Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states

M.A.Yurischev

Received:

Abstract

A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \tilde{S} as a function of measurement angle $\theta \in[0, \pi / 2]$ exhibits a bimodal behavior inside the open interval $(0, \pi / 2)$, i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function $\tilde{S}(\theta)$ is less than that one at the endpoint $\theta=0$ or $\pi / 2$. This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1% of the total region, with their relative linear sizes achieving 17.5%, and the fidelity between the states of those subregions can be reduced to $F=0.968$. In addition, a correction to the one-way deficit due to the interior minimum can achieve 2.3%. Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.

Keywords X density matrix • Post-measured entropy • Unimodal and bimodal functions . One-way quantum deficit

1 Introduction

Quantum correlation is a key feature of quantum mechanics and it lies at the heart of quantum information science. Besides the quantum entanglement and discord, the one-way quantum deficit is one of the most important measures of quantum correlation [1,2,3, 4, The entanglement is identical to the discord

[^0]and one-way deficit for the pure quantum states, whereas the discord and one-way deficit coincide in considerably more general cases - they are the same for the Bell-diagonal states and even for the X states with zero Bloch vector for one qubit (i.e., with a single maximally mixed marginal) if the local measurements are performed on this qubit [5].

Definitions of quantum discord Q and one-way quantum deficit Δ involve the minimization procedure to obtain the optimal measurement performed on one part of bipartite system. This procedure for the two-qubit systems with X density matrix is reduced to the minimization problem on one variable - the polar angle $\theta \in[0, \pi / 2]$ (see Refs. [6, 7, 8,9$]$). Moreover, a formula for the quantum discord is presented in a partially analytic (piecewise-analyticalnumerical) form [10, 11, 12],

$$
\begin{equation*}
Q=\min \left\{Q_{0}, Q_{\vartheta}, Q_{\pi / 2}\right\} \tag{1}
\end{equation*}
$$

Here, the subfunctions (branches) Q_{0} and $Q_{\pi / 2}$ are the analytical expressions (corresponding to the discord with optimal measurement angles equaling zero and $\pi / 2$, respectively) and only the third branch Q_{ϑ} requires to perform numerical minimization to obtain state-dependent minimizing angle $\vartheta \in(0, \pi / 2)$ if, of course, the interior minimum exists. Equations for 0 - and $\pi / 2$-boundaries separating respectively the Q_{0} and $Q_{\pi / 2}$ regions with the Q_{ϑ} one can be written as [10,11,12]

$$
\begin{equation*}
Q^{\prime \prime}(0)=0, \quad Q^{\prime \prime}(\pi / 2)=0 \tag{2}
\end{equation*}
$$

Here $Q^{\prime \prime}(0)$ and $Q^{\prime \prime}(\pi / 2)$ are the second derivatives of the measurementdependent discord function $Q(\theta)$ with respect to θ at the endpoints $\theta=0$ and $\pi / 2$, correspondingly. The equations (2) are based on the unimodality hypothesis for the function $Q(\theta)$ which is confirmed for different classes of X states [12,13. Notice that Eqs. (2) reflect the bifurcation mechanism of appearance of the minimum inside the interval $(0, \pi / 2)$.

On the other hand, as mentioned above, there is a close connection between the one-way quantum deficit and quantum discord. Therefore it would be tempting to propose that similar properties are valid for the measurementdependent one-way quantum deficit function $\Delta(\theta)=\tilde{S}(\theta)-S$, where S is the pre-measurement entropy.

Recently, the authors [14] have claimed the result which is reduced to the statement that the one-way quantum deficit $\Delta=\min _{\theta} \Delta(\theta)$ for the general X states is given by

$$
\Delta= \begin{cases}\Delta(\vartheta), & \Delta^{\prime \prime}(0)<0 \text { and } \Delta^{\prime \prime}(\pi / 2)<0, \vartheta \in(0, \pi / 2) \tag{3}\\ \min \{\Delta(0), \Delta(\pi / 2)\}, & \text { others. }\end{cases}
$$

If the function $\Delta(\theta)$ is monotonic or has single extremum inside the interval $(0, \pi / 2)$ this conclusion takes place.

In the present paper we show that the post-measured entropy and consequently the measurement-dependent one-way quantum deficit can display more general behavior which refutes the relation (3). We discuss the difficulties arisen from a new type of behavior and propose, instead of Eq. (3), the method giving the correct calculation of one-way deficit for two-qubit X states.

2 Results and discussion

Let us consider a two-parameter family of X states

$$
\begin{equation*}
\rho_{A B}=q_{1}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+q_{2}\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\left(1-q_{1}-q_{2}\right)|00\rangle\langle 00|, \tag{4}
\end{equation*}
$$

where $\left|\Psi^{ \pm}\right\rangle=(|01\rangle \pm|10\rangle) / \sqrt{2}$. This family generalizes the class of special X states from Ref. [14] which corresponds to the case $q_{1}=0$.

The density matrix (4) in open form is given as

$$
\rho_{A B}=\left(\begin{array}{cccc}
1-q_{1}-q_{2} & 0 & 0 & 0 \tag{5}\\
0 & \left(q_{1}+q_{2}\right) / 2 & \left(q_{1}-q_{2}\right) / 2 & 0 \\
0 & \left(q_{1}-q_{2}\right) / 2 & \left(q_{1}+q_{2}\right) / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Eigenvalues of this matrix equal

$$
\begin{equation*}
\lambda_{1}=1-q_{1}-q_{2}, \quad \lambda_{2}=q_{1}, \quad \lambda_{3}=q_{2}, \quad \lambda_{4}=0 \tag{6}
\end{equation*}
$$

Owing to the non-negativity requirement for any density matrix, one obtains that the domain of definition for the parameters (arguments) q_{1} and q_{2} is restricted by conditions

$$
\begin{equation*}
q_{1} \geq 0, \quad q_{2} \geq 0, \quad q_{1}+q_{2} \leq 1 \tag{7}
\end{equation*}
$$

Thus, the domain in plane $\left(q_{1}, q_{2}\right)$ is the triangle \mathcal{T} which is shown in Fig. 1 .
One-way quantum deficit (quantum work deficit) for a bipartite state $\rho_{A B}$ is defined as the minimal increase of entropy after a von Neumann measurement on one party (without loss of generality, say, B) [15, 16, 17]

$$
\begin{equation*}
\Delta=\min _{\left\{\Pi_{\mathrm{k}}\right\}} S\left(\tilde{\rho}_{A B}\right)-S\left(\rho_{A B}\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\rho}_{A B}=\sum_{k}\left(I \otimes \Pi_{k}\right) \rho_{A B}\left(I \otimes \Pi_{k}\right)^{+} \tag{9}
\end{equation*}
$$

is the weighted average of post-measured states and $S(\cdot)$ means the von Neumann entropy. In Eqs. (8) and (9), $\Pi_{\mathrm{k}}(k=0,1)$ are the general orthogonal projectors

$$
\begin{equation*}
\Pi_{k}=V \pi_{k} V^{+} \tag{10}
\end{equation*}
$$

where $\pi_{k}=|k\rangle\langle k|$ and transformations $\{V\}$ belong to the special unitary group $S U_{2}$. Rotations V may by parametrized by two angles θ and ϕ (polar and azimuthal, respectively):

$$
V=\left(\begin{array}{cc}
\cos (\theta / 2) & -e^{-i \phi} \sin (\theta / 2) \tag{11}\\
e^{i \phi} \sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right)
$$

with $0 \leq \theta \leq \pi$ and $0 \leq \phi<2 \pi$.
Using Eq. (6) one gets the pre-measured entropy

$$
\begin{equation*}
S\left(q_{1}, q_{2}\right) \equiv S\left(\rho_{A B}\right)=-q_{1} \log q_{1}-q_{2} \log q_{2}-\left(1-q_{1}-q_{2}\right) \log \left(1-q_{1}-q_{2}\right) \tag{12}
\end{equation*}
$$

Fig. 1 Triangle \mathcal{T} in the plane $\left(q_{1}, q_{2}\right)$ with vertices $(0,0),(0,1)$, and $(1,0)$ is the permitted region for the parameters q_{1} and q_{2}. Dotted lines 1 and 1^{\prime} are the boundaries defined by the equation $\Delta_{0}=\Delta_{\pi / 2}$. Solid lines 2 and 2^{\prime} are the $\pi / 2$-boundaries. Dotted line 3 is the path $q_{1}+q_{2}=0.75$. Crosses (\times) at the points $(0,0.5)$ and $(0.5,0)$ mark the 0 -boundaries

Eigenvalues of the matrix $\tilde{\rho}_{A B}$ are equal to

$$
\begin{align*}
\Lambda_{1,2} & =\frac{1}{4} \llbracket 1+\left(1-q_{1}-q_{2}\right) \cos \theta \pm\left\{\left[1-q_{1}-q_{2}+\left(1-2 q_{1}-2 q_{2}\right) \cos \theta\right]^{2}\right. \\
& \left.+\left(q_{1}-q_{2}\right)^{2} \sin ^{2} \theta\right\}^{1 / 2} \rrbracket \\
\Lambda_{3,4} & =\frac{1}{4} \llbracket 1-\left(1-q_{1}-q_{2}\right) \cos \theta \pm\left\{\left[1-q_{1}-q_{2}-\left(1-2 q_{1}-2 q_{2}\right) \cos \theta\right]^{2}\right. \tag{13}\\
& \left.+\left(q_{1}-q_{2}\right)^{2} \sin ^{2} \theta\right\}^{1 / 2} \rrbracket .
\end{align*}
$$

It is seen that the azimuthal angle ϕ has dropped out from the given expressions. This is due to the fact that one pair of non-diagonal entries of the density matrix (5) vanishes. Using Eqs. (13) we arrive at the post-measured entropy (entropy after measurement)

$$
\begin{equation*}
\tilde{S}\left(\theta ; q_{1}, q_{2}\right) \equiv S\left(\tilde{\rho}_{A B}\right)=h_{4}\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right) \tag{14}
\end{equation*}
$$

where $h_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-\sum_{i=1}^{4} x_{i} \log x_{i}$ with additional condition $x_{1}+x_{2}+$ $x_{3}+x_{4}=1$ is the quaternary entropy function.

Notice that function \tilde{S} of argument θ is invariant under the transformation $\theta \rightarrow \pi-\theta$ therefore it is enough to restrict oneself by values of $\theta \in[0, \pi / 2]$. Moreover, the pre- and post-measured entropies S and \tilde{S}, as functions of q_{1} and q_{2}, are symmetric under the exchange $q_{1} \rightleftharpoons q_{2}$.

Equations（12）（14）define the measurement－dependent one－way deficit function $\Delta(\theta)=\tilde{S}(\theta)-S$ ．Direct calculations show that for every choice of model parameters the function $\tilde{S}(\theta)$ and hence $\Delta(\theta)$ possess an important property，namely their first derivatives with respect to θ identically equal zero at both endpoints $\theta=0$ and $\theta=\pi / 2$ ：

$$
\begin{equation*}
\tilde{S}^{\prime}(0)=\Delta^{\prime}(0) \equiv 0, \quad \tilde{S}^{\prime}(\pi / 2)=\Delta^{\prime}(\pi / 2) \equiv 0 . \tag{15}
\end{equation*}
$$

From Eqs．（13）and（14）we get the expressions for the post－measurement entropy at the endpoint $\theta=0$ ，

$$
\begin{equation*}
\tilde{S}_{0}\left(q_{1}, q_{2}\right)=-\left(1-q_{1}-q_{2}\right) \log \left(1-q_{1}-q_{2}\right)-\left(q_{1}+q_{2}\right) \log \left[\left(q_{1}+q_{2}\right) / 2\right] \tag{16}
\end{equation*}
$$

and at the second endpoint $\theta=\pi / 2$ ：

$$
\begin{equation*}
\tilde{S}_{\pi / 2}\left(q_{1}, q_{2}\right)=\log 2+h\left(\left(1+\sqrt{\left(1-q_{1}-q_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}}\right) / 2\right) \tag{17}
\end{equation*}
$$

where $h(x)=-x \log x-(1-x) \log (1-x)$ is the Shannon binary entropy function．Together with Eq．（12）they supply us with explicit expressions for the one－way deficit at the endpoints：$\Delta_{0}=\Delta(0)$ and $\Delta_{\pi / 2}=\Delta(\pi / 2)$ ．In particular，if q_{1} or q_{2} equals zero then $\Delta_{0}=q \log 2(=q$ ，bit），where $q=$ $\left\{q_{1}, q_{2}\right\}$ ．

Solving the transcendental equation

$$
\begin{equation*}
\Delta_{0}=\Delta_{\pi / 2} \tag{18}
\end{equation*}
$$

or，the same，$\tilde{S}_{0}=\tilde{S}_{\pi / 2}$ we find the subregions in the plane $\left(q_{1}, q_{2}\right)$ ，where $\Delta_{\pi / 2}<\Delta_{0}$（restricted in Fig． 1 by dotted curves 1 and 1^{\prime} and corresponding Cartesian axes $O q_{1}$ and $O q_{2}$ ）and where，v．v．，$\Delta_{0}<\Delta_{\pi / 2}$（marked in Fig．$⿴ 囗 十 ⺝$ by symbol Δ_{0} ）．The curve 1 has two endpoints on the axis $O q_{1}$ ：at $q_{1}=0.61554$ and $q_{1}=1$ ．Analogously for the curve 1^{\prime}（see Fig．（1）．

The 0 －and $\pi / 2$－boundaries，i．e．，where respectively the second derivatives

$$
\begin{equation*}
\Delta^{\prime \prime}(0)=0 \quad \text { and } \quad \Delta^{\prime \prime}(\pi / 2)=0 \tag{19}
\end{equation*}
$$

or，the same，$\tilde{S}^{\prime \prime}(0)=0$ and $\tilde{S}^{\prime \prime}(\pi / 2)=0$ ，will be needed below．As calculations yield，

$$
\begin{align*}
\tilde{S}^{\prime \prime}(\pi / 2) & =\frac{\left(q_{1}-q_{2}\right)^{2}}{2 r^{3}}\left[r^{2}-\left(1-2 q_{1}-2 q_{2}\right)^{2}\right] \ln \frac{1+r}{1-r} \\
& -\frac{\left(1-q_{1}-q_{2}\right)^{2}}{1-r^{2}}\left[1-2\left(1-2 q_{1}-2 q_{2}\right)\left(1-\frac{1-2 q_{1}-2 q_{2}}{2 r^{2}}\right)\right] \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
r=\sqrt{\left(1-q_{1}-q_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}} \tag{21}
\end{equation*}
$$

On the other hand，calculations show that the second derivative $\tilde{S}^{\prime \prime}(\theta)$ with respect to θ is finite at $\theta=0$ only when $q_{1} q_{2}=0$ ：

$$
\begin{equation*}
\tilde{S}^{\prime \prime}(0)=\frac{1-3 q+2 q^{2}}{2-3 q} \ln \frac{2(1-q)}{q} \tag{22}
\end{equation*}
$$

Fig. 2 Post-measurement entropy \tilde{S} vs θ by $q_{2}=0$ and $q_{1}=0.5$ (a), 0.55 (b), 0.65 (c), and 0.7 (d)
where again $q=\left\{q_{1}, q_{2}\right\}$. The roots of equation $\tilde{S}^{\prime \prime}(0)=0$ are $1 / 2$ and 1 . Thus, the bifurcation 0-boundary exists only if $q_{1}=0$ or, inversely, $q_{2}=0$ (that is, only at two points on each of the Cartesian axes $O q_{1}$ and $O q_{2}$). The corresponding 0 -boundaries $q_{1}=1 / 2$, when $q_{2}=0$, and $q_{2}=1 / 2$, when $q_{1}=0$ are shown in Fig. 1 by the crosses.

The results of numerical solution of the equation $\tilde{S}^{\prime \prime}(\pi / 2)=0$ are presented in Fig. 1 by solid lines 2 and 2^{\prime}. The endpoints for the curve 2 on the axis $O q_{1}$ are $q_{1}=0.67515$ and $q_{1}=1$. The curves 1 and 2 intersect at the point with coordinates $q_{1}=0.739409$ and $q_{2}=0.029686\left(q_{1}+q_{2}=0.769095\right)$. Analogously for the curves 1^{\prime} and 2^{\prime} with, of course, permutation of q_{1} and q_{2} (see again Fig. (1).

Let us consider the behavior of post-measured entropy $\tilde{S}(\theta)$ and nonminimized one-way deficit $\Delta(\theta)$ by moving along different trajectories (paths) in the triangle \mathcal{T}.

Start with the passing along the leg of triangle \mathcal{T}. Figure 2 shows the evolution of shape of the post-measured entropy $\tilde{S}\left(\theta ; q_{1}, 0\right)$ with changing the

Fig. 3 Measurement-dependent one-way quantum deficit $\Delta(\theta)$ along the line $q_{1}+q_{2}=0.75$ by $q_{1}=0.72(1), 0.72015(2)$, and $0.7205(3)$. The bimodality appearing from an inflection point is clearly seen
parameter q_{1}. The curve has the monotonically increasing behavior when the argument q_{1} varies from $q_{1}=0$ to $q_{1}=1 / 2$; see Fig. 2 (a). At the point $q_{1}=1 / 2$ a bifurcation of the minimum at $\theta=0$ occurs. Then, when q_{1} increases from 0.5 to 0.67515 , the curve $\tilde{S}(\theta)$ has, as shown in Figs. 2(b) and (c), the interior minimum, with the function $\tilde{S}(\theta)$ being here unimodal. So, the region with variable optimal angle ϑ takes up a part $0.17515 \approx 17.5 \%$ on the section $[0,1]$ of $O q_{1}$ axis and the fidelity of states at points $(0.5,0)$ and $(0.67515,0)$ is equal to $F=96.8 \%$. The position of such a local minimum smoothly increases from zero to $\pi / 2$; see again the curves in Figs. 2(b) and (c). The values of \tilde{S}_{0} and $\tilde{S}_{\pi / 2}$ become equal at the point $q_{1}=0.61554\left(\tilde{S}_{0}=\widetilde{S}_{\pi / 2}=1.57667 \mathrm{bit}\right.$, hence $\Delta_{\pi / 2}=\Delta_{0}=q_{1}=0.61554$ bit) and the depth of interior minimum is 0.01397 bit what gives a relative correction to the one-way deficit equaled $\delta \Delta=2.3 \%$. Then, at the value of $q_{1}=0.67515$, the system experiences a new sudden transition - from the branch, which is characterized by the continuously changing optimal angle ϑ in the full interval (from 0 to $\pi / 2$), to the branch $\tilde{S}_{\pi / 2}$ with constant optimal measurement angle equaled $\pi / 2$. After this the curves of post-measured entropy exhibit monotonically decreasing behavior as illustrated in Fig. 2(d). One should emphasize here that the minimized one-way quantum deficit, $\Delta=\min _{\theta} \Delta(\theta)$, vs the model parameter q_{1} is continuous and smooth. Nevertheless, the function $\Delta\left(q_{1}\right)$ has nonanalyticities at the points $q=0.5$ and 0.67515 which manifest themselves in higher derivatives.

[^1]

Fig. 4 Post-measured entropy \tilde{S} as a function of θ by $q_{2}=0.75-q_{1}$ and $q_{1}=0.7215$ (1), 0.7216 (2), and 0.7217 (3).

Consider now the behavior of post-measurement entropy and measurementdependent one-way deficit in the bulk area of \mathcal{T}. We can inspect the total domain taking all possible straight-line trajectories $q_{1}+q_{2}=$ const ≤ 1. The behavior of the system is, obviously, symmetric relative to the middle of such trajectories. Take, for instance, the trajectory $q_{1}+q_{2}=0.75$ which is shown in Fig. 1 by the straight line 3 . The shape of the curve $\Delta(\theta)$ has the monotonically increasing type in the middle of this trajectory ($q_{1}=q_{2}=0.375$). However, with the increase of the value of parameter q_{1}, the birth of a pair of extrema from an inflection point occurs inside the interval $(0, \pi / 2)$; the situation is illustrated in Fig. 3. This phenomenon happens at the value of $q_{1}=0.72015$. According to the definition (see, e.g., Ref. [20]) a function having two extrema in some interval is called bimodal on this interval.

With further increase of the q_{1} value a qualitatively new effect is observed. We demonstrate it by the curves $\tilde{S}(\theta)$ shown in Fig. (4. When the parameter q_{1} achieves the value of 0.72159 , the position of global minimum suddenly jumps through a finite step $\Delta \vartheta$ from zero to $\vartheta=1.0409 \approx 60^{\circ}$ (see Fig. (4). As a result, the fracture is arisen on the continuous curve of minimized one-way quantum deficit $\Delta\left(q_{1}\right)$. The position of the fracture point is determined from the equation $\tilde{S}_{0}=\tilde{S}_{\vartheta}$ or

$$
\begin{equation*}
\Delta_{0}=\Delta_{\vartheta} . \tag{23}
\end{equation*}
$$

After this the interior minimum lies lower than another minimum located at the endpoint $\theta=0$. Notice that behavior of curve 3 in Fig. 4 leads to a contradiction with Eq. (3), i.e., the equation is incorrect for general X states.

Fig. 5 Measurement-dependent one-way quantum deficit $\Delta(\theta)$ along the line $q_{1}+q_{2}=0.75$ by $q_{1}=0.722(a), 0.723(b), 0.727$ (c), and 0.75 (d). Minimum on the curve disappears at the endpoint $\theta=\pi / 2$ through the bifurcation mechanism whereas the maximum annihilates at the endpoint $\theta=0$ via the singularity mechanism

With further increasing q_{1} the interior minimum smoothly moves to the point $\theta=\pi / 2$ and disappears at $q_{1}=0.72358$ when the trajectory crosses the curve 2 , i.e., the $\pi / 2$-boundary (see Fig. (1). The dynamics of corresponding deformations of $\Delta(\theta)$ is depicted in Fig. 5. After crossing the $\pi / 2$-boundary, the behavior of Δ undergoes to the branch $\Delta_{\pi / 2}$ up to the point of contact of trajectory with the Cartesian axis, i.e., up to $q_{1}=0.75$, where the interior maximum of $\Delta(\theta)$ disappears at the endpoint $\theta=0$. This happens through a new non-bifurcation (and non-inflection) mechanism. Since the second derivative $\Delta^{\prime \prime}(\theta)$ at $\theta=0$ diverges out of the Cartesian axes we will call this mechanism the singular one.

As a result, the one-way quantum deficit is obtained from the final equation

$$
\begin{equation*}
\Delta=\min \left\{\Delta_{0}, \Delta_{\vartheta}, \Delta_{\pi / 2}\right\}, \tag{24}
\end{equation*}
$$

Fig. 6 One-way quantum deficit Δ vs q_{1} along the path $q_{1}+q_{2}=0.75$ is shown by solid line. Dotted line corresponds to the branch $\Delta_{\pi / 2}$. Fraction Δ_{ϑ} with variable optimal measured angle lies between two arrows. The transition $\Delta_{0} \leftrightarrow \Delta_{\vartheta}$ is displayed as a fracture on the curve $\Delta\left(\mathrm{q}_{1}\right)$ whereas the $\Delta_{\vartheta} \leftrightarrow \Delta_{\pi / 2}$ one is hidden - the curve is here continuous and smooth

Table 1 Jumps of optimal measured angles, $\Delta \vartheta$, on the boundary between the phases Δ_{0} and Δ_{ϑ}

q_{1}	q_{2}	$\Delta \vartheta$
0.5	0	$0=0^{\circ}$
0.544535	$0.55-q_{1}$	$0.1267 \approx 7^{\circ}$
0.588104	$0.6-q_{1}$	$0.2470 \approx 14^{\circ}$
0.631766	$0.65-q_{1}$	$0.4020 \approx 23^{\circ}$
0.676082	$0.7-q_{1}$	$0.6252 \approx 36^{\circ}$
0.721590	$0.75-q_{1}$	$1.0409 \approx 60^{\circ}$
0.739409	0.029686	$\pi / 2=90^{\circ}$

where Δ_{0} and $\Delta_{\pi / 2}$ are known in closed analytical forms and Δ_{ϑ} is found numerically. The behavior of one-way deficit along the trajectory $q_{1}+q_{2}=0.75$ is shown in Fig. 6

Either totally or partially similar behavior takes place for other trajectories $q_{1}+q_{2}=$ const which go lower the intersection point of curves defined by equations $\Delta_{0}=\Delta_{\pi / 2}$ and $\Delta^{\prime \prime}(\pi / 2)=0$, i.e, when const ≤ 0.769095. For example, in the case of trajectory $q_{1}+q_{2}=0.65$, the bimodality appears at $q_{1} \simeq 0.631$ and a jump of optimal measurement angle from zero happens at $q_{1}=0.631766$. Values of jump angles $\Delta \vartheta$ in different cases are collected in Table 1

A set of points where the optimal measurement angle discontinuously changes from zero to a finite value gives the jumping (or hopping) bound-

Fig. 7 A fragment of phase diagram. The boundary 1 is defined by equation $\Delta_{0}=\Delta_{\vartheta}$, 2 is the $\pi / 2$-boundary, and the boundary 3 is defined by equation $\Delta_{0}=\Delta_{\pi / 2}$. The black circle ((\bullet) is the intersection point of $\pi / 2$-boundary with equilibrium curve of phases Δ_{0} and $\Delta_{\pi / 2}$. (This figure represents a part of the domain of definition shown in Fig. 1)
ary; it serves instead of the absent ordinary 0-boundary (see Fig. 7). Between this boundary and the $\pi / 2$-one, there exists an intermediate phase (fraction) Δ_{ϑ} with state-dependent optimal measurement angle ϑ which smoothly varies from some nonzero value to $\pi / 2$. The flat of two subregions with variable optimal angle, Δ_{ϑ}, is near 1% of the one of total domain \mathcal{T}.

When const >0.769095 (i.e., when the trajectories lie above the black circle shown in Fig. 7), the situation is different. With increasing q_{1} from middle values to the endpoint on the axis $O q_{1}$ the curves $\tilde{S}(\theta)$ or $\Delta(\theta)$ are deformed from monotonically increasing shape to the shape with a single interior maximum (which is born at the point, where $\Delta^{\prime \prime}(\pi / 2)=0$) and then a sudden transition $\Delta_{0} \rightarrow \Delta_{\pi / 2}$ occurs at the boundary defined by the relation $\Delta_{0}=\Delta_{\pi / 2}$ (line 3 in Fig. (7). Here, there is no intermediate region Δ_{ϑ} and the transition $\Delta_{0} \rightarrow \Delta_{\pi / 2}$ is characterized visually by a fracture on the curve $\Delta\left(q_{1}\right)$. Typical behavior of one-way deficit is shown in Fig. 8 along the trajectory $q_{1}+q_{2}=0.8$.

So, the presented method to calculate the one-way quantum deficit of X states is reduced first of all to careful analyzing of the shapes of post-measured entropy or measurement-dependent one-way deficit curves. One should also solve equations for the boundaries between three possible phases (branches): Eqs. (18), (19), and (23). After this the one-way quantum deficit is obtained from the piecewise-analytical-numerical formula (24).

Fig. 8 Dependence of Δ vs q_{1} by $q_{2}=0.8-q_{1}$. Arrow marks the position of a fracture at the point $q_{1}=0.769269$, where the one-way deficit undergoes from the branch Δ_{0} to the $\Delta_{\pi / 2}$ one

3 Summary and concluding remarks

In this paper we have found that besides the monotonic and unimodal behavior the post-measured entropy and hence the measurement-dependent one-way quantum deficit upon the measurement angle can have a new kind of behavior. Namely, these functions can exhibit the bimodal shape in the open interval $(0, \pi / 2)$ for different regions in the space of X state parameters. This expands the variety of behavior for the one-way quantum deficit Δ. In particular, a new state-dependent phase (fraction) which is characterized by a partial interval of optimal measured angles has been found. Instead of smooth conjugation of the branches Δ_{0} and $\Delta_{\pi / 2}$ this leads to a fracture on the curve of one-way deficit.

New mechanism of a boundary arising between the phases via jumping the optimal measured angle on a finite step has been discovered. Instead of bifurcation conditions (19) the boundary is now determined by a relation like (23). The study of post-measured entropy shapes is the general way to determine the correct one-way quantum deficit.

This is in contrast with the behavior of conditional entropy and, consequently, measurement-dependent quantum discord in the same regions of parameter space: their behavior is restricted by monotonic and unimodal types. In any case, this rather simple and therefore attractive picture is valid for the different specific cases and subclasses of X states [10, 12, 13]. In particular, such a behavior of conditional entropy is confirmed for the symmetric XXZ states
[13 those may be written in an equivalent form as

$$
\begin{equation*}
\rho_{A B}=q_{1}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+q_{2}\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+q_{3}|00\rangle\langle 00|+q_{4}|11\rangle\langle 11| \tag{25}
\end{equation*}
$$

with $q_{1}+q_{2}+q_{3}+q_{4}=1$.
An intriguing question remains: are there any more general shapes of curves for the post-measured entropy of X states? For instance, can this entropy have trimodal and, maybe, multimodal dependence? The answer to these and other questions should come from the future investigations of post-measurement entropy shapes in the full five-parameter X-state space.

Acknowledgment The work was supported by the Russian Foundation for Basic Research.

References

1. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
2. Streltsov, A.: Quantum correlations beyond entanglement and their role in quantum information theory. SpringerBriefs in Physics. Springer, Berlin (2015); arXiv: 1411.3208 v 1 [quant-ph]
3. Adesso, G., Bromiey, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A: Math. Theor. 49, 473001 (2016)
4. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a review. arXiv:1703.10542v1 [quant-ph]
5. Ye, B.-L., Fei, S.-M.: A note on one-way quantum deficit and quantum discord. Quantum Inf. Process. 15, 279 (2016)
6. Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite $X Y$ chains. Phys. Rev. A 82, 042316 (2010)
7. Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A: Math. Theor. 45, 095303 (2012)
8. Jing, N., Yu, B.: Quantum discord of X-states as optimization of a one variable function. J. Phys. A: Math. Theor. 49, 385302 (2016)
9. Wang, Y.-K., Jing, N., Fei, S.-M., Wang, Z.-Y., Cao, J.-P., Fan, H.: One-way deficit of two-qubit X states. Quantum Inf. Process. 14, 2487 (2015)
10. Yurischev, M.A.: Quantum discord for general X and CS states: a piecewise-analyticalnumerical formula. arXiv: $1404.5735 \vee 1$ [quant-ph]
11. Yurishchev, M.A.: NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore. J. Exp. Theor. Phys. 119, 828 (2014); arXiv:1503.03316v1 [quant-ph]
12. Yurischev, M.A.: On the quantum discord of general X states. Quantum Inf. Process. 14, 3399 (2015)
13. Yurischev, M.A.: Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states. Quantum Inf. Process. 16:249 (2017); arXiv:1702.03728v3 [quant-ph]
14. Ye, B.-L., Wang, Y.-K., Fei, S.-M.: Measures and applications of quantum correlations. Int. J. Theor. Phys. 55, 2237 (2016)
15. Streltsov, A., Kampermann, H., Bruss, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)
16. Chanda, T., Pal, A.K., Biswas, A., Sen(De), A., Sen, U.: Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)
17. Chanda, T., Das, T., Sadhukhan, D., Pal, A.K., Sen(De), A., Sen, U.: Reducing computational complexity of quantum correlations. Phys. Rev. A 92, 062301 (2015)
18. Benedetti, C., Shurupov, A.P., Paris, M.G.A., Brida, G., Genovese, M.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013)
19. Sun, R., Ye, X.-J., Xu, J.-S., Xu, X.-Y., Tang, J.-S., Wu, Y.-C., Chen, J.-L., Li, C.F., Guo, G.-C.: Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 116, 160404 (2016)
20. Veroy, B.S.: An optimal algorithm for search of extrema of a bimodal function. J. Complexity 2, 323 (1986)

[^0]: M. A. Yurischev

 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia 142432
 E-mail: yur@itp.ac.ru

[^1]: 1 Note for comparison that in two-photon experiments one achieves now the values of fidelity $F=99.8(2) \%$ [18] and $F=99.8(1) \%$ 19].

