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Abstract A method for calculating the one-way quantum deficit is developed.
It involves a careful study of post-measured entropy shapes. We discovered that
in some regions of X-state space the post-measured entropy S as a function
of measurement angle 6 € [0,7/2] exhibits a bimodal behavior inside the
open interval (0,7/2), i.e., it has two interior extrema: one minimum and one
maximum. Furthermore, cases are found when the interior minimum of such a
bimodal function S(6) is less than that one at the endpoint = 0 or 7/2. This
leads to the formation of a boundary between the phases of one-way quantum
deficit via finite jumps of optimal measured angle from the endpoint to the
interior minimum. Phase diagram is built up for a two-parameter family of X
states. The subregions with variable optimal measured angle are around 1%
of the total region, with their relative linear sizes achieving 17.5%, and the
fidelity between the states of those subregions can be reduced to F' = 0.968.
In addition, a correction to the one-way deficit due to the interior minimum
can achieve 2.3%. Such conditions are favorable to detect the subregions with
variable optimal measured angle of one-way quantum deficit in an experiment.

Keywords X density matrix - Post-measured entropy - Unimodal and
bimodal functions - One-way quantum deficit

1 Introduction

Quantum correlation is a key feature of quantum mechanics and it lies at the
heart of quantum information science. Besides the quantum entanglement and
discord, the one-way quantum deficit is one of the most important measures
of quantum correlation [TL2|Bl4]. The entanglement is identical to the discord
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and one-way deficit for the pure quantum states, whereas the discord and
one-way deficit coincide in considerably more general cases — they are the
same for the Bell-diagonal states and even for the X states with zero Bloch
vector for one qubit (i.e., with a single maximally mixed marginal) if the local
measurements are performed on this qubit [5].

Definitions of quantum discord @@ and one-way quantum deficit A involve
the minimization procedure to obtain the optimal measurement performed
on one part of bipartite system. This procedure for the two-qubit systems
with X density matrix is reduced to the minimization problem on one variable
— the polar angle 0 € [0,7/2] (see Refs. [6,[78Q]). Moreover, a formula for
the quantum discord is presented in a partially analytic (piecewise-analytical-
numerical) form [TOTTL12],

Q = min{QOaQﬁaQﬂ/Q}' (1)

Here, the subfunctions (branches) Qo and Q) /o are the analytical expressions
(corresponding to the discord with optimal measurement angles equaling zero
and 7/2, respectively) and only the third branch Qy requires to perform nu-
merical minimization to obtain state-dependent minimizing angle ¢ € (0, 7/2)
if, of course, the interior minimum exists. Equations for 0- and 7/2-boundaries
separating respectively the Qo and @ /o regions with the Qy one can be writ-
ten as [10J11L12)

Q"(0)=0,  Q"(x/2)=0. (2)
Here Q"(0) and Q”(w/2) are the second derivatives of the measurement-
dependent discord function Q(6) with respect to 6 at the endpoints § = 0
and 7/2, correspondingly. The equations (2]) are based on the unimodality
hypothesis for the function Q(#) which is confirmed for different classes of
X states [I2l[13]. Notice that Egs. (@) reflect the bifurcation mechanism of
appearance of the minimum inside the interval (0, 7/2).

On the other hand, as mentioned above, there is a close connection between
the one-way quantum deficit and quantum discord. Therefore it would be
tempting to propose that similar properties are valid for the measurement-
dependent one-way quantum deficit function A(f) = S () — S, where S is the
pre-measurement entropy.

Recently, the authors [I4] have claimed the result which is reduced to the
statement that the one-way quantum deficit A = ming A(6) for the general X
states is given by

_ | AW), A"(0) < 0 and A”(m/2) <0, ¥ € (0,7/2);
A= { min{A(0), A(7/2)}, others. (3)

If the function A(f) is monotonic or has single extremum inside the interval
(0,7/2) this conclusion takes place.

In the present paper we show that the post-measured entropy and con-
sequently the measurement-dependent one-way quantum deficit can display
more general behavior which refutes the relation ([B]). We discuss the difficul-
ties arisen from a new type of behavior and propose, instead of Eq. (3]), the
method giving the correct calculation of one-way deficit for two-qubit X states.



Title Suppressed Due to Excessive Length 3

2 Results and discussion

Let us consider a two-parameter family of X states
pap =@ TN+ @@ )(F7] + (1 — 1 — g2)]00)(00], (4)

where [¥*+) = (|01) 4 [10))/+/2. This family generalizes the class of special X
states from Ref. [14] which corresponds to the case ¢; = 0.
The density matrix (@) in open form is given as

l—qi—¢ 0 0 0
0 (1 +¢2)/2 (1 —q2)/2 0
— . 5
pAB 0 (g —a)/2 (@ +g)/2 0 ®)
0 0 0 0

Eigenvalues of this matrix equal
M=1-q—q, l=q, As=q, M=0. (6)

Owing to the non-negativity requirement for any density matrix, one obtains
that the domain of definition for the parameters (arguments) ¢; and g¢o is
restricted by conditions

g =>0, 20, q¢+qg<1 (7)

Thus, the domain in plane (g1, g2) is the triangle 7 which is shown in Fig. [l

One-way quantum deficit (quantum work deficit) for a bipartite state pap
is defined as the minimal increase of entropy after a von Neumann measure-
ment on one party (without loss of generality, say, B) [1516,17]

A= min S(pas) — S(pan), (8)
where
pap=> (I@M)pap( @T)* )
k

is the weighted average of post-measured states and S(-) means the von Neu-
mann entropy. In Egs. () and (@), Iy (k = 0,1) are the general orthogonal
projectors

Hk = VTF}CVJF, (10)

where 1, = |k)(k| and transformations {V} belong to the special unitary
group SUs;. Rotations V may by parametrized by two angles 6 and ¢ (polar
and azimuthal, respectively):

[ cos(8/2) —e"sin(0/2)
V= <ei¢sm(9/2) cos(6/2) > (11)

with 0 <0 <7 and 0< ¢ < 27.
Using Eq. (@) one gets the pre-measured entropy

S(q1,q2) = S(paB) = —q1log 1 —q2log g2 — (1—q1 —q2) log (1 — q1 — ¢2). (12)
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q2

Fig. 1 Triangle 7 in the plane (g1, g2) with vertices (0, 0), (0,1), and (1, 0) is the permitted
region for the parameters ¢q1 and g2. Dotted lines 1 and 1" are the boundaries defined by
the equation Ag = A /5. Solid lines 2 and 2" are the m/2-boundaries. Dotted line 3 is the
path g1 + g2 = 0.75. Crosses (X) at the points (0,0.5) and (0.5,0) mark the O-boundaries

Eigenvalues of the matrix p4p are equal to

Ay = i[u +(1—q1—q2)cosO+{[1 —q1 — g2 + (1 —2q; — 2¢2) cos 0)?
+(q1 — q2)%sin? 6}1/2]
(13)
A3y = i[u —(1—q —q)cosO+{[1 —q —qo — (1 — 2q1 — 2¢2) cos ]?
+(q1 — q2)%sin? 0}1/2].

It is seen that the azimuthal angle ¢ has dropped out from the given expres-
sions. This is due to the fact that one pair of non-diagonal entries of the density
matrix (B) vanishes. Using Eqs. (I3) we arrive at the post-measured entropy
(entropy after measurement)

S(GQQ1;Q2) = S(ﬁAB) = h4(A15/12’A3aA4)a (14)

where hy (21,22, 23,24) = — Zle x; log z; with additional condition 7 + x5 +
x3 + x4 = 1 is the quaternary entropy function.

Notice that function S of argument 6 is invariant under the transformation
6 — m — 6 therefore it is enough to restrict oneself by values of 6 € [0,7/2].
Moreover, the pre- and post-measured entropies S and S, as functions of Q1
and ¢o, are symmetric under the exchange ¢ = ¢o.
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Equations (I2)—(4) define the measurement-dependent one-way deficit
function A(f) = S(#) — S. Direct calculations show that for every choice
of model parameters the function S(#) and hence A(f) possess an important
property, namely their first derivatives with respect to 8 identically equal zero
at both endpoints § = 0 and 0 = 7/2:

S'0)=24'0)=0, S(r/2)=A'(x/2)=0. (15)

From Egs. (I3) and (I4]) we get the expressions for the post-measurement
entropy at the endpoint 6 = 0,

So(q1,q2) = —(1 — g1 — q2) log(1 — ¢1 — g2) — (q1 + g2) log[(q1 + ¢2)/2], (16)

and at the second endpoint § = 7/2:

Sepp(ar,a2) =log2+ h((L+ V(1 — a1 — @) + (@1 — 42)?)/2),  (17)

where h(z) = —zlogz — (1 — z)log(1 — z) is the Shannon binary entropy
function. Together with Eq. (I2)) they supply us with explicit expressions for
the one-way deficit at the endpoints: A9 = A(0) and Ay, = A(7/2). In
particular, if ¢; or g2 equals zero then Ay = glog2 (= ¢,bit), where ¢ =
{a1, a2}

Solving the transcendental equation

AO == Aﬂ-/g (18)

or, the same, Sy = 5}/2 we find the subregions in the plane (g1, ¢2), where
Ar s < A (restricted in Fig. [ by dotted curves 1 and 1’ and corresponding
Cartesian axes Oq; and Ogz) and where, v.v., Ag < A, /5 (marked in Fig. by
symbol Ap). The curve 1 has two endpoints on the axis Og;: at ¢ = 0.61554
and ¢; = 1. Analogously for the curve 1’ (see Fig. [I]).

The 0- and 7/2-boundaries, i.e., where respectively the second derivatives

A’(0)=0 and A”(7/2)=0 (19)

or, the same, S (0) = 0 and 5" (7/2) = 0, will be needed below. As calculations
yield,

g (g1 — @) o D
S (m/2) :T[T — (1 —2¢1 — 2¢0) ]lnl—r

(1—q1—q2)? 1—2q1 —2q2
TR TR 9 g - 2gp)(1 — T T 22
177,2 [ ( ql q2)( 27,2

)l (20)

where

r=V{—a—@)?+ (@ - e)? (21)
On the other hand, calculations show that the second derivative S”(6) with
respect to 6 is finite at § = 0 only when ¢1¢2 = 0:

B 1—3q+2q21n2(1—q)

S"(0

: (22)



6 M.A . Yurischev

Fig. 2 Post-measurement entropy S vs 0 by g2 = 0 and ¢q; = 0.5 (a), 0.55 (b), 0.65 (c),
and 0.7 (d)

where again ¢ = {qi1,¢2}. The roots of equation S5”(0) = 0 are 1/2 and 1.
Thus, the bifurcation 0-boundary exists only if ¢; = 0 or, inversely, ¢ = 0
(that is, only at two points on each of the Cartesian axes Og; and Ogz). The
corresponding 0-boundaries ¢; = 1/2, when g2 = 0, and g3 = 1/2, when ¢; = 0
are shown in Fig. [l by the crosses.

The results of numerical solution of the equation S”(7/2) = 0 are presented
in Fig. I by solid lines 2 and 2’. The endpoints for the curve 2 on the axis
Oq; are q1 = 0.67515 and ¢; = 1. The curves 1 and 2 intersect at the point
with coordinates ¢; = 0.739409 and ¢2 = 0.029686 (g1 + g2 = 0.769095).
Analogously for the curves 1’ and 2" with, of course, permutation of ¢; and g
(see again Fig. [T]).

Let us consider the behavior of post-measured entropy S(f) and non-
minimized one-way deficit A(f) by moving along different trajectories (paths)
in the triangle 7.

Start with the passing along the leg of triangle 7. Figure 2] shows the
evolution of shape of the post-measured entropy S (0; ¢1,0) with changing the
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Fig. 3 Measurement-dependent one-way quantum deficit A(6) along the line g1 +¢2 = 0.75
by ¢1 = 0.72 (1), 0.72015 (2), and 0.7205 (3). The bimodality appearing from an inflection
point is clearly seen

parameter ¢;. The curve has the monotonically increasing behavior when the
argument g1 varies from ¢; = 0to g1 = 1/2; see Fig.[2(a). At the point ¢ = 1/2
a bifurcation of the minimum at § = 0 occurs. Then, when ¢ increases from
0.5 to 0.67515, the curve S(f) has, as shown in Figs. B(b) and (c), the interior
minimum, with the function S (9) being here unimodal. So, the region with
variable optimal angle ¢ takes up a part 0.17515 =~ 17.5% on the section [0, 1]
of Og; axis and the fidelity of states at points (0.5,0) and (0.67515,0) is equal
to F = 96.8%. The position of such a local minimum smoothly increases
from zero to 7/2; see again the curves in Figs. B(b) and (c). The values of Sy
and g,,/g become equal at the point ¢; = 0.61554 (S’O = S~’7r/2 = 1.57667 bit,
hence A/, = Ag = ¢ = 0.61554 bit) and the depth of interior minimum
is 0.01397 bit what gives a relative correction to the one-way deficit equaled
0A = 2.3%. Then, at the value of ¢; = 0.67515, the system experiences a new
sudden transition — from the branch, which is characterized by the continuously
changing optimal angle 9 in the full interval (from 0 to 7/2), to the branch
S, /2 with constant optimal measurement angle equaled 7/2. After this the
curves of post-measured entropy exhibit monotonically decreasing behavior as
illustrated in Fig.2ld). One should emphasize here that the minimized one-way
quantum deficit, A = ming A(f), vs the model parameter ¢; is continuous and
smooth. Nevertheless, the function A(g;) has nonanalyticities at the points
q = 0.5 and 0.67515 which manifest themselves in higher derivatives.

1 Note for comparison that in two-photon experiments one achieves now the values of

fidelity F = 99.8(2)% [I8] and F = 99.8(1)% [19].
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Fig. 4 Post-measured entropy S as a function of 6 by g2 = 0.75 — q1 and q; = 0.7215 (1),
0.7216 (2), and 0.7217 (3).

Consider now the behavior of post-measurement entropy and measurement-
dependent one-way deficit in the bulk area of 7. We can inspect the total
domain taking all possible straight-line trajectories q; + g2 = const < 1. The
behavior of the system is, obviously, symmetric relative to the middle of such
trajectories. Take, for instance, the trajectory ¢; + g2 = 0.75 which is shown in
Fig.Mby the straight line 3. The shape of the curve A(#) has the monotonically
increasing type in the middle of this trajectory (¢1 = g2 = 0.375). However,
with the increase of the value of parameter ¢, the birth of a pair of extrema
from an inflection point occurs inside the interval (0,7/2); the situation is
illustrated in Fig. Bl This phenomenon happens at the value of ¢; = 0.72015.
According to the definition (see, e.g., Ref. [20]) a function having two extrema
in some interval is called bimodal on this interval.

With further increase of the ¢; value a qualitatively new effect is observed.
We demonstrate it by the curves S(#) shown in Fig. @ When the parameter ¢,
achieves the value of 0.72159, the position of global minimum suddenly jumps
through a finite step AJ from zero to ¥ = 1.0409 ~ 60° (see Fig. H). As a
result, the fracture is arisen on the continuous curve of minimized one-way
quantum deficit A(g;). The position of the fracture point is determined from
the equation Sy = Sy or

Ao = Ag. (23)
After this the interior minimum lies lower than another minimum located at

the endpoint & = 0. Notice that behavior of curve 3 in Fig. M leads to a
contradiction with Eq. @), i.e., the equation is incorrect for general X states.
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Fig. 5 Measurement-dependent one-way quantum deficit A(6) along the line g1 +¢2 = 0.75
by g1 = 0.722 (a), 0.723 (b), 0.727 (c), and 0.75 (d). Minimum on the curve disappears at
the endpoint § = 7/2 through the bifurcation mechanism whereas the maximum annihilates
at the endpoint 6 = 0 via the singularity mechanism

With further increasing ¢; the interior minimum smoothly moves to the
point § = /2 and disappears at g; = 0.72358 when the trajectory crosses the
curve 2, i.e., the m/2-boundary (see Fig. [Il). The dynamics of corresponding
deformations of A(0) is depicted in Fig. Bl After crossing the 7/2-boundary,
the behavior of A undergoes to the branch A/, up to the point of contact of
trajectory with the Cartesian axis, i.e., up to g1 = 0.75, where the interior max-
imum of A(#) disappears at the endpoint § = 0. This happens through a new
non-bifurcation (and non-inflection) mechanism. Since the second derivative
A"(0) at 0 = 0 diverges out of the Cartesian axes we will call this mechanism
the singular one.

As aresult, the one-way quantum deficit is obtained from the final equation

A= miD{AO,Aﬁ,Aﬂ—/Q}, (24)
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trajectory ¢1 + g2 = 0.75
0.584 ‘ ‘

0.582 - B

0.58

0.578

A, bit 0576

0.574

0.568 L L L L
0.72 0.721 0.722 0.723 0.724 0.725
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Fig. 6 One-way quantum deficit A vs ¢1 along the path g1 + g2 = 0.75 is shown by
solid line. Dotted line corresponds to the branch A, 5. Fraction Ay with variable optimal
measured angle lies between two arrows. The transition Ag <> Ay is displayed as a fracture
on the curve A(q1) whereas the Ay ++ Ay /5 one is hidden — the curve is here continuous
and smooth

Table 1 Jumps of optimal measured angles, A¢, on the boundary between the phases Ag
and Ay

q1 q2 Al

0.5 0 0=0°
0.544535 0.55—q1  0.1267 ~ 7°
0.588104 0.6 —q1 0.2470 ~ 14°
0.631766  0.65 —q1  0.4020 ~ 23°
0.676082 0.7 —q1 0.6252 ~ 36°
0.721590 0.75 —q1  1.0409 =~ 60°
0.739409  0.029686  w/2 = 90°

where Ao and A/, are known in closed analytical forms and Ay is found
numerically. The behavior of one-way deficit along the trajectory g1 +g2 = 0.75
is shown in Fig.

Either totally or partially similar behavior takes place for other trajectories
q1 + g2 = const which go lower the intersection point of curves defined by
equations Ag = Ay, and A”(7/2) = 0, i.e, when const < 0.769095. For
example, in the case of trajectory q1 + g2 = 0.65, the bimodality appears at
q1 ~ 0.631 and a jump of optimal measurement angle from zero happens at
g1 = 0.631766. Values of jump angles A¢ in different cases are collected in
Table [Tl

A set of points where the optimal measurement angle discontinuously
changes from zero to a finite value gives the jumping (or hopping) bound-
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Fig. 7 A fragment of phase diagram. The boundary 1 is defined by equation Ay = Ay,
2 is the m/2-boundary, and the boundary 3 is defined by equation Ag = Ay /2. The black
circle (o) is the intersection point of w/2-boundary with equilibrium curve of phases Ag and
Ar /2. (This figure represents a part of the domain of definition shown in Fig.[Il)

ary; it serves instead of the absent ordinary 0-boundary (see Fig. [7]). Between
this boundary and the 7/2-one, there exists an intermediate phase (fraction)
Ay with state-dependent optimal measurement angle 9 which smoothly varies
from some nonzero value to 7/2. The flat of two subregions with variable
optimal angle, Ay, is near 1% of the one of total domain 7.

When const > 0.769095 (i.e., when the trajectories lie above the black
circle shown in Fig. [), the situation is different. With increasing ¢; from
middle values to the endpoint on the axis Og; the curves S(0) or A(f) are
deformed from monotonically increasing shape to the shape with a single in-
terior maximum (which is born at the point, where A”(w/2) = 0) and then
a sudden transition Ay — A /5 occurs at the boundary defined by the rela-
tion Ag = A,y (line 3 in Fig. [@). Here, there is no intermediate region Ay
and the transition Ag — A /5 is characterized visually by a fracture on the
curve A(q1). Typical behavior of one-way deficit is shown in Fig. 8 along the
trajectory q1 + g2 = 0.8.

So, the presented method to calculate the one-way quantum deficit of X
states is reduced first of all to careful analyzing of the shapes of post-measured
entropy or measurement-dependent one-way deficit curves. One should also
solve equations for the boundaries between three possible phases (branches):
Egs. (1), (M), and (23). After this the one-way quantum deficit is obtained
from the piecewise-analytical-numerical formula ([24]).
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trajectory ¢1 + g2 = 0.8
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Fig. 8 Dependence of A vs g1 by g2 = 0.8 — q1. Arrow marks the position of a fracture at
the point g1 = 0.769 269, where the one-way deficit undergoes from the branch Ag to the
Ay /o one

3 Summary and concluding remarks

In this paper we have found that besides the monotonic and unimodal behavior
the post-measured entropy and hence the measurement-dependent one-way
quantum deficit upon the measurement angle can have a new kind of behavior.
Namely, these functions can exhibit the bimodal shape in the open interval
(0,7/2) for different regions in the space of X state parameters. This expands
the variety of behavior for the one-way quantum deficit A. In particular, a new
state-dependent phase (fraction) which is characterized by a partial interval
of optimal measured angles has been found. Instead of smooth conjugation of
the branches Ag and A/, this leads to a fracture on the curve of one-way
deficit.

New mechanism of a boundary arising between the phases via jumping the
optimal measured angle on a finite step has been discovered. Instead of bifur-
cation conditions (I9) the boundary is now determined by a relation like ([23]).
The study of post-measured entropy shapes is the general way to determine
the correct one-way quantum deficit.

This is in contrast with the behavior of conditional entropy and, conse-
quently, measurement-dependent quantum discord in the same regions of pa-
rameter space: their behavior is restricted by monotonic and unimodal types.
In any case, this rather simple and therefore attractive picture is valid for the
different specific cases and subclasses of X states [I0[12l[13]. In particular, such
a behavior of conditional entropy is confirmed for the symmetric XXZ states
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[13] those may be written in an equivalent form as
pap = qu|¥ NPT + qa U7 ) (W] + 3]00)(00] + ga|11)(11] (25)

with ¢t + g2 + g3 +q = 1.

An intriguing question remains: are there any more general shapes of curves
for the post-measured entropy of X states? For instance, can this entropy have
trimodal and, maybe, multimodal dependence? The answer to these and other
questions should come from the future investigations of post-measurement
entropy shapes in the full five-parameter X-state space.
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