hadamard transform is applied on the state of two qubits |0〉⊗|1〉

H|0〉 ⊗H|1〉 =
√

1

2
(|0〉+ |1〉)⊗

√

1

2
(|0〉 − |1〉) . (8)

Then using eq. (7) the oracle’s unitary transformation Uf on H|0〉⊗H|1〉 can be written as

UfH|0〉 ⊗H|1〉 =
√

1

2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

⊗
√

1

2
(|0〉 − |1〉) . (9)

Hadamard transform on the first qubit of eq. (9) gives

HUfH|0〉 ⊗H|1〉 =
1

2

[(

(−1)f(0) + (−1)f(1)
)

|0〉+
(

(−1)f(0) − (−1)f(1)
)

|1〉
]

⊗
√

1

2
(|0〉 − |1〉) . (10)

Measurement on the first qubit in eq. (10) shows that when the function f is constant,

i.e. f(0) = f(1), we obtain the outcome |0〉. On the other hand, when the function f is

balanced, i.e. f(0) 6= f(1), we obtain the outcome |1〉.
The superposition of |0〉 and |1〉 does the job of finding whether the function f is constant

or balanced in just one query to the quantum oracle. This is called quantum parallelism.

B. Deutsch-Jozsa algorithm

In Deutsch’s algorithm we had a single qubit input to the quantum oracle , also known as

quantum black box. However what happens if the input is a n-qubit, an element of a N = 2n

dimensional Hilbert space. Will the time to find out whether the function f is constant or

balanced increase? Here the function is said to be constant if f(x) = 0 or f(x) = 1 for all

N = 2n n-qubit inputs. The function f is said to be balanced if f(x) = 0 for exactly half of

the input n-qubits and f(x) = 1 for the other half of the inputs. With a classical computer

we need a huge amount of time, i.e. 2n−1 + 1 numbers of queries in the worst case to find
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out if the function is constant or balanced. However using Deutsch-Jozsa algorithm we can

find the answer in just one oracle query.

Since we have now n-qubit state |0〉n we have to apply n Hadamard transforms

H(n) = H ⊗1 H ⊗2 · · · ⊗n H , (11)

where ⊗i is the i-th direct product. The action of H(n) on a general n-qubit state |x〉 is

given by

H(n)|x〉 =

n
∏

i=1

√

1

2

1
∑

yi=0

(−1)xiyi|yi〉 , xi ∈ {0, 1} ,

=

√

1

2n

2n−1
∑

y=0

(−1)x.y|y〉 , (12)

where x.y = ⊕n
i=1xi.yi is the scalar product modulo 2.

In Deutsch-Jozsa algorithm Hadamard transform is applied on the state |0〉n ⊗ |1〉

H(n)|0〉n ⊗H|1〉 =
(

√

1

2n

2n−1
∑

x=0

|x〉
)

⊗
√

1

2
(|0〉 − |1〉) . (13)

The unitary transformation Uf on H(n)|0〉 ⊗H|1〉 can be written as

UfH
(n)|0〉n ⊗H|1〉 =

(

√

1

2n

2n−1
∑

x=0

(−1)f(x)|x〉
)

⊗
√

1

2
(|0〉 − |1〉) . (14)

Now applying the Hadamard transform on the n-qubit in eq. (14) we obtain

HUfH
(n)|0〉n ⊗H|1〉 =

(

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)f(x)(−1)x.y|y〉
)

⊗
√

1

2
(|0〉 − |1〉) . (15)

If the function f(x) is constant then

1

2n

2n−1
∑

x=0

(−1)f(x)(−1)x.y = (−1)f(x)
1

2n

2n−1
∑

x=0

(−1)x.y = (−1)f(x)δy,0 . (16)

Using eq. (16) in eq. (15) we obtain

HUfH
(n)|0〉n ⊗H|1〉 =

2n−1
∑

y=0

(−1)f(x)δy,0|y〉 ⊗
√

1

2
(|0〉 − |1〉)

= (−1)f(x)|0〉n ⊗
√

1

2
(|0〉 − |1〉) . (17)
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So for constant function we obtain |0〉n output state with unit probability

|n〈0|HUfH
(n)|0〉n|2 = |(−1)f(x)|2 = 1 . (18)

We have dropped the second qubit H|1〉 while evaluating the probability in eq. (18), because

it remains fixed. On the other hand if the function f(x) is balanced then f(x) = 0 for half,

i.e. 2n−1 values of x and f(x) = 1 for another half, i.e. 2n−1 values of x, which amounts to

vanishing probability of obtaining |0〉n

|n〈0|HUfH
(n)|0〉n|2 = | 1

2n

2n−1
∑

x=0

(−1)f(x)|2 = 0 . (19)

It is clear from the measurement in eq. (18) and eq. (19) that constant and balanced

function can be distinguished by running the quantum black-box once.

C. Bernstein-Vazirani algorithm

This algorithm is just a variation of the above discussed Deutsch-Jozsa algorithm, where

instead of the |0〉n output we get a constant n-bit output a. The problem is the following:

We have a function

fa(x) = a.x , (20)

where we have to find out the n-bit constant a with the help of an algorithm. Replacing

f(x) = a.x in eq. (15) we obtain

HUfH
(n)|0〉n ⊗H|1〉 =

(

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)a.x(−1)x.y|y〉
)

⊗
√

1

2
(|0〉 − |1〉) . (21)

However we note that

1

2n

2n−1
∑

x=0

(−1)a.x(−1)x.y = δy,a . (22)

Using eq. (22) in eq. (21) we obtain

HUfH
(n)|0〉n ⊗H|1〉 =

2n−1
∑

y=0

δy,a|y〉 ⊗
√

1

2
(|0〉 − |1〉) = |a〉 ⊗

√

1

2
(|0〉 − |1〉) . (23)

When we measure the first n-bit we obtain the value of a in just a single quantum query.

In classical computer we get just a single bit output each time. So classical computer would

requires n queries to find the value of a.
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III. FULL DATABASE SEARCH

Let us consider a set D = {a0, a1, · · · , aN−1} containing N number of elements. Assume

that one of the N elements is a marked one, which we have to find out. One of the legitimate

questions in computing is how fast one can find out the marked element or the solution.

If the elements in the set are completely unsorted then the classical computer can find the

marked element in O(N) queries/time. Grover investigated the same problem quantum

mechanically and found that it is possible to devise a quantum algorithm, now known as the

Grover algorithm, which can find the marked element in O(
√
N) queries. This is a quadratic

speed up in time over the classical algorithm. Bellow we discuss the famous Grover algorithm

which has been extensively investigated in the literature.

A. Grover algorithm

A database which we encounter in practice may have a single target item/element or

sometimes it may have multiple target elements. Grover search can efficiently search both

types of database, however the database with multiple target elements are faster to search

than with single target element as can be understood from the following two sub-subsections.

1. Single target Grover algorithm

We associate theN elements of the set D with the basis vectors of aN -dimensional Hilbert

space H spanned by orthonormal basis vectors {|ai〉|〈ai|aj〉 = δij , i = 0, 1, · · · , N − 1}. Now
consider an initial unit vector |Θ〉, which can be written in terms of the basis vectors as

|Θ〉 =
N−1
∑

i=0

cosαi|ai〉 , (24)

where the direction cosines cos(αi)s satisfy
∑N−1

i=0 cos2 αi = 1. To start with an equal

probability for all the elements we assume the direction cosines to be same in all directions,

i.e., αi = π/2− θ, which simplifies the initial unit vector (24) as

|Θ〉 =
N−1
∑

i=0

sin θ|ai〉 =
N−1
∑

i=0

√

1

N
|ai〉 , (25)
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One of the basis vectors let |aT 〉 be assigned to the target element, which has a probability

PT = |〈aT |Θ〉|2 = sin2 θ =
1

N
, (26)

of obtaining it if measured in the state |Θ〉. In order to increase the probability of getting

the marked state |aT 〉 Grover exploited an unitary transformation G, which we call Grover

iteration:

G = −IΘIT , (27)

where the two reflection operators IT and IΘ are given as

IT = I− 2|aT 〉〈aT | , (28)

IΘ = I− 2|Θ〉〈Θ| . (29)

To understand the action of both the reflection operators let us consider a general vector

|ψ〉 =
N−1
∑

i=0

ci|ai〉 , (30)

where cis are the constant coefficients. IT only reflects the |aT 〉 component and keeps the

other components unchanged as can be seen from the expression

IT |ψ〉 = −cT |aT 〉+
N−1
∑

i=0,i 6=T

ci|ai〉 . (31)

For the particular case of the state associated with the marked element |aT 〉 it simply

becomes IT |aT 〉 = −|aT 〉. On the other hand −IΘ inverts the coefficients ci of the vector

|ψ〉 about the double average of their coefficients as

− IΘ|ψ〉 =
N−1
∑

i=0

(2c̄− ci) |ai〉 , (32)

where c̄ is the average of all the coefficients given by c̄ = 1
N

∑N−1
i=0 ci. One Grover iteration

G acts on a general vector |ψ〉 as

G|ψ〉 = −IΘIT |ψ〉 = (2c̃+ cT ) |aT 〉+
N−1
∑

i=0,i 6=T

(2c̃− ci) |ai〉 , (33)
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where now the average being c̃ = 1
N

(

−cT +
∑N−1

i=0,i 6=T ci

)

. For our purpose it is helpful to

consider the action of the Grover iteration G on the initial state |Θ〉 in eq. (25), which

simply gives

G|Θ〉 = sin (2 + 1) θ|aT 〉+
N−1
∑

i=0,i 6=T

cos (2 + 1) θ tan θ|ai〉 . (34)

Applying the same Grover iteration j times on the initial state we obtain

Gj|Θ〉 = sin (2j + 1) θ|aT 〉+
N−1
∑

i=0,i 6=T

cos (2j + 1) θ tan θ|ai〉 . (35)

Assuming that now the initial state is aligned with the target vector, i.e. Gj|Θ〉 = |aT 〉 after
j successive applications of the Grover iteration we obtain the optimal number of quantum

query to the oracle necessary for large database

j = lim
N→∞

(

π

4

√
N − 1

2

)

=
π

4

√
N . (36)

This is clearly a quadratic speed up over the classical algorithm to search for a marked

element on a set of N unsorted elements. Of course j estimated under the above assumption

may make it a non-integer in general. In that case, we have to take the integer closest to

the number π
4

√
N .

To easily understand the action of Gj on the initial state vector |Θ〉 let us consider the

eigenvalue problem

Gj |φ〉 = Ej |φ〉 . (37)

On the plane defined by the vectors |aT 〉 and |Θ〉 eq. (37) has the following two eigenvectors

|φ〉± =
1√
2
|aT 〉 ±

i√
2

N−1
∑

i=0,i 6=T

tan θ|ai〉 , (38)

with their corresponding eigenvalues Ej
± = e±i2θj . In terms of these eigenvectors the initial

state vector can be expressed as

|Θ〉 = −
√
2i
(

eiθ|φ〉+ − e−iθ|φ〉−
)

. (39)

Acting Gj on the expression of eq. (39) we immediately obtain

Gj |Θ〉 = −
√
2i
(

ei(2j+1)θ|φ〉+ − e−i(2j+1)θ|φ〉−
)

, (40)

which once written in terms of the original basis |ai〉 reduces to the expression of eq. (35).
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a. Example with single target: Let us consider an example, where there are N = 4

elements and one of the element is marked. We need to find out the marked element among

the four elements. Naively we may think that classically we can find the marked element in

one search, two searches, three searches or in the worst case in four searches. On average

we need 1+2+3+4
4

= 21
2
searches to find the target element. However, since we know there is

a marked element it is not necessary to perform a forth search. Therefore, on average we

only need to perform 1+2+3+3
4

= 21
4
number of classical searches to find the target element.

However quantum mechanically, using Grover algorithm, we can find the marked element

in just a single query. In this case sin θ =
√

1
N

= 1
2
. So, the angle between the initial state

and the state perpendicular to the target state is θ = 30◦. One query to the black box will

further rotate the initial state 2θ = 60◦ towards the target element. Now the total angle

between the initial state and the sate perpendicular to the target state is 2θ+θ = 90◦, which

means the initial state is now completely aligned with the target state.

We can also exploit eq. (31) and eq. (32) to understand the the above example in

a alternative manner. Note that IT just inverts the sign of the amplitude of the target

element and IΘ inverts the amplitudes of the basis vectors about the double average. For

the database of N = 4 elements each basis element in the initial state |Θ〉 has an amplitude

ci =
1√
N

= 1
2
. After the action of IT the amplitude of only the target element changes from

cT = 1
2
to −cT = −1

2
. The average of the four amplitudes then reduces from c̄ = 1

2
to c̃ = 1

4
.

Then IΘ inverts the amplitude about the double average, which can be seen from state in

eq. (33). The amplitude of the target element after one Grover iteration is thus amplified

to 2c̃+ cT = 1 and the amplitudes of all the other basis elements vanish 2c̃− ci = 0.

2. Multiple targets Grover algorithm

In the above analysis there is just a single marked element in the set. We now consider

the case when there areM number of marked elements in the set D of N number of elements.

We discuss this algorithm with the help of a generalized method known as the amplitude

amplification, which was studied by Brassard et al [3]. Let us first divide the Hilbert space H
into two mutually orthogonal sub-spaces HT and HnT . HT is the target space of dimensions

M , where the basis elements are associated with M target elements and HnT is the Hilbert

space of non-target elements of dimensions N −M , where the basis vectors are associated
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with all the N −M non-target elements. An unit vector in the target space can be written

in terms of the basis elements of the target space as

|AT 〉 =
M
∑

i=1

ãi|ai〉 ,
M
∑

i=1

|ãi|2 = 1 , (41)

where we have rearranged the the basis vectors such that first M basis vectors correspond

to the target space and rest belongs to the non-target space. Similarly, an unit vector in the

non-target space can be written as

|AnT 〉 =
N
∑

i=M+1

āi|ai〉 ,
N
∑

i=M+1

|āi|2 = 1 . (42)

We again start with the same initial vector (25) but in terms of the unit basis vectors (41)

with ãi =
√

1
M

and (42) with āi =
√

1
N−M

|Θ̃〉 =
√

M

N
|AT 〉+

√

N −M

N
|AnT 〉 , (43)

The probability of obtaining a target element if measured in the initial state (43) would be

equal to the probability obtaining the basis state (41) in the initial state (43) as

P̃T = |〈AT |Θ̃〉|2 = sin2 θ̃ =
M

N
(44)

Here we remark that we chose specific coefficients in the basis vectors (41) and (42) so that

the initial state becomes a state with same direction cosines in all directions. However we

could have kept the coefficients arbitary.

The probability of getting the marked state |AT 〉 can be increased by the application

Grover iteration G̃, which is defines as

G̃ = −IΘ̃IAT
, (45)

where the two reflection operators IAT
and IΘ̃ are given as

IAT
= I− 2|AT 〉〈AT | , (46)

IΘ̃ = I− 2|Θ̃〉〈Θ̃| . (47)

To understand the action of G̃j on the initial state vector |Θ̃〉 let us consider the eigenvalue

problem

G̃j |φ〉 = Ẽj |φ〉 . (48)
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In terms of the unit vectors (41) and (42) the eigenvalue equation (48) has the following two

eigenvectors

|φ̃〉± =
1√
2
|AT 〉 ±

i√
2
|AnT 〉 , (49)

with their corresponding eigenvalues Ẽj
± = e±i2θ̃j . In terms of these eigenvectors the initial

state vector can be expressed as

|Θ̃〉 = −
√
2i
(

eiθ̃|φ̃〉+ − e−iθ̃|φ̃〉−
)

. (50)

Acting G̃j on the expression of eq. (50) we obtain

G̃j|Θ〉 = −
√
2i
(

ei(2j+1)θ̃|φ̃〉+ − e−i(2j+1)θ̃|φ̃〉−
)

, (51)

which can be rewritten in terms of the basis vectors |AT 〉 and |AnT 〉 as

G̃j |Θ〉 = sin (2j + 1) θ̃|AT 〉+ cos (2j + 1) θ̃|AnT 〉 . (52)

After j successive application of the Grover iteration the initial state is aligned with the

target unit vector, i.e. G̃j |Θ̃〉 = |AT 〉. For a large database of N elements with M target

items the optimal number of quantum queries necessary to find a target item becomes

j = lim
N→∞

(

π

4

√

N

M
− 1

2

)

=
π

4

√

N

M
. (53)

a. Example with multiple targets: Let us consider an example which is similar to the

example of four elements in a database discussed in IIIA 1 a, however this time there are

multiple target elements instead of just one. For our purpose only the ratio of the number of

elements N in the database with the number of target elements M matters. We consider the

ratio to be N
M

= 4. The angle between the orthogonal to unit vector |AT 〉 in the target state

and the initial state |Θ〉 can be obtained from eq. (44) as θ̃ = 30◦. One Grover iteration

rotates the initial state |Θ〉 towards the target state |AT 〉 by an amount 2θ̃ = 60◦. After one

Grover search the angle between the orthogonal to the target state and the initial state is

2θ̃ + θ̃ = 90◦, which means the initial state is now completely aligned with the unit target

state.
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3. Generic unitary transformation for Grover search

In the discussion of Grover search algorithm in subsection IIIA 1 we have implicitly

exploited the Walsh-Hadamard(WH) transformation H(n) as an unitary transformation.

Note that the initial state in eq. (25), which is an equal weighted superposition of all basis

states can be obtained from the state |0〉n by the application of WH transformation

|ΘH(n)〉 = |Θ〉 = H(n)|0〉n =

√

1

N

N−1
∑

i=0

|ai〉 . (54)

Then the reflection operator IΘ in eq. (29) can be obtained as

IΘ = Hn (I− 2|0〉nn〈0|) (Hn)−1 = I− 2|Θ〉〈Θ| . (55)

Instead of using H(n) we can also choose any generic unitary operator U [20] which can act

on the Hilbert space H of N basis states describing N = 2n elements of the Grover search.

The initial state we now consider for our purpose is given by

|ΘU〉 = U |0〉n . (56)

Then the reflection operator corresponding to the state in eq. (56) can be written as

IΘU
= U (I− 2|0〉nn〈0|)U−1 = I− 2|ΘU〉〈ΘU | . (57)

As usual |aT 〉 is the target element which we have to find out from the N elements and IT

is the corresponding reflection operator. The amplitude of the target element |aT 〉 in the

initial state |ΘU〉 is

ATΘU
= sin θU = 〈aT |ΘU〉 = 〈aT |U |0〉n . (58)

When the probability of getting the target element in the initial state is low then eq. (58)

can be approximated as

ATΘU
= lim

θU→0
sin θU = θU . (59)

We can now construct the Grover iteration as

GU = −IΘU
IT . (60)
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One Grover iteration moves the initial state by an angle 2θU towards the target element.

Assuming that after jU number of iterations the initial state will align with the target

element then we obtain

jU = lim
ATΘU→0

(

π

4

1

ATΘU

− 1

2

)

=
π

4

1

ATΘU

(61)

When the unitary operator U = H(n) the amplitude of the target element in the initial state

becomes ATΘU
=
√

1
N
, then eq. (61) reduces to the standard result in eq. (36).

Here we remark that when there is no apparent knowledge of the whereabouts of the

target element in a database then the WH transformation is the most suitable unitary

transformation because it produces an initial state which is an equal superposition of all the

basis states. For many target elements the average amplitude of the target elements in the

initial state is largest and the amplitude of the target elements are known.

However there can have some problems where we may have more knowledge about the

target element/elements or there are some order/structure in the database. The generic uni-

tary transformation then becomes important, because one can choose the unitary operator

U accordingly so as to get faster search. The Grover search is then a search of a structured

database as opposed to the unstructured search discussed in sections IIIA 1 and IIIA 2.

a. Example of a structured Grover search: Here we consider an example of a structured

Grover search which is discussed in refs. [21, 22]. Let us consider a function F (ai, bi) which

takes two n-bits (ai, bi), i = 1, 2, · · · , N as inputs and the output is zero for all (ai, bi)s

except at (aT , bT ), where F (aT , bT ) = 1. This is an example of a database of N2 elements

and one of then (aT , bT ) is the target element. Classical computer needs O(N2) time in the

worst case to find the target element. However Grover algorithm needs O(N) oracle calls to

find out the target element with close to one probability.

The number of oracle calls can further be reduced if we know there is some structure

which can help to minimize the time of search. Let us assume that there is another function

G(ai) which takes one n-bits ai, i = 1, 2, · · · , N as input and the output is zero for all ais

except for M ≤ N ais, where G(ai) = 1 and aT also belongs to those M ai, i.e. G(aT ) = 1.

The case M = N is not interesting because G(ai) = 1 for all the inputs and therefore

does not reduce the search time for the target element (aT , bT ). For the case M = 1 we may

first use G(ai) to find aT in π
4

√
N number of Grover iterations. Then we can use F (aT , bi)

to find aT , bT in π
4

√
N number of Grover iterations, in total π

2

√
N iterations are needed.
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Let us now consider the case 1 < M < N , and assume thatM is known. The result is also

valid for M = 1 and M = N cases. Now the classical computer can find the target element

in O(MN) repetitions. The quantum algorithm can find the target element in O(
√
MN)

oracle calls which is a quadratic speed up in time.

The function F (ai, bi) acts on a tensor product space H12 = H1 ⊗H2 of dimensions N2

and basis elements are |ai〉 ⊗ |bi〉, where |ai〉 are the basis elements of H1 and |bi〉 are the

basis elements of H2. Both of the Hilbert spaces H1 and H2 have dimensions N . The initial

state we consider is given by

|Θ12〉 = |Θ1〉 ⊗ |Θ2〉 , (62)

where the initial state on both the Hilbert spaces are given by

|Θ1〉 =

(

√

1

N

N
∑

i=1

|ai〉
)

⊗ I , (63)

|Θ2〉 = I⊗
(

√

1

N

N
∑

i=1

|bi〉
)

. (64)

With all the basis states corresponding to G(ai) = 1 we prepare another state by equal

superposition

|Θ0〉 =





√

1

M

∑

G(ai)=1

|ai〉



⊗ I . (65)

We can now construct the reflection operators corresponding to |Θ1〉, |Θ2〉 and |Θ〉 as

IΘ1 = (I− 2|Θ1〉〈Θ1|)⊗ I , (66)

IΘ2 = I⊗ (I− 2|Θ2〉〈Θ2|) , (67)

IΘ0 = (I− 2|Θ0〉〈Θ0|)⊗ I . (68)

The other two reflection operators we need are

IT1 =



I− 2
∑

G(ai)=1

|ai〉〈ai|



⊗ I , (69)

IT12 = I⊗ I− 2|aT 〉〈aT | ⊗ |bT 〉〈bT | . (70)

Firstly, the Grover iteration

G1 = −IΘ1IT1 , (71)
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is performed j1 = π
4

√

N
M

times on the initial state |Θ12〉, which only transforms the initial

state vector |Θ1〉 to the state |Θ0〉

G1
j1|Θ12〉 = G1

j1 |Θ1〉 ⊗ |Θ2〉 ∼= |Θ0〉 ⊗ |Θ2〉 , (72)

We now define a reflection operator IT0 as

IT0 = Gj12
12

†IT12Gj12
12 , (73)

where

G12 = −IΘ2IT12 , (74)

Note that after j12 =
π
4

√
N iterations by G12 we can obtain the target state in the following

way

G12
j12|ai〉 ⊗ |Θ2〉 = |ai〉 ⊗ |Θ2〉 , for ai 6= aK , (75)

= |aT 〉 ⊗ |bT 〉 , for ai = aK . (76)

The reflection operator IT0 defined in eq. (73) will act on the M dimensional Hilbert space

with basis elements ai for which G(ai) = 1. It reflects the target element aT about a plane

perpendicular to |aT 〉. In particular its action is given by

IT0 |ai〉 ⊗ |Θ2〉 = |ai〉 ⊗ |Θ2〉 , for ai 6= aK , (77)

= −|aT 〉 ⊗ |Θ2〉 , for ai = aK . (78)

We can now define a Grover iteration

G0 = −IΘ0IT0 , (79)

which will find a target element |aT 〉 from the database of M elements for which G(ai) = 1.

Applying G0 on the state of eq. (72) j = π
4

√
M times we obtain

Gj
0G1

j1|Θ12〉 ∼= Gj
0|Θ0〉 ⊗ |Θ2〉 ∼= |aT 〉 ⊗ |Θ2〉 , (80)

Finally, iterating the state in eq. (80) j12 times by G12 we obtain

Gj12
12 Gj

0G1
j1|Θ12〉 ∼= Gj12

12 |aT 〉 ⊗ |Θ2〉 ∼= |aT 〉 ⊗ |bT 〉 . (81)
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From the expansion

Gj12
12 Gj

0G1
j1 = Gj12

12

(

−IΘ0Gj12
12

†IT12Gj12
12

)j

G1
j1 . (82)

we obtain the total oracle queries jT in large database N and large M limit

jT = lim
N,M→∞

(j12 + 2j12j + j1) =
π2

8

√
NM . (83)

This is quadratically faster than the classical time of O(NM) and even faster than the

quantum unstructured Grover search for M < N which takes time of O(N).

4. Proof of optimization of Grover algorithm

Grover search is the fastest algorithm for the problem of finding the target element from

an unstructured database. No other algorithm can search for the target element shorter

than O(
√
N) oracle queries.

Consider an initial state |ψ0〉 which evolves to a state |ψai
J 〉 = Uai |ψ0〉 after J oracle

queries. We assume that after J number of queries the evolved state is very very close to

the target state |ai〉

〈ψai
J |ai〉 ≈ 1 , for i = 1, 2, · · · , N . (84)

The same initial state |ψ0〉 evolves to a state |ψJ〉 = U |ψ0〉 after J empty oracle queries.

Question is how far the state |ψai
J 〉 has has drifted from |ψJ〉 can be qualified in terms of the

lower bound as

N
∑

i=1

| |ψai
J 〉 − |ψJ〉 |2≥ 2N − 2

√
N . (85)

In Grover’s algorithm |ψ0〉 = |Θ〉 is the state with equal superposition of all the basis

elements. The unitary operator Uai is the Grover iteration applied J times

Uai = (−IΘIai)
J = [−(I− 2|Θ〉〈Θ|)(I− 2|ai〉〈ai|)]J . (86)

Then

|ψai
J 〉 = Uai |ψ0〉 = (−IΘIai)

J |Θ〉 ≈ |ai〉 . (87)
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The empty oracle operator U is given by

U = (−IΘI)
J = [−(I− 2|Θ〉〈Θ|)I]J , (88)

where the oracle operator is just the identity operator. U does not change the initial state

at all

|ψJ〉 = U |ψ0〉 = U |Θ〉 = |Θ〉 . (89)

Substituting the the results from eq. (87) and eq. (89) in the left hand side of eq. (85) we

obtain
∑N

i=1 | |ψai
J 〉 − |ψJ〉 |2= 2N − 2

√
N , which saturates the inequality.

Given the inequality in eq. (85) in terms of the the number of elements in a database

N we now need another inequality which will provide a bound in terms of the number of

iterations J . This inequality is given in terms of the lower bound as

N
∑

i=1

| |ψai
J 〉 − |ψJ〉 |2≤ 4J2 . (90)

From eq. (85) and eq. (90) we obtain in large N limit

J ≥
√

N

2
= O(

√
N) . (91)

In this proof we have assumed the probability of obtaining a target state to be unity. In

general by considering probability close to unity one can refine the lower bound on the

number of searches J in eq. (91). However upto some small factor the query time is

O(
√
N), which can not be reduced by any algorithm.

B. Adiabatic evolution for database search

In recent years there have been several attempts to realize Grover search algorithm by

adiabatic evolution [23–25] of a suitably chosen Hamiltonian. In this subsection we state

one such work which shows that adiabatic approximation can be utilized to find a target

item in O(
√
N) time which is equivalent to what Grover algorithm needs.

According to the adiabatic theorem if a Hamiltonian changes slowly with time then the

system initially in a ground state will always remain in the instantaneous ground state of

the system. We can exploit it by starting from a Hamiltonian whose states are known and
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then adiabatically evolving the Hamiltonian to a Hamiltonian whose ground state would be

the desired state we are looking for, i.e. the target state.

Let us start with the Schrödinger equation of a time dependent system with Hamiltonian

H(t)

i~
∂

∂t
ψA(t) = H(t)ψA(t) , (92)

where ψA(t) is a state of the system. The eigenvalue equation for this system is given by

H(t)ψn(t) = En(t)ψn(t) , (93)

where En(t), n = 1, 2, · · · are the time dependent eigenvalues corresponding to the time

dependent eigenstates ψn(t). Note that if the Hamiltonian is time independent then the

eigenvalues are also time independent and the eigenstates only acquire phase factor when it

evolves. After a long time of evolution the system initially in ψ1(t) state will be found in

ψ2(t) state with amplitude ǫ

ǫ ∼| 〈ψ2(t)|dH(t)
dt

|ψ1(t)〉
(E2(t)−E1(t))2

|≪ 1 . (94)

It is useful to consider even more strict condition to ensure that the system remains in its

instantaneous ground state. Is is assumed that the maximum of the numerator and the

minimum of the denominator in the interval T in eq. (94) satisfy

max0≤t≤T | 〈ψ2(t)|dH(t)
dt

|ψ1(t)〉 |
min0≤t≤T (E2(t)−E1(t))2

≤ ǫ . (95)

One can exploit the condition (95) to obtain a lower bound on time T to evolve the state

from ψ1(0) to ψ1(T ).

As an explicit example consider the Hamiltonian

HΘ = I− |Θ〉〈Θ| , (96)

whose ground state |Θ〉 is the uniform superposition of all the basis elements in the Hilbert

space of dimension N defined in eq. (25). It is assumed that the system is initially in the

this ground state. Then to evolve the state |Θ〉 to the target state |aT 〉 we have to consider

a Hamiltonian of the form

HT = I− |aT 〉〈aT | , (97)
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whose ground state is the target state |aT 〉. The Hamiltonian which will evolve the state

|Θ〉 to the target state |aT 〉 is given by

H(t) = (1− s(t))HΘ + s(t)HT , (98)

where the parameter s(t) depends on time. Consider a simple liner form s(t) = t
T
, where T

is the time over which the system evolves. The difference between the lowest two eigenvalues

E1(t), E2(t) is given by

E2(t)− E1(t) =
1√
N

√

N − 4(N − 1)s(1− s) . (99)

The difference in eigenvalues is minimum i.e, min0≤t≤T (E2(t) − E1(t))
2 = 1/N at s = 1/2.

The matrix element in the numerator in eq. (95) can be simplified as

〈ψ2(t)|
dH(t)

dt
|ψ1(t)〉 =

ds

dt
〈ψ2(t)|

dH(t)

ds
|ψ1(t)〉 =

1

T
〈ψ2(t)|

dH(t)

ds
|ψ1(t)〉 ∼

1

T
. (100)

Here we have assumed that the matrix element 〈ψ2(t)|dH(t)
ds

|ψ1(t)〉 ∼ 1. Putting the result

of eq. (100) and the minimum eigenvalue difference in eq. (95) we obtain the time required

T ≥ N

ǫ
, (101)

which is equivalent to what a classical computer would take to find the target element.

Since s = t/T does not solve the purpose, we assume that the dependence of s on time t is

governed by the the adiabatic approximation eq. (94), which can be rewritten as

ds

dt
≃ ǫ(E2(t)−E1(t))

2 = ǫ
1

N
(N − 4(N − 1)s(1− s)) , (102)

where again we have assumed 〈ψ2(t)|dH(t)
ds

|ψ1(t)〉 ∼ 1. Integrating eq. (102) we obtain

t =
1

2ǫ

N√
N − 1

(

arctan
√
N − 1(2s− 1) + arctan

√
N − 1

)

. (103)

The evolution time T can be obtained by setting s = 1 in eq. (103)

t =
1

ǫ

N√
N − 1

arctan
√
N − 1 . (104)

When the number of elements in a database is large N ≫ 1 we get the time required to find

the target element from eq. (104) as

T =
π

2ǫ

√
N . (105)
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The is a quadratic speed up apart from a factor of inverse of error probability.

This algorithm by adiabatic evolution can be extended to the cases when there are many

target elements. This time we consider a Hamiltonian of the form

H̃T = I−
∑

target elements

|ai〉〈ai| . (106)

Then the time dependent Hamiltonian under which the initial state |Θ〉 will be evolved is

given by

H̃(t) = (1− s(t))HΘ + s(t)H̃T . (107)

The difference in energy between the ground state and the first excited state is now given

by

E2(t)− E1(t) =
1√
N

√

N − 4(N −M)s(1− s) . (108)

If we consider s = t/T then we obtain

T ≥ N

Mǫ
, (109)

However if the adiabatic change is considered to be local in the parameter s, then the

required evolution time becomes

T =
π

2ǫ

√

N

M
, (110)

which is in agreement with the Grover algorithm with multiple targets.

IV. PARTIAL DATABASE SEARCH

In reality sometimes we do not need a full search of a database rather only a partial

search is enough. For example, suppose we want to look for details of contacts of a specific

surname in a telephone directory. If there are eight different surnames in the telephone

directory then it can be divided into eight blocks each associated with a surname. In terms

of binary the state of an element of the telephone directory with N = 2n entries can be

written as |a1, a2, a3, · · · , an〉. Since there are only eight blocks we can assign first three

binaries a1, a2, a3 to the surnames. Since all the entries in a block share the same surname

the first three binaries of the states in a block will be same.
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a. Some attempts to partial search: The purpose of a partial search instead of a full

Grover search is to achieve a grater speed than the Grover search. However not all partial

searches are always advantageous. Let us consider a naive partial search in which first the

database of N elements is divided into K blocks. Just randomly choose a block and make

a full Grover search which requires π
4

√

N
K

queries. To obtain the target item and the target

block one has to perform full Grover search in K − 1 blocks separately in the worst case,

which requires (K − 1)π
4

√

N
K

queries. One can see that this is K−1√
K

times the full Grover

search. Only for K = 2 the factor K−1√
K

is less than one. For more than two blocks therefore

this naive partial search is not faster than the full Grover search.

Another example which is also inefficient for database search with more than two blocks

is the binary search. In this search the number of blocks should be of the form K = 2k

for some positive number k. First divide the whole database in two blocks and perform a

standard Grover search in any one of the blocks which requires π
4

√

N
2
iterations. If the target

item is not found then take the remaining block and divide that into two sub-blocks and

repeat the previous procedure. We keep on repeating this procedure until we are left with

the last block. The total number of queries is obtained by taking the sum of all the searches

as π
4

√
N
(

∑k
i=1

√

1
2i

)

. Again the factor
∑k

i=1

√

1
2i

is greater than one for K ≥ 4, making

the binary search inefficient compared to the Grover search for more than two blocks.

b. Grover and Radhakrishnan’s simple partial search: The fact that the partial search

can be advantageous over the full Grover search can be understood from a simple algorithm

discussed by Grover and Radhakrishnan. Let us divide the database into K blocks and

perform a full Grover search on elements of K − 1 randomly chosen blocks which requires

π
4

√
N
(
√

K−1
K

)

queries. Note that the factor
√

K−1
K

is always less than one which suggests

that this partial search algorithm is always more efficient than the Grover search algorithm.

A. Single target GRK partial search algorithm

Partial search algorithm is a combination of both global search and simultaneous local

search in each block. Grover and Radhakrishnan first devised a scheme for a partial database

search which was latter optimized by Korepin. The database ofN elements which are divided

into K blocks are first subjected to a global Grover search G. After j1 Grover iterations the
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initial state |Θ〉 defined in eq. (25) becomes

Gj1|Θ〉 = sin (2j1 + 1) θ|aT 〉+
N−1
∑

i=0,i 6=T

cos (2j1 + 1) θ tan θ|ai〉 . (111)

Then to perform the local iterations let us consider the initial state of α block as

|Θα〉 =
N/K elements

∑

αblock

√

K

N
|ai〉 , α = 1, 2, · · · , K , (112)

which is obtained by equal superposition of all the elements in the block. The target element

|aT 〉 should belong to one block which we call target block. If we measure the probability

of obtaining the target element in the initial state of a block then for all initial states of

individual blocks the probability will vanish except for the initial state |ΘT 〉 of the target

block the finite probability is given by

PT = |〈aT |ΘT 〉|2 = sin2 θ1 =
K

N
. (113)

The local iteration in each block Gα can be written as

Gα = −IΘα
IT , α = 1, 2, · · · , K , (114)

where the local reflections IΘα
are given by

IΘα
= I− 2|Θα〉〈Θα| , α = 1, 2, · · · , K . (115)

Taking a direct sum of all the local iterations we obtain the local Grover iteration GL

GL = ⊕K
α=1Gα = −

(

⊕K
α=1IΘα

)

IT . (116)

Note that except from GT , which act on the target block component, all the other local

iterations Gα act trivially on Gj1 |Θ〉. The action of Gα on the respective initial states are

given by

Gα|Θα〉 = −IΘα
IT |Θα〉 = −IΘα

|Θα〉 = |Θα〉 , α 6= T, α = 1, 2, · · · , K . (117)

To know how GT acts on the target block state let us consider the eigenvalue equation

GT |φ1〉 = E|φ1〉 , (118)
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which has the following two eigenvalues

|φ1〉± =
1√
2
|aT 〉 ±

i√
2

target block
∑

i 6=T

tan θ1|ai〉 , (119)

with their corresponding eigenvalues E± = e±i2θ1 . Let us now write the state Gj1 |Θ〉 in

eq. (111) in terms of the eigenvectors |φ1〉± and the initial states of the non-target blocks

|Θα〉, α 6= T as

Gj1|Θ〉 = 1√
2

(

sin (2j1 + 1) θ − i
cos (2j1 + 1) θ1 tan θ

tan θ1

)

|φ1〉+

+
1√
2

(

sin (2j1 + 1) θ + i
cos (2j1 + 1) θ1 tan θ

tan θ1

)

|φ1〉−

+

K
∑

α=1,α6=T

cos (2j1 + 1) θ tan θ

sin θ1
|Θα〉 . (120)

After j2 operations with the local Grover operator GL on the expression of eq. (120) we

immediately obtain

GLj2Gj1|Θ〉 = ei2j2θ1√
2

(

sin (2j1 + 1) θ − i
cos (2j1 + 1) θ1 tan θ

tan θ1

)

|φ1〉+

+
e−i2j2θ1

√
2

(

sin (2j1 + 1) θ + i
cos (2j1 + 1) θ1 tan θ

tan θ1

)

|φ1〉−

+
K
∑

α=1,α6=T

cos (2j1 + 1) θ tan θ

sin θ1
|Θα〉 . (121)

It is useful to write the above state GLj2Gj1|Θ〉 in terms of the basis vectors |ai〉 as

GLj2Gj1 |Θ〉 = CT |aT 〉+ CTB

target block
∑

i 6=T

tan θ1|ai〉

+ CNTB

non-target blocks
∑

|ai〉 , (122)

where the constant coefficients are given by

CT = sin (2j1 + 1) θ cos 2j2θ1 +
cos (2j1 + 1) θ tan θ

tan θ1
sin 2j2θ1 , (123)

CTB = − sin (2j1 + 1) θ sin 2j2θ1 +
cos (2j1 + 1) θ tan θ

tan θ1
cos 2j2θ1 , (124)

CNTB = cos (2j1 + 1) θ tan θ . (125)
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To eliminate the components associated with the non-target blocks we make a final global

Grover iteration to the vector GLj2Gj1|Θ〉 in eq. (122). For convenience we perform a

transformation with −ITIΘ instead of the Grover iteration G however in large blocks limit

both the results are equivalent. There is also other operator such as IΘ which has been

used by Grover and Radhakrishnan to perform the final operation. However in this case

the amplitude of the target element becomes negative. The state after final transformation

becomes

|F〉 = (−ITIΘ)GLj2Gj1|Θ〉 =
(

CT − 2C̄
)

|aT 〉+
(

2C̄ − CTB tan θ1
)

target block
∑

i 6=T

|ai〉

+
(

2C̄ − CNTB

)

non-target blocks
∑

|ai〉 , (126)

where the average amplitude is given by

C̄ =
1

N

(

CT + CTB cot θ1 + (K − 1)
CNTB

sin2 θ1

)

. (127)

To evaluate eq. (126) we have used the formula of eq. (32) for the action of −IΘ on a

generic state. Since the projection of the state (−ITIΘ)GLj2Gj1 |Θ〉 on non-target blocks

should vanish we obtain from eq. (126)

CNTB =
2

N

(

CT + CTB cot θ1 + (K − 1)
CNTB

sin2 θ1

)

. (128)

Substituting the values of CT , CTB and CNTB in eq. (128) and simplifying we obtain a

condition

− 1

sin θ cos θ

(

1

2
− sin2 θ

sin2 θ1

)

cos (2j1 + 1) θ

= sin (2j1 + 1) θ cos 2j2θ1 +
tan θ

tan θ1
cos (2j1 + 1) θ sin 2j2θ1

− cot θ1 sin (2j1 + 1) θ sin 2j2θ1 +
tan θ

tan2 θ1
cos (2j1 + 1) θ cos 2j2θ1 , (129)

which ensures that the non-target elements vanish from the final state. Thus we obtain the

final state |FT 〉, which is aligned with the target block

|FT 〉 = sinω|aT 〉+ cosω

target block
∑

i 6=T

tan θ1|ai〉

= (CT − CNTB) |aT 〉+ (CNTB cot θ1 − CTB)

target block
∑

i 6=T

tan θ1|ai〉 . (130)
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The block angle ω which only depends on the number of blocks K of a database is given by

tanω =
sin (2j1 + 1) θ cos 2j2θ1 + cos (2j1 + 1) θ tan θ

(

sin 2j2θ1
tan θ1

− 1
)

sin (2j1 + 1) θ sin 2j2θ1 +
cos(2j1+1)θ tan θ

tan θ1
(1− cos 2j2θ1)

. (131)

1. Large database limit

Let us now consider the large database limit N → ∞. We also consider the blocks of the

database to be very large N
K

→ ∞ so that the number of blocks K in a database remains

finite. In these limits the two rotation angles in eq. (26) and eq. (113) respectively reduce

to

lim
θ→0

sin θ → θ →
√

1

N
, lim

θ1→0
sin θ1 → θ1 →

√

K

N
. (132)

Following ref. [2] we write the number of iterations j1 and j2 in terms of two new parameters

η and β as

j1 =

(

π

4
− η√

K

)√
N , j2 =

β√
K

√
N . (133)

Putting the expression for j1 and j2 of eq. (133) in the condition for cancellation of ampli-

tudes eq. (129) of non-target blocks and taking the large database limit we obtain

−
√
N

(

1

2
− 1

K

)

sin
2η√
K

= cos
2η√
K

cos 2β +
1√
K

sin
2η√
K

sin 2β

−
√

N

K
cos

2η√
K

sin 2β +

√
N

K
sin

2η√
K

cos 2β . (134)

Notice that the left hand side of the above equation is proportional to
√
N , which is a

large number in our case. On the right hand side the last two terms are proportional to
√
N , however the first two terms are very small compared to the last two terms. Neglecting

these small two terms a simple form for the cancellation of the amplitude corresponding to

non-target blocks is obtained as

tan
2η√
K

=
2
√
K sin 2β

K − 4 sin2 β
. (135)
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The block angle in eq. (131) can be simplified using eq. (135) as

lim
N→∞

tanω =
1

2
cot β +

(

2

K
− 1

2

)

tanβ . (136)

Exploiting the physical constraints we can calculate the bounds of the two parameters η and

β. Since the number of queries for the global iteration as well as the number of queries for

the local iteration given in eq. (133) should be non-negative j1, j2 ≥ 0 we obtain

η ≤ π

4

√
K , β ≥ 0 . (137)

The partial search algorithm have to have less number of total iterations j1+j2+1 compared

to the Grover’s full search algorithm

j1 + j2 + 1 =

(

π

4
+
β − η√
K

)√
N ≤ π

4

√
N , (138)

which implies

β ≤ η (139)

From eq. (137) and eq. (139) we obtain

0 ≤ β ≤ η ≤ π

4

√
K . (140)

The expression for the parameter η for the global iteration can be readily obtained from eq.

(135) as

η =

√
K

2
arctan

[

2
√
K sin 2β

K − 4 sin2 β

]

, (141)

where the arctan(x) is restricted to the principal branch only because of the constraint in

eq. (137). The bound for the parameter β then becomes

0 ≤ β ≤
√
K

2
arctan

[

2
√
K sin 2β

K − 4 sin2 β

]

≤ π

4

√
K . (142)

2. Optimization of partial search

As mentioned in the introduction the partial search of Grover and Radhakrishnan has

been optimized by Korepin and the optimized version of the partial search is known as the
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GRK partial search. In large database limit N → ∞ the total number of queries to the

quantum oracle by a partial search algorithm is given by

J(K) = lim
N→∞

(j1 + j2 + 1) =

(

π

4
+
β − η√
K

)√
N . (143)

To obtain least number of queries J(K) we have to minimize

Λ(β) = β − η(β) . (144)

Note that the partial search will be more efficient than the full global search if the parameter

Λ(β) defined above is negative. Let us assume that the function Λ(β) has a minima at some

point and the first derivative with respect to β vanishes

d

dβ
Λ(β) =

16(K − 1) sin4 β − 4K2 sin2 β +K2

16(K − 1) sin4 β − 8K sin2 β −K2
= 0 . (145)

The two solutions of eq. (145) are given by

sin2 β =











K
4(K−1)

,

K
4
, for K ≤ 4 .

(146)

The second derivative of Λ(β) is given by

d2

dβ2
Λ(β) =

16K sin 2β(K − 1)(K − 2) cos2 2β
(

16(K − 1) sin4 β − 8K sin2 β −K2
)2

+
4K sin 2β [16(K − 1) cos 2β + (K − 2)2(K + 2)]

(

16(K − 1) sin4 β − 8K sin2 β −K2
)2 . (147)

Note that for the number of blocks K = 2, 3 and 4 we have to consider the two solutions

in eq. (146), where as for K ≥ 5 only one solution sin2 β = K
4(K−1)

is valid.

For K = 2 we notice from eq. (146) that the two solutions coincide. In this case

sin2 β = K
4(K−1)

= K
4

= 1
2

=⇒ β = π
4
and η = π

2
√
2
, which correspond to j1 = 0 and

j2 = π
4
√
2

√
N . For K = 3 and 4 the global minimum is at sin2 β = K

4(K−1)
. Therefore for

K ≥ 2 the global minimum is achieved for

β = arcsin

(
√

K

4(K − 1)

)

, (148)

η =

√
K

2
arctan

(
√
3K − 4

K − 2

)

. (149)
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B. Multiple targets GRK partial search algorithm

In the previous section we considered only one target element and therefore partial search

was to find out the single target blocks. However there may have several target elements

and several target blocks. Here we provide a generalization of the partial search to find one

of the target blocks. Let us assume that we have a database of N elements with K blocks.

Blocks with target elements are called target blocks and rest of the blocks without target

elements are called non-target blocks. There are B = N
M

numbers of elements in each block.

There are KT target blocks and each target block has BT number of target elements. So in

total there are M = KTBT target elements.

The initial state we consider here is |Θ̃〉 of eq. (43) with equal superposition of all the

basis states. Iterating j1 times with the global Grover operator G̃ we obtain from eq. (52)

G̃j1 |Θ̃〉 = sin (2j1 + 1) θ̃|AT 〉+ cos (2j1 + 1) θ̃|AnT 〉 , (150)

where angle between the initial state |Θ̃〉 and the normal to the unite target state |AT 〉 is

given by

sin2 θ̃ =
M

N
=
KTBT

N
(151)

Now we have to consider the local Grover iteration in each block for which we define the

local iteration in each block Gα as

G̃α = −IΘ̃α
IT α , α = 1, 2, · · · , K , (152)

The local reflections IΘ̃α
and IT α are given by

IΘ̃α
= I− 2|Θ̃α〉〈Θ̃α| , (153)

IT α = I− 2|AT α〉〈AT α| , (154)

where

|Θ̃α〉 = sin θ̃1|AT α〉+ cos θ̃1|AnTα〉 , α = 1, 2, · · · , K , (155)

|ATα〉 =
√

1

BT

target elements
∑

αblock

|ai〉 , α = 1, 2, · · · , K . (156)
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We also define

|AnT α〉 =
√

1

B −BT

non-target elements
∑

αblock

|ai〉 , α = 1, 2, · · · , K . (157)

Note that for blocks which do not have target elements IT α simply becomes the identity

operator. The angle θ̃1 which measures the probability of obtaining the target unit state

within a target block is given by

sin θ̃1 =

√

BT

B
. (158)

Taking a direct sum of all the local iterations we obtain the local Grover iteration G̃L

G̃L = ⊕K
α=1G̃α . (159)

Note that except from those G̃αs, which act on the target blocks, all the other local iterations

G̃α act trivially on G̃j1|Θ̃〉.
Without loss of generality we assume that first KT blocks are target blocks and the rest

K − KT are non-target blocks. Then the action of G̃α on the respective initial states are

given by

G̃α|Θ̃α〉 = −IΘ̃α
IT α|Θ̃α〉 = −IΘ̃α

|Θ̃α〉 = |Θ̃α〉 , α = KT + 1, KT + 2, · · · , K . (160)

To know how G̃α, α = 1, 2, · · · , KT , act on the target blocks let us consider the eigenvalue

equations

G̃α|φ1α〉 = Ẽα|φ1α〉 , (161)

which have the following two eigenvectors

|φ1α〉± =
1√
2
|AT α〉 ±

i√
2
|AnT α〉 , (162)

with their corresponding eigenvalues E± = e±i2θ̃1 .

Let us now write the state G̃j1|Θ̃〉 in eq. (150) in terms of the eigenvectors |φ1α〉± and

the initial states of the non-target blocks

G̃j1|Θ̃〉 =

KT
∑

α=1

[

1√
2

(

1√
KT

sin (2j1 + 1) θ̃ − i

√

B − BT

N −M
cos (2j1 + 1) θ̃1

)

|φ1α〉+

+
1√
2

(

1√
KT

sin (2j1 + 1) θ̃ + i

√

B −BT

N −M
cos (2j1 + 1) θ̃1

)

|φ1α〉−
]

+
K
∑

α=KT+1

√

B

N −M
cos (2j1 + 1) θ̃|Θ̃α〉 . (163)
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After j2 operations with the local Grover operator G̃L on the expression of eq. (163) we

immediately obtain

(G̃L)j2G̃j1|Θ̃〉 =

KT
∑

α=1

[

ei2θ̃1j2√
2

(

1√
KT

sin (2j1 + 1) θ̃ − i

√

B − BT

N −M
cos (2j1 + 1) θ̃

)

|φ1α〉+

+
e−i2θ̃1j2

√
2

(

1√
KT

sin (2j1 + 1) θ̃ + i

√

B −BT

N −M
cos (2j1 + 1) θ̃

)

|φ1α〉−
]

+

K
∑

α=KT+1

√

B

N −M
cos (2j1 + 1) θ̃|Θ̃α〉 . (164)

It is useful to write the above state (G̃L)j2Gj1 |Θ̃〉 in terms of the basis vectors |ai〉 as

(G̃L)j2Gj1|Θ̃〉 = C̃T
target elements

∑

target blocks

|ai〉+ C̃TB

non-target elements
∑

target blocks

|ai〉

+ C̃NTB

all elements
∑

non-target blocks

|ai〉 , (165)

where the constant coefficients are given by

C̃T =

√

1

M
sin (2j1 + 1) θ̃ cos 2j2θ̃1

+

√

B −BT

BT (N −M)
cos (2j1 + 1) θ̃ sin 2j2θ̃1 , (166)

C̃TB = −
√

1

KT (B − BT )
sin (2j1 + 1) θ̃ sin 2j2θ̃1

+

√

1

N −M
cos (2j1 + 1) θ̃ cos 2j2θ̃1 , (167)

C̃NTB =

√

1

N −M
cos (2j1 + 1) θ̃ . (168)

To eliminate the components associated with the non-target blocks we make a final global

Grover iteration to the vector (G̃L)j2G̃j1 |Θ̃〉 in eq. (165). For convenience we perform a

transformation with −ITIΘ̃ instead of the Grover iteration G̃ however in large blocks limit

both the results are equivalent. There is also other operator such as IΘ̃ which has been used

by Grover and Radhakrishnan to perform the final operation as mentioned before. However
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in this case the amplitude of the target element becomes negative. Thus the state becomes

|F̃〉 = (−ITIΘ̃)(G̃L)j2G̃j1|Θ̃〉 =
(

C̃T − 2 ¯̃C
)

target elements
∑

target blocks

|ai〉

+
(

2 ¯̃C − C̃TB

)

non-target elements
∑

target blocks

|ai〉

+
(

2 ¯̃C − C̃NTB

)

all elements
∑

non-target blocks

|ai〉 , (169)

where the average amplitude is given by

¯̃C =
1

N

(

M C̃T +KT (B − BT )C̃TB + (K −KT )BC̃NTB

)

. (170)

To evaluate eq. (169) again we have used the formula of eq. (32) for the action of −IΘ̃ on

a generic state. Since the projection of the state (−ITIΘ̃)(G̃L)j2G̃j1|Θ̃〉 on non-target blocks

should vanish we obtain from eq. (169)

C̃NTB =
2

N

(

M C̃T +KT (B −BT )C̃TB + (K −KT )BC̃NTB

)

. (171)

Substituting the values of C̃T , C̃TB and C̃NTB in eq. (171) and simplifying we obtain a

condition

− 1

sin θ̃ cos θ̃

(

1

2
− sin2 θ̃

sin2 θ̃1

)

cos (2j1 + 1) θ̃

= sin (2j1 + 1) θ̃ cos 2j2θ̃1 +
tan θ̃

tan θ̃1
cos (2j1 + 1) θ̃ sin 2j2θ̃1

− cot θ̃1 sin (2j1 + 1) θ̃ sin 2j2θ̃1 +
tan θ̃

tan2 θ̃1
cos (2j1 + 1) θ̃ cos 2j2θ̃1 . (172)

which ensures that the non-target elements vanish from the final state. Thus we obtain the

final state |F̃T 〉, which is aligned with the target block, as

|F̃T 〉 = sin ω̃|AT 〉+ ˜cosω|AnTT 〉

=
√
M (CT − CNTB) |AT 〉+

√

KT (B − BT ) (CNTB − CTB) |AnTT 〉 . (173)

where

|AnTT 〉 =
√

1

KT (B −BT )

non-target elements
∑

target blocks

|ai〉 , (174)
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The block angle ω̃ is given by

tan ω̃ =
sin (2j1 + 1) θ̃ cos 2j2θ̃1 + cos (2j1 + 1) θ̃ cot θ̃

sin (2j1 + 1) θ̃ sin 2j2θ̃1 + cos (2j1 + 1) θ̃ tan θ̃ cot θ̃1(1− cos 2j2θ̃1)
. (175)

1. Large database limit

Let us now consider the large database limit N → ∞. We also consider the blocks of

the database to be very large B = N
K

→ ∞ so that the number of blocks K in a database

remains finite. In these limits the two rotation angles in eq. (151) and eq. (158) respectively

reduces to

lim
θ̃→0

sin θ̃ → θ̃ →
√

M

N
, lim

θ̃1→0
sin θ̃1 → θ̃1 →

√

BK

B
. (176)

Following ref. [2] we write the number of iterations j1 and j2 in terms of two new parameters

η̃ and β̃ as

j1 =

(

π

4
− η̃

√
M√
K

)
√

N

M
, j2 =

β̃
√
M√
K

√

N

M
. (177)

Putting the expression for j1 and j2 of eq. (177) in the condition for cancellation of ampli-

tudes eq. (172) of non-target blocks and taking the large database limit we obtain

−
√
N

(

1

2
− KT

K

)

sin
2η̃

√
M√
K

=
√
M cos

2η̃
√
M√
K

cos 2β̃
√

BT +

√
KT√
K

sin
2η̃

√
M√
K

sin 2β
√

BT

−
√

N

K

√

KT cos
2η̃

√
M√
K

sin 2β
√

BT +

√
N

K
KT sin

2η̃
√
M√
K

cos 2β
√

BT . (178)

Notice that the left hand side of the above equation is proportional to
√
N , which is a large

number in general. The last two terms on right hand side are proportional to
√
N but the

first two terms are small compared to the last two terms. Neglecting these small two terms

and re-scaling by K̄ = K
KT

, η̄ = η̃
√
BT , β̄ = β̃

√
BT a simple form for the cancellation of the

amplitude correcting to non-target blocks is obtained as

tan
2η̄√
K̄

=
2
√
K̄ sin 2β̄

K̄ − 4 sin2 β̄
. (179)
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2. Optimization of partial search

Similar to the previous subsection, exploiting the physical constraints, we can calculate

the bounds of the two parameters η̄ and β̄. Since the number of queries for the global

iteration as well as the number of queries for the local iteration given in eq. (177) should be

non-negative j1, j2 ≥ 0 we obtain

η̄ ≤ π

4

√

K̄ , β̄ ≥ 0 . (180)

The partial search algorithm have to have less number of total iterations j1+j2+1 compared

to the Grover’s full search algorithm, i.e.

j1 + j2 + 1 =

(

π

4
+
β̄ − η̄√
K̄

)

√

N

M
≤ π

4

√

N

M
, (181)

which implies

β̄ ≤ η̄ . (182)

From eq. (180) and eq. (182) we obtain

0 ≤ β̄ ≤ η̄ ≤ π

4

√

K̄ . (183)

The expression for the parameter η̄ for the global iteration can be readily obtained from eq.

(179) as

η̄ =

√
K̄

2
arctan

[

2
√
K̄ sin 2β̄

K̄ − 4 sin2 β̄

]

, (184)

where the arctan(x) is restricted to the principal branch only because of the constraint in

eq. (180). The bound for the parameter β̄ then becomes

0 ≤ β̄ ≤
√
K̄

2
arctan

[

2
√
K̄ sin 2β̄

K − 4 sin2 β̄

]

≤ π

4

√

K̄ . (185)

In large database limit N → ∞ the total number of queries to the quantum oracle by a

partial search algorithm is given by

J̃(K̄) = lim
N/M→∞

(j1 + j2 + 1) =

(

π

4
+
β̄ − η̄√
K̄

)

√

N

M
. (186)

To obtain least number of queries J̃(K̄) we have to minimize

Λ̃(β̄) = β̄ − η̄(β̄) (187)
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The global minimum is achieved for K̄ ≥ 2 at

β̄ = arcsin

(
√

K̄

4(K̄ − 1)

)

, (188)

η̄ =

√
K̄

2
arctan

(√
3K̄ − 4

K̄ − 2

)

. (189)

C. Success probability in partial search

In partial search and even in full Grover search usually the number of queries are not

integers. In practical purpose what we do is just take the integral value nearest to the

number of queries obtained from full or partial search. This introduces some error in the

final state obtained after the iterations are done. This problem can be fixed to obtain the

target state or the target block with cent percent success probability. In the case of partial

search we will discuss here how to obtain the target block with unit success probability.

Since we need the group formulation for this purpose let us first briefly discuss the group

aspect of the search algorithm.

1. Group formulation of search algorithm

The whole discussion of full Grover search discussed in IIIA 1 and IIIA 2 can be under-

stood by O(2) transformation on the initial state. Let us write the initial state |Θ〉 in terms

of the unit basis vectors |AT 〉 and |AnT 〉 of eqs. (41) and (42) respectively as

|Θ̃〉 =





sin θ̃

cos θ̃



 . (190)

In the same basis the Grover iteration G̃ can be represented as a rotation matrix in two

dimensions

G̃ =





cos 2θ̃ sin 2θ̃

− sin 2θ̃ cos 2θ̃



 . (191)

Action of the Grover iteration j times successively on the initial state becomes

G̃j |Θ̃〉 =





cos 2jθ̃ sin 2jθ̃

− sin 2jθ̃ cos 2jθ̃









sin θ̃

cos θ̃



 =





sin(2j + 1)θ̃

cos(2j + 1)θ̃



 . (192)
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By assuming that the initial state has evolved to the target state, i.e.,





sin(2j + 1)θ̃

cos(2j + 1)θ̃



 =





1

0



 , (193)

we can arrive at the same result in eq. (53) and when there is only one target element

then we arrive at eq. (36). This formalism can be extended to partial database search

problem which has O(3) group representation. Again we will discuss the multiple targets

and multiple target blocks case but the discussion is equally valid for single target partial

search also. In partial search there are three mutually orthogonal basis vectors. The unit

vector AT with equal superposition of all the target elements, the unit vector AnTT with

equal superposition of all the non target elements in the target blocks and the unit vector

AN with equal superposition of all the elements in non-target blocks. First two unit vectors

AT and AnTT have already been defined in eqs. (41) and (174) respectively. We now define

the unit vector AN as

|AN〉 =
√

1

B(K −KT )

all elements
∑

non-target blocks

|ai〉 . (194)

These three vectors form a three dimensional vector space on which the initial state |Θ̃〉 can
be expressed as

|Θ̃〉 =











sin γ sin θ̃

sin γ cos θ̃

cos γ











, (195)

where sin γ =
√

KT/K, sin θ̃ =
√

M/N . The global Grover iteration G̃j1 can be represented

as

G̃j1 = TMj1T , (196)

where T and Mj1 are given by

T =











1 0 0

0 cos θ̃1 sin γ/ cos θ̃ cos γ/ cos θ̃

0 cos γ/ cos θ̃ − cos θ̃1 sin γ/ cos θ̃











, (197)
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and

Mj1 =











cos 2j1θ̃ sin 2j1θ̃ 0

− sin 2j1θ̃ cos 2j1θ̃ 0

0 0 (−1)j1











. (198)

The global Grover iteration G̃j1 reads as

G̃j1 =











a11 a12 a13

a21 a22 a23

a31 a32 a33











, (199)

where a11 = cos 2j1θ̃, a12 = sin 2j1θ̃ sin γ, a13 = sin 2j1θ̃ cos γ, a21 = −a12, a22 =

(−1)j1 cos2 γ + cos 2j1θ̃ sin
2 γ, a23 = sin γ cos γ

[

(−1)j1+1 + cos 2j1θ̃
]

, a31 = −a13, a32 = a23

and a33 = (−1)j1 sin2 γ + cos 2j1θ̃ cos
2 γ. Representation (199) is valid for large N and large

B limit. The local Grover iteration (G̃L)j2 is represented as

(G̃L)j2 =











cos 2j2θ̃1 sin 2j2θ̃1 0

− sin 2j2θ̃1 cos 2j2θ̃1 0

0 0 1











. (200)

The full partial search operation can also be represented in a compact form

G̃(G̃L)j2G̃j1 =











0 ξ1 ξ2

0 ξ2 −ξ1
−1 0 0











, (201)

where ξ1 =
1

2
√
K−1

− 1
2

√

3K−4
K

and ξ2 =
1
2
+ 1

2

√

3K−4
K(K−1)

satisfying ξ21 + ξ22 = 1.

2. Sure success partial search

It has been shown in ref. [26] that the partial search of Grover-Radhakrishnan-Korepin

can be performed in such a way that the probability of success is unity. In multiple targets

partial search we here discuss the method of obtaining the target block with certainty. In

this case the process of partial search is followed as it is except in the final Grover iteration

IT and IΘ̃ are modified by phase factors, which are suitably adjusted to obtain the target

block.



40

After the first global Grover iteration the initial state |Θ̃〉 becomes

G̃j1|Θ̃〉 = 1

cos2 θ̃











kg cos θ̃

lg cos θ̃1 sin γ

lg cos γ











, (202)

where kg = sin 2j1θ̃
(

cos2 θ̃1 sin
2 γ + cos2 γ

)

+ cos 2j1θ̃ cos θ̃ sin θ̃ and lg =

cos 2j1θ̃
(

cos2 θ̃1 sin
2 γ + cos2 γ

)

− sin 2j1θ̃ cos θ̃ sin θ̃.

Then j2 local Grover iterations on G̃j1|Θ̃〉 gives us [13]

(G̃L)j2G̃j1|Θ̃〉 = 1

cos2 θ̃











kg cos θ̃ cos 2j2θ̃1 + lg sin γ cos θ̃1 sin 2j2θ̃1

−kg cos θ̃ sin 2j2θ̃1 + lg sin γ cos θ̃1 cos 2j2θ̃1

lg cos γ











=











c11

c21

c31











. (203)

Two reflection operators in the final Grover iteration are modified as

Iph
T = I− (I− e2iφ1)|AT 〉〈AT | , (204)

Iph

Θ̃
= I− (I− ei(φ1−φ2))|Θ̃〉〈Θ̃| . (205)

Now as stated above, the final modified global Grover iteration is given by

G̃final = −Iph

Θ̃
Iph
T =











b11 b12 b13

b21 b22 b23

b31 b32 b33











, (206)

where b11 = −ei(φ1−φ2)
[

1− (1− e2iφ1) sin2 γ sin2 θ̃1

]

, b12 = (1 − e2iφ1) sin2 γ sin θ̃1 cos θ̃1,

b13 = (1 − e2iφ1) sin γ cos γ sin θ̃1, b21 = ei(φ1−φ2)(1 − e2iφ1) sin2 γ sin θ̃1 cos θ̃1, b22 =

(1 − e2iφ1) sin2 γ cos2 θ̃1 − 1, b23 = (1 − e2iφ1) sin γ cos γ cos θ̃1, b31 = ei(φ1−φ2)(1 −
e2iφ1) sin γ cos γ sin θ̃1, b32 = b23 and b33 = (1− e2iφ1) cos2 γ − 1.

The projection of the final state G̃final(G̃L)j2G̃j1|Θ̃〉 in the direction of unit vector |AN〉
of non-target blocks should vanish

| 〈AN |G̃final(G̃L)j2G̃j1 |Θ̃〉 |= 0 . (207)

We obtain from eq. (207) the following condition on the phases

c11e
i(φ1−φ2)(1− e2iφ1) sin γ cos γ sin θ̃

+ c21(1− e2iφ1) sin γ cos γ cos θ̃

+ c31
[

(1− e2iφ1) cos2 γ − 1
]

= 0 , (208)
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where c11, c21, c31 are the three components of the state in eq. (203). For simplicity we

rewrite the condition in eq. (208) in the following fashion

ei(φ1−φ2)(1− e2iφ1)x+ (1− e2iφ1)y + 2z = 0 , (209)

where x = c11 sin γ cos γ sin θ̃, y = c21 sin γ cos γ cos θ̃ + c31 cos
2 γ and z = −c/2. Separating

the real and imaginary part from eq. (209) we obtain

sinφ2 = −y
x
sinφ1 −

z

x sinφ1
,

cos φ2 = −y
x
cosφ1 . (210)

Eliminating φ2 from eq. (210) we get a condition on phase φ1 as

cos2 φ1 =
x2 − (y + z)2

x2 − y2 − 2yz
. (211)

Note that in order to have a solution for φ1 from eq. (211) the following inequality have to

be satisfied

x2 ≥ (y + z)2 . (212)

The solution for φ2 then can be obtained from eq. (210). Numerical study for sure success

partial search has been performed in [26]. It has been shown that it is always possible to

find the phases φ1, φ2 if the number of global and local iterations are chosen as

j̃1 = ⌊j1⌋ , (213)

j̃2 = ⌊j2⌋+ {0, 1, 2} , (214)

where ⌊x⌋ is the integer nearest to x. For the local Grover iteration it may require to perform

one or two extra steps as given in eq. (214). Numerically it works well for N ≤ 106 except

for K = 2, B = 2 case.

V. CONCLUSION

We have provided a detailed discussion on database search algorithms in this review. To

understand how quantum mechanics can be exploited to expedite the process of computing

we started our discussion with the Deutsch’s algorithm and Deutsch-Jozsa algorithm which
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can find whether a function is constant or balanced in just one oracle call compared to O(N)

oracle calls by a classical computer. Bernstein-Vazirani algorithm, which is one variation of

the Deutsch-Jozsa algorithm, is also discussed.

We then discussed Grover algorithm for database search. The database of N elements can

have a single or multiple target elements in it. The elements in a database can have some

order(sorted database) or no order(unsorted database) at all. The unsorted database with

single target element can be searched with Grover algorithm in O(
√
N) steps compared to

O(N) steps by a classical computer. This is an example of quadratic speed up in computation

time. Similarly in the unsorted database with M target elements one of the target elements

can be obtained in O(
√

N
M
) steps by Grover algorithm. If there is any structure/order in

the database then by exploiting the structure the target element can be searched even in

less time by Grover algorithm. It is not possible to devise an algorithm which can search in

less time than what Grover algorithm needs, i.e O(
√
N) oracle calls.

Instead of searching the whole database for the target element sometimes it is reasonable

to divide the whole database in several blocks and then look for the block which contains

the target element. Grover and Radhakrishnan found an algorithm for this type of partial

search, which takes j =
(

π
4
+ β(K)−η(K)√

K

)√
N steps. Korepin latter improved the partial

search algorithm by optimizing the coefficient β(K)−η(K). This can further be generalized

to include several target elements and the final global iteration can be modified by including

phase factors so that the target block is obtained with unit success probability.
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