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A lower bound of concurrence for multipartite quantum systems
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We present a lower bound of concurrence for four-partite systems in terms of the concurrence for
M (2 ≤ M ≤ 3) part quantum systems and give an analytical lower bound for 2⊗ 2⊗ 2⊗ 2 mixed
quantum sates. It is shown that these lower bounds are able to improve the existing bounds and
detect entanglement better. Furthermore, our approach can be generalized to multipartite quantum
systems.
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I. INTRODUCTION

Quantifying entanglement is a basic and long standing problem in quantum information theory [1]. Concurrence
[2–6] is one of the well-accepted entanglement measures [7–12]. Different from the entanglement of formation which
is defined for bipartite systems, concurrence can be generalized to arbitrary multipartite systems. Nevertheless,
calculation of concurrence is a formidable task for higher-dimensional cases. For arbitrary S-dimensional bipartite
quantum states, Ref. [13] provided an analytical lower bound of concurrence by decomposing the joint Hilbert space
into many s (2 ≤ s ≤ S − 1)-dimensional subspaces, which may be used to improve all the known lower bounds of
concurrence. For arbitrary qubit systems, Ref. [14] provided analytical lower bounds of concurrence in terms of the
monogamy inequality of concurrence for qubit systems. For arbitrary N-partite S-dimensional quantum states, Ref.
[15] provided an analytical lower bound of concurrence in terms of the concurrence for N-partite s (2 ≤ s ≤ S − 1)-
dimensional quantum systems. More generally, for arbitrary N-partite arbitrary dimensional quantum states, Ref.
[17] provided an analytical lower bound of concurrence in terms of the concurrence for two part quantum systems.
A natural problem is whether the arbitrary dimensional N-partite quantum states can be dealt with M -partite
(2 ≤M ≤ N − 1) quantum systems.
In this paper we provide the lower bound of concurrence for 4-partite quantum states in terms of tripartite and

bipartite quantum systems. The generalized lower bound of concurrence can be generalized to the multipartite case.

II. LOWER BOUND OF CONCURRENCE FOR FOUR-PARTITE QUANTUM SYSTEMS

To investigate multi-entanglement we first introduce the M-partite concurrence in N-partite systems. For a pure
N-partite quantum state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗HN , dimHi = di, i = 1, ..., N , the concurrence of |ψ〉 is defined by
[6, 16]

CN (|ψ〉) = 21−
N
2

√

(2N − 2)−
∑

α

Tr(ρ2α), (1)

where ρα = Trᾱ(|ψ〉〈ψ|), α ⊆ {1, 2, ..., N}, ᾱ is the compliment of α, ρα labels all the different re-
duced density matrices of |ψ〉〈ψ|. We list all the 2N − 2 reduced matrices in the following way:
{ρ1, ρ2, ..., ρN , ρ12, ρ13, ..., ρ1N , ρ23, ..., ρ12...N−1, ..., ρ23...N}, by noticing that Tr(ρ2α) = Tr(ρ2ᾱ) for any pure states.
For a mixed multipartite quantum state, ρ =

∑

i pi|ψi〉〈ψi| ∈ H1 ⊗H2 ⊗ · · · ⊗ HN , the corresponding concurrence is
given by the convex roof extension,

CN (ρ) = min
{pi,|ψi}〉

∑

i

piCN (|ψi〉), (2)

where the minimum is taken over all possible pure state decompositions {pi, |ψi〉} of ρ. This multipartite concurrence
can be used to detect and classify various genuine multipartite entanglements. It has been shown in [17] that a
multipartite quantum state is genuinely multipartite entangled if the multipartite concurrence is larger than certain
quantities given by the number and the dimension of the subsystems.
For the N-partite quantum state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗HN , we denote the general M -partite decomposition of |ψ〉,

{i1}, ..., {iM1}, {k11, k12}, ..., {kM2

1
, kM2

2
}, ..., {qMj

1
, ..., q

Mj

j }, where all the subspaces in one bracket {} are taken to be

http://arxiv.org/abs/1801.00078v1


2

one part. Hence, {i1, ..., iM1 , k11 , k
1
2 , ..., k

M2

1
, kM2

2
, ..., q

Mj

1
, ..., q

Mj

j } = {1, 2, ..., N} and
∑j

k=1
Mk =M ,

∑j
k=1

kMk = N .

The concurrence of the state |ψ〉 under such M -partite partition is given by

CM (|ψ〉) = 21−
M
2

√

(2M − 2)−
∑

β

Tr(ρ2β), (3)

where β ∈ {{i1}, ..., {iM1}, ..., {qMj

1
, ..., q

Mj

j }}. Take N = 4 and M = 3 as an example, one has M1 = 2 and M2 = 1.

There are six different tripartite decompositions: 1|2|34, 1|23|4, 1|24|3, 12|3|4, 13|2|4 and 14|2|3. For convenience, we
denote Ci|jk|l(ρ) = C3(ρi|jk|l) and Cij|kl(ρ) = C2(ρij|kl).
Theorem 1: For any mixed quantum state, ρ ∈ H1 ⊗H2 ⊗H3 ⊗H4, the concurrence is bounded by

C2

4 (ρ) ≥ 1

12

(

2C2

1|2|34(ρ) + 2C2

1|3|24(ρ)

+ 2C2

1|4|23(ρ) + 2C2

12|3|4(ρ)

+ 2C2

13|2|4(ρ) + 2C2

14|2|3(ρ)

+ C2

12|34(ρ) + C2

13|24 + C2

14|23(ρ)
)

. (4)

[Proof:] We start the proof with a pure state |ψ〉 ∈ H1 ⊗ H2 ⊗H3 ⊗H4. According to the definition (1), one has
that

C4(|ψ〉) =
1

2

√

14−
∑

α

Tr(ρ2α)

=
1

2

√

∑

α

(1− Tr(ρ2α)), (5)

where ρα labels all the different reduced density matrices of |ψ〉〈ψ|. On the other hand, we have

C2

i|jk|l(|ψ〉) =
1

2

[

(1− Tr(ρ2i )) + (1− Tr(ρ2jk))

+ (1− Tr(ρ2l )) + (1− Tr(ρ2ijk))

+ (1− Tr(ρ2il)) + (1− Tr(ρ2jkl))
]

, (6)

and

C2

ij|kl(|ψ〉) = (1 − Tr(ρ2ij)) + (1− Tr(ρ2kl)). (7)

From (5), (6) and (7) , we have

C2

4 (|ψ〉) =
1

12

(

2C2

1|2|34(|ψ〉) + 2C2

1|3|24(|ψ〉)

+ 2C2

1|4|23(|ψ〉) + 2C2

12|3|4(|ψ〉)
+ 2C2

13|2|4(|ψ〉) + 2C2

14|2|3(|ψ〉)
+ C2

12|34(|ψ〉) + C2

13|24(|ψ〉) + C2

14|23(|ψ〉)
)

. (8)

Let ρ =
∑

i pi|ψ〉i〈ψ| be the optimal pure state decomposition of (2). We have

C4(ρ) =
∑

i

piC4(|ψ〉i)

=
∑

i

pi

√

1

6
C2

1|2|34(|ψ〉i) + ...+
1

6
C2

14|2|3(|ψ〉i) +
1

12
C2

12|34(|ψ〉i) + ...+
1

12
C2

14|24(|ψ〉i)

≥
√

(
∑

i

pi
1√
6
C1|2|34(|ψ〉i))2 + ...+ (

∑

i

pi
1√
12
C14|23(|ψ〉i))2

≥ 1√
12

(

2C2

1|2|34(ρ) + 2C2

1|3|24(ρ) + 2C2

1|4|23(ρ) + 2C2

12|3|4(ρ) + 2C2

13|2|4(ρ) + 2C2

14|2|3(ρ)

+C2

12|34(ρ) + C2

13|24(ρ) + C2

14|23(ρ)
)

1

2 , (9)
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where the Cauchy-Schwarz inequality (
∑

j(
∑

i yij)
2)

1

2 ≤∑i(
∑

j y
2

ij)
1

2 has been used in the second inequality.

For a mixed quantum state ρ ∈ H1 ⊗H2 ⊗H3 ⊗H4, a lower bound of C2

4
(ρ) has been derived based on bipartite

partitions in Ref. [17]. By using the following relation [17],

C2

i|j|kl(ρ) ≥
1

2

(

C2

i|jkl(ρ) + C2

ij|kl(ρ) + C2

ikl|j(ρ)
)

, (10)

from (4) we have

C2

4
(ρ) ≥ 1

12

(

2C2

1|2|34(ρ) + 2C2

1|3|24(ρ) + 2C2

1|4|23(ρ) + 2C2

12|3|4(ρ) + 2C2

13|2|4(ρ) + 2C2

14|2|3(ρ)

+ C2

12|34(ρ) + C2

13|24 + C2

14|23(ρ)
)

≥ 1

4

(

C2

1|234(ρ) + C2

2|134(ρ) + C2

3|124(ρ) + C2

4|123(ρ)

+ C2

12|34(ρ) + C2

13|24(ρ) + C2

14|23(ρ)
)

= ∆, (11)

where ∆ is the lower bound obtained in [17]. Hence, our bound (4) is better than the lower bound in [17] for
four-partite quantum mixed states.

III. ANALYTICAL LOWER BOUND FOR 2⊗ 2⊗ 2⊗ 2 MIXED STATES

Let HA, HB and HC be 2, 2 and 4-dimensional Hilbert spaces associated with the systems A, B and C, respectively.
A pure state |ϕ〉 ∈ HA ⊗HB ⊗HC has the form

|ϕ〉 =
1
∑

i=0

1
∑

j=0

3
∑

k=0

aijk|ijk〉, (12)

where aijk ∈ C,
∑

ijk |aijk|2 = 1, {|ijk〉} is the basis of HA ⊗HB ⊗HC . The concurrence of |ϕ〉 can be equivalently

written as [6],

C3(|ϕ〉) =
√

1

2

∑

(|aijkapqm − aijmapqk|2 + |aijkapqm − aiqkapjm|2 + |aijkapqm − apjkaiqm|2). (13)

To evaluate C3(ρ), we project 2 ⊗ 2 ⊗ 4 dimensional states to 2 ⊗ 2 ⊗ 2 sub-states. For a given 2 ⊗ 2 ⊗ 4

pure state, we define its “2 ⊗ 2 ⊗ 2” pure state |ϕ〉2⊗2⊗2 =
∑

1

i=0

∑

1

j=0

∑

k∈{k1,k2}
aijk|ijk〉, where {k1, k2} ∈

{{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}. In fact, for any 2 ⊗ 2 ⊗ 4 pure state |ϕ〉 , there are 6 different 2 ⊗ 2 ⊗ 2
substates with respect to |ϕ〉. Without causing confusion, in the following we simply use |ϕ〉2⊗2⊗2 to denote one of
such states, as these substates will always be considered together. The concurrence C(|ϕ〉2⊗2⊗2) is similarly given by
Eq. (13), with the subindices i and j, associated with the systems A and B respectively, running from 0 to 1, and
with the subindex k associated with the system C taking values k1 and k2
Correspondingly, for a mixed state ρ, we define its 2⊗2⊗2 mixed (unnormalized) substates ρ2⊗2⊗2. The concurrence

of ρ2⊗2⊗2 is defined by C(ρ2⊗2⊗2) = min
∑

i piC(|φi〉), minimized over all possible 2⊗2⊗2 pure-state decompositions
of ρ2⊗2⊗2 =

∑

i pi|φi〉〈φi|, with
∑

i pi = Tr(ρ2⊗2⊗2). The 2⊗ 2⊗ 2 submatrices ρ2⊗2⊗2 have the following form,

ρ2⊗2⊗2 =























ρ00k1,00k1 ρ00k1,00k2 ρ00k1,01k1 ρ00k1,01k2 ρ00k1,10k1 ρ00k1,10k2 ρ00k1,11k1 ρ00k1,11k2
ρ00k2,00k1 ρ00k2,00k2 ρ00k2,01k1 ρ00k2,01k2 ρ00k2,10k1 ρ00k2,10k2 ρ00k2,11k1 ρ00k2,11k2
ρ01k1,01k1 ρ01k1,00k2 ρ01k1,01k1 ρ01k1,01k2 ρ01k1,10k1 ρ01k1,10k2 ρ01k1,11k1 ρ01k1,11k2
ρ01k2,00k1 ρ01k2,00k2 ρ01k2,01k1 ρ01k2,01k2 ρ01k2,10k1 ρ01k2,10k2 ρ01k2,11k1 ρ01k2,11k2
ρ10k1,00k1 ρ10k1,00k2 ρ10k1,01k1 ρ10k1,01k2 ρ10k1,10k1 ρ10k1,10k2 ρ10k1,11k1 ρ10k1,11k2
ρ10k2,00k1 ρ10k2,00k2 ρ10k2,01k1 ρ10k2,01k2 ρ10k2,10k1 ρ10k2,10k2 ρ10k2,11k1 ρ10k2,11k2
ρ11k1,00k1 ρ11k1,00k2 ρ11k1,01k1 ρ11k1,01k2 ρ11k1,10k1 ρ11k1,10k2 ρ11k1,11k1 ρ11k1,11k2
ρ11k2,00k1 ρ11k2,00k2 ρ11k2,01k1 ρ11k2,01k2 ρ11k2,10k1 ρ11k2,10k2 ρ11k2,11k1 ρ11k2,11k2























, (14)
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where 0 ≤ k1 < k2 ≤ 3 associated to the space HC .
Theorem 2: For any 2⊗ 2⊗ 4 tripartite mixed quantum state ρ, the concurrence C(ρ) satisfies

C2

3 (ρ) ≥
1

3

∑

C2

3 (ρ2⊗2⊗2), (15)

where
∑

stands for summing over all possible 2⊗ 2⊗ 2 mixed sub-states ρ2⊗2⊗2.
[Proof]. From the expression of concurrence (13), it is straightforward to prove that the concurrence of pure state

|ϕ〉 and the concurrence of |ϕ〉2⊗2⊗2 with respect to |ϕ〉 have the following relation,

C2

3 (|ϕ〉) ≥
∑ 1

3
C2

3 (|ϕ〉2⊗2⊗2). (16)

Therefore for mixed state ρ =
∑

pi|ϕi〉〈ϕi|, we have

C3(ρ) = min
∑

i

piC3(|ϕi〉)

≥ min

√

1

3

∑

i

pi

(

∑

C2

3
(|ϕi〉2⊗2⊗2)

)
1

2

≥ min

√

1

3





∑

(

∑

i

piC3(|ϕi〉2⊗2⊗2)

)2




1

2

≥
√

1

3





∑

(

min
∑

i

piC3(|ϕi〉2⊗2⊗2)

)2




1

2

=

√

1

3

[

∑

C2

3 (ρ2⊗2⊗2)
]

1

2

,

where the relation (
∑

j(
∑

i xij)
2)

1

2 ≤∑i(
∑

j x
2

ij)
1

2 has been used in the second inequality, the first three minimizations
run over all possible pure state decompositions of the mixed state ρ, while the last minimization runs over all 2⊗2⊗2
pure state decompositions of ρ2⊗2⊗2 associated with ρ.

According to Theorem 1 and Theorem 2, we have the following Corollary 1:
Corollary 1: For any 2⊗ 2⊗ 2⊗ 2 mixed quantum state ρ, the concurrence C4(ρ) satisfies

C2

4
(ρ) ≥ 1

12





∑ 2

3
C2

3
(ρ2⊗2⊗2) +

∑

2≤j≤4

C2

1j|{1,2,3,4}\{1,j}(ρ)



 , (17)

where
∑

stands for summing over all possible 2 ⊗ 2 ⊗ 2 mixed sub-states ρ2⊗2⊗2 of ρi|j|kl, 1 ≤ i < j ≤ 4, {k, l} =
{1, 2, 3, 4} \ {i, j}).
For any four-qubit mixed quantum state ρ, Ref. [14] provided analytical lower bounds of concurrence in terms of

the monogamy inequality of concurrence:

C2

4 (ρ) ≥
1

2

3
∑

i=1

4
∑

j>i

(Ti + Tj)C
2

ij(ρ), (18)

where Ti (i = 1, 2, 3, 4) are given in Ref. [14] and the difference of a constant factor 1

2
defining the concurrence for

four qubit pure states has already been taken into account. The bounds given in Corollary 1 can be used to improve
the bounds of concurrence presented in [14]. Let us consider the following example.
Example: We consider the quantum state ρ = 1−t

16
I16 + t|ψ〉〈ψ|, where |ψ〉 = (|0000〉+ |0011〉+ |1100〉+ |1111〉)/2,

I16 is the 16× 16 identity matrix.
From our Theorem 1, we need to compute the lower bounds of Ci|j|kl(ρ) and Cij|kl(ρ). For convenience, we denote

Z1 =
(5t− 1)2

128
,

Z2 =
1

128
(1− 9t)2(1 + t)2,
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Z3 = − 1

256
(1 + t)2

[

5(−51 + 4
√
17)t2 + (26 + 4

√
17)t− 3

]

,

and

Z4 =
3(1 + t)4

128

(√

1 + 7t

4(t+ 1)
− 3

√

1− t

4(t+ 1)

)2

.

For C(ρi|j|kl), we use Theorem 2 and the lower bound of [15] of 2 ⊗ 2 ⊗ 2 mixed states. We obtain the lower bound

Z of
∑

1≤i<j≤4,{k,l}={1,2,3,4}/{i,j} C
2

i|j|kl(ρ):

Z =















2Z2, t ∈ (
1

9
, 0.2],

32Z1 + 2Z2, t ∈ (0.2, 0.308051],

32Z1 + Z2 + Z3, t ∈ (0.308051, 1].

For C(ρij|kl), we use the lower bound of [13]. We have

∑

1<j≤4,{k,l}={1,2,3,4}\{1,j}

C2

1j|kl(ρ) ≥ Z4

with t ∈ (0.5, 1].
Then the lower bound of C2

4
(ρ) can be obtained, see Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.1

0.2

0.3

0.4

C2

Fig. 1: Lower bound of C2

4(ρ) for 0 ≤ t ≤ 1 .

From Fig. 1, we see that the lower bound can detect entanglement of ρ for t > 1

9
. From Fig. 2, we see that the our

result is better than the lower bound from [17] and [14] for t ∈ (1
9
, 0.4), where the difference of a constant factor 1

2
in

defining the concurrence for four qubit pure states has already been taken into account.
By generalizing our results to arbitrary dimensional n-partite systems, we have
Corollary 2: For any N -partite arbitrary dimensional mixed state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN ,

C2

N (ρ) ≥
M
∑

m=2

qm
∑

i

C2

i1
1
i1
2
...i1

k1
|i2

1
i2
2
...i2

k2
|...|im

1
im
2
...im

km

(ρ), (19)

where 2 ≤ M ≤ N − 1,
∑m

i=1
km = N , {i11, ..., i1k1 , ..., im1 im2 ...imkm} = {1, 2, ..., n} and qm is a fixed number depending

on k1, k2, · · · , km.
Corollary 2 says that the lower bound of the concurrence of an N-partite quantum state can be expressed by the

concurrences of its 2, 3, ..., N − 1-partite substates.
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0.15 0.20 0.25 0.30 0.35 0.40
t

0.005

0.010

0.015

0.020

0.025

C2

Fig. 2: Dashed line for the bound (4), dotted line for that from Ref. [17], solid line for that from Ref. [14].

IV. CONCLUSIONS AND REMARKS

In summary, we have proposed a new approach in constructing hierarchy of lower bounds of concurrence for mixed
multipartite quantum states in terms of the less part decomposed quantum systems. Besides, our approach can be
generalized to N part systems to obtain the lower bound of the concurrence for M (2 ≤M ≤ N − 1) part systems.
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