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Analytical expression for variance of homogeneous-position quantum walk with

decoherent position

Mostafa Annabestani∗

Department of Physics, Shahrood university of technology, Shahrood, Iran

We have derived an analytical expression for variance of homogeneous-position decoherent quan-
tum walk (HPDQW) with general form of noise on its position, and have shown that, while the
quadratic (t2) term of variance never changes by position decoherency, the linear term (t) does and
always increases the variance. We study the walker with ability to tunnel out to d nearest neigh-
bors as an example and compare our result with former studies. We also show that, although our
expression have been derived for asymptotic case, the rapid decay of time-dependent terms cause
the expressions to be correct with a good accuracy even after dozens of steps.

I. INTRODUCTION

Quantum walks are actually the quantum counterparts
of the classical random walks. The main difference be-
tween these two, comes from very fundamental quan-
tum properties such as superposition and interference [1].
Two types of quantum walks have been introduced: dis-
crete time quantum walks (DTQW) and continuous time
quantum walks (CTQW) [2, 3]. The relation between
these two was not clear for a long time, but is known
nowadays [4].
Quantum walks have attracted much attention in the

recent years, not only because they are exploited to de-
sign powerful quantum algorithms [5–7], but also they
can be used as a universal model for quantum computa-
tions [8, 9]. Quantum walks have been investigated from
different points of views such as their propagation speed
[10–12], entanglement between coin and position of the
walker [13–15], quantum walks in higher dimensions [16]
and quantum walks as an entanglement generator [17].
Even though different experiments are conducted for

quantum walks [18–20], more advanced and applied ex-
periments are practically challenging, one of the most im-
portant problem is the interaction of quantum walk sys-
tem with its environment. These interactions can elim-
inate the quantum properties of the system and change
it to a classical one, therefore many research topics are
focused on decoherency and the effects of noise on quan-
tum walks [21–25]. Especially it is proven that noise in
the coin space eliminates the quantum properties of the
walk and changes it to a classical random walk[22, 26].
Although weak noise can enhance the properties of quan-
tum walk in such a way that to be useful and desirable
for developing quantum algorithms [27], it is shown that
increasing the noise level, eliminates all quantum prop-
erties and changes it to a classical system [26]. One may
concludes that any kind of noise can eliminate the quan-
tum properties and change the system to a classical one,
but it is shown that if the environmental noise allows the
walker to tunnel out into its closest neighbor with a de-
fined probability, not only the quantum walk does not
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transit to a classical one, but also it helps to improve
quantum properties [28].
In this paper we assume general form of noise on the

position of one dimensional homogeneous-position quan-
tum walk and investigate whether the system makes tran-
sition from quantum to classic. We show that for any
kinds of noise on the position of walker, the system keeps
its quantum properties. We also find an exact analytical
form of variance in the presence of general noise on po-
sition as well as a numerical calculation of coin-position
entanglement (CPE) as two witnesses of our claim.
This work is organized as follows. Sec.II gives a brief

review on the structure of one-dimensional QW and
Kraus representation for study of decoherency. We have
devoted Sec.III to introduce the analytical expressions
for the first and second moments in the presence of gen-
eral noise. By assuming general form of noise on the
position of a quantum walker, an analytical compact for-
mula for variance of one-dimensional quantum walk with
general initial state is derived in Sec.IV. This formula
is then used in Sec.V to analyze a quantum walker with
noise on its position which enables it to tunnel out to
its neighbors. We summarize our results and present our
conclusions in Sec.VII.

II. BACKGROUND

Quantum Walk (QW) on a line is defined as a quan-
tum system with two Hilbert spaces, the coin space
Hc spanned by {|L〉, |R〉}, and the position space Hp,
spanned by {|i〉 | i = −∞, · · · ,∞}. For each steps of
walking, we need to apply the following unitary operator

Uw = S (I ⊗ Uc), (1)

where Uc ∈ U(2) is the coin operator and

S =
∑

x

|x+ 1〉 〈x| ⊗ |R〉 〈R|+ |x− 1〉 〈x| ⊗ |L〉 〈L|, (2)

is conditional shifting operator. Therefore the evolution
of system is

|Ψ(t+ 1)〉 = Uw|Ψ(t)〉 → |Ψ(t)〉 = Uw
t|Ψ(0)〉. (3)
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This equation, in fact, describes the coherent evolution
of the system, but in practice, it is impossible to isolate
the system from its environment. So, unavoidable inter-
action with the environment affects the coherent evolu-
tion of the system and decoherency occurs.

One of the most important approaches which is use-
ful to investigate the decoherency, is the Kraus repre-
sentation [29]. In order to review it briefly, we define
HE as the Hilbert space of the environment, spanned by
{|en〉 | n = 0 · · ·m} where m + 1 is the dimension of
it. The system is not isolated from its environment, so
the whole system (system + environment) is defined on
a larger Hilbert space (H = HW ⊗ HE) which evolving
together. One who only needs the state of the system,
can obtain it by tracing over the environment’s degrees
of freedom

ρsys = Trenv
(

UρU †) . (4)

Without loss of generality, we assume that the states of
the system (ρ0) and the environment (|χ0〉〈χ0|) are ini-
tially unentangled (ρ = ρ0 ⊗ |χ0〉〈χ0|). So, we can write
Eq. (4) as

ρsys =

m
∑

n=0

〈en|U |χ0〉 ρ0 〈χ0|U
† |en〉 =

m
∑

n=0

Enρ0E
†
n, (5)

where {En = 〈en|U |χ0〉 | n = 0, 1, · · · ,m} are Kraus op-
erators. These operators satisfy the following complete-
ness relation [29]

∑

n

En
†En = I. (6)

By definition of Kraus operators, one step of walking
can be written as

ρ (t+ 1) =

m
∑

n=0

Enρ (t)E
†
n, (7)

and the state of the walker after t steps is

ρ (t) =

m
∑

nt=0

...

m
∑

n2=0

m
∑

n1=0

Ent
...En2

En1
ρ (0)E†

n1
E†

n2
...E†

nt
.

(8)
This equation is general and one can obtain Kraus

operators En and use this equation to find the final
state of the walker. Unfortunately this equation is
more complicated than that can be used for analytical
calculations, but in some cases it can be simplified
using some mathematical tricks. Brun [22] has been
derived a compact analytical formula for the first and
the second moments of probability distribution of one
dimensional quantum walk in the presence of coin only
decoherence and Annabestani et al [25] have generalized
Brun approach and have found a compact formula for
moments in general form of decoherence. In the next
section we briefly explain their approach.

III. MOMENTS OF DECOHERENT QUANTUM

WALK

En are operators that act on the system
(coin+position) Hilbert space. Therefore one can
write the general form of En as follows

En =
∑

x,x′

∑

i,j

a
(n)
x,x′,i,j |x

′〉 〈x| ⊗ |i〉 〈j|

=
∑

x

∑

l

∑

i,j

a
(n)
x,l,i,j |x+ l〉 〈x| ⊗ |i〉 〈j|,

(9)

where x, l = −∞, · · · ,∞ and i, j = {L,R}.

In [25], we have shown that if the coefficients a
(n)
x,l,i,j

do not depend on x, (a
(n)
x,l,i,j ≡ a

(n)
l,i,j) (this is why we

call it homogeneous-position QW ) then we can derive
analytical expressions for the first and second moments
of position as follows

〈x〉t = i

∫ π

−π

dk

2π

t
∑

m=1

Tr
{

Gk

(

Lm−1
k |ψ0〉〈ψ0|

)}

〈

x2
〉

t
=

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

Tr
{

G†
kL

m−m′−1
k

(

GkL
m′−1
k |ψ0〉〈ψ0|

)

+ GkL
m−m′−1
k

(

G†
kL

m′−1
k |ψ0〉〈ψ0|

)}

+

∫ π

−π

dk

2π

t
∑

m=1

Tr
{

Jk

(

Lm−1
k |ψ0〉〈ψ0|

)}

.

(10)

in this equation

LkÕ = Lk,k′ Õ
∣

∣

∣

k′=k
(11)

GkÕ = Gk,k′ Õ
∣

∣

∣

k′=k
(12)

JkÕ =
dG†

k,k′ Õ

dk

∣

∣

∣

∣

∣

k′=k

=
∑

n

dCn (k)

dk
Õ
dC†

n (k′)

dk′

∣

∣

∣

∣

∣

k′=k

(13)
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where

Lk,k′ Õ =
∑

n

Cn (k) ÕC
†
n (k′) (14)

Gk,k′ Õ =
∑

n

dCn (k)

dk
ÕC†

n (k′) (15)

with

Cn (k) =
∑

l

∑

i,j

a
(n)
l,i,je

−ilk |i〉 〈j|. (16)

In (10) the initial state has been assumed as (in k-
space)

ρ0 =

∫∫

dkdk′

4π2
|k〉 〈k′| ⊗ |ψ0〉 〈ψ0|. (17)

IV. NOISE ON POSITION OF HPDQW

In this section, we will show that if only the position
of HPDQW is subject to decoherence, its variance never
transits to classical one. This is the main result of our
paper and we will derive general form of variance in the
presence of position decoherency as well.
Let us define our model as a case in which only the

position of walker is affected by the environmental inter-
actions. So one step of walking can be written as

ρ (t+ 1) =
m
∑

n=0

PnUρ (t)U
†P †

n, (18)

where U is responsible for the coherent evolution of
walker defined in (1) and Pn is a general operator on
the position subspace, which can be written as

Pn =
∑

x′,x

p
(n)
x,x′ |x

′〉 〈x| ⊗ I =
∑

x,l

p
(n)
x,l |x+ l〉 〈x| ⊗ I.

(19)

We restrict our attention to the one dimensional quan-
tum walk with homogeneous position (pnx,l ≡ pnl ) as

Annabestani et al assumed in [25], so

Pn =
∑

x,l

p
(n)
l |x+ l〉 〈x| ⊗ I. (20)

By using Fourier transformation

|x〉 =

π
∫

−π

dk

2π
e−ikx |k〉, (21)

Pn has a diagonal form in k-space as

P̃n =

π
∫

−π

dk

2π
Fn (k) |k〉 〈k| ⊗ I, (22)

where

Fn(k) =
∑

l

p
(n)
l e−ilk. (23)

From (18) it is clear that

En = PnU. (24)

So by using the explicit form of U in (1),(2) and Pn in
(20) it is not difficult to calculate

Cn(k) = Fn(k)U(k) (25)

where Fn(k) is defined in (23) and

U (k) =

(

e−ik 0
0 eik

)

UC . (26)

We should note that En in (24) is non diagonal in x-
space, while it is block-diagonal in k-space with blocks
Cn(k). So completeness relation of (6) implies that

∑

n

Cn(k)
†Cn(k) = I, (27)

which it means
∑

n

F ∗
nFn =

∑

n

FnF
∗
n = 1. (28)

In order to finding Gk,k′ and Jk in (15),(13) we need

dCn(k)

dk
= Ḟn (k)U (k)− iFn (k)ZU (k) (29)

where Ḟn (k) = dF (k)/dk and Z is Pauli matrix σz . By
inserting this equation and (25) into (11)-(13), we have

Lk =
∑

n

FnUÔF
∗
nU

† =

(

∑

n

FnF
∗
n

)

UÔU †

Gk =
∑

n

(

ḞnU − iFnZU
)

Ô
(

Fn
∗U †)

=
∑

n

(

F ∗
n Ḟn − iZL

)

UÔU †

Jk =
∑

n

(

ḞnU − iFnZU
)

Ô
(

Ḟ ∗
nU

† + iF ∗
nU

†Z
)

=
∑

n

(

Ḟ ∗
n Ḟn + iF ∗

n ḞnZR − iḞ ∗
nFnZL + ZLZR

)

UÔU †

(30)

where ZLÔ ≡ ZÔ and ZRÔ ≡ ÔZ.
For simplicity we define |F 〉 ≡ ~V as a complex vec-

tor with elements Vi = Fi(k), i = 0 . . .m and WkÔ ≡

U(k)ÔU †(k). By these definitions

Lk = Wk

Gk =
(

〈F |Ḟ 〉 − iZL

)

Wk

Jk =
(

〈Ḟ |Ḟ 〉+ 2Re
(

i〈F |Ḟ 〉ZR

)

+ ZLZR

)

Wk

(31)
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in which we use (28).

In this paper we use Bloch representation [29], in which
any two-by-two density matrix can be represented by
four-dimensional column vector ~r as

Ô =

3
∑

i=0

riσi ≡







r0
r1
r2
r3






, (32)

where σi are Pauli matrices and ri = Tr(Ôσi)/2. In this
representation any trace preserve quantum operator ǫ is
equivalent to a map of the form

ǫ(Ô) = Ô′ ≡ ~r → ~r′ =M~r + ~c, (33)

where M is a four-by-four matrix and ~c is a constant
vector.

Using Bloch representation it is easy to see that

ZR = Z∗
L ≡







0 0 0 1
0 0 i 0
0 −i 0 0
1 0 0 0






(34)

and trace preserve super operator Wk is

Wk ≡







1 0 0 0
0 0 sin (2k) cos (2k)
0 0 − cos (2k) sin (2k)
0 1 0 0






(35)

By inserting Super operators of (31) into (10) and as-
suming general form of initial state as

|ψ0〉 〈ψ0| =







1/2
r1
r2
r3






(36)

〈x〉t = i

∫ π

−π

dk

2π

t
∑

m=1

Tr
{(

〈F |Ḟ 〉 − iZL

)

Wm
k |ψ0〉〈ψ0|

}

= 2i
(

〈F |Ḟ 〉 0 0 −i
)

Γ1 (t)







1/2
r1
r2
r3







(37)

where

Γ1 (t) =

∫ π

−π

dk

2π

t
∑

m=1

Wm
k . (38)

In order to find the second moments we use these facts
that, 〈F |Ḟ 〉 is pure imaginary (see (23)) and G†

k = G∗
k .

So the first row of Gk and G†
k are equal with different sign

which can be useful to simplify the first term of 〈x2〉t in
(10) as

I1 = 2

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

(

〈F |Ḟ 〉 0 0 −i
)

Wm−m′

k

(

G†
k − Gk

)

Wm′−1
k |ψ0〉〈ψ0|

= 2

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

(

〈F |Ḟ 〉 0 0 −i
)

Wm−m′

k

(

−2〈F |Ḟ 〉+ i(ZL + ZR)
)

Wm′

k







1/2
r1
r2
r3







= 2
(

〈F |Ḟ 〉 0 0 −i
)

∫ π

−π

dk

2π

{

− 2〈F |Ḟ 〉
t
∑

m=1

m−1
∑

m′=1

Wm
k + i

t
∑

m=1

m−1
∑

m′=1

Wm−m′

k (ZL + ZR)W
m′

k

}







1/2
r1
r2
r3






.

(39)

The calculation of the first term in this integral is
straightforward and we just need

Γ2(t) =

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

Wm
k , (40)

but the second term needs more attention. In order to

calculate it, we note that

ZL + ZR =







0 0 0 2
0 0 0 0
0 0 0 0
2 0 0 0






(41)
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so

t
∑

m=1

m−1
∑

m′=1

Wm−m′

k (ZL + ZR)W
m′

k







1/2
r1
r2
r3







=
t
∑

m=1

m−1
∑

m′=1

Wm−m′

k







f(m′, k, ~r)
0
0
1







=

t
∑

m=1

m−1
∑

m′=1







f(m′, k, ~r)
0
0
0






+

t
∑

m=1

m−1
∑

m′=1

Wm−m′

k







0
0
0
1







(42)

where

f(m′, k, ~r) = 2











Wm′

k







1/2
r1
r2
r3

















4

. (43)

Note that we can write

t
∑

m=1

m−1
∑

m′=1

Wm−m′

k ≡

t
∑

m=1

m−1
∑

m′=1

Wm′

k (44)

because when m′ goes from 1 to m − 1, the power of
m−m′ changes from m− 1 to 1, so we can easily reverse
the order of terms in the inner summation. So the simple
final form of I1 from (39) can be written as

I1 = 2
(

〈F |Ḟ 〉 0 0 −i
)

~V (45)

with

~V = −2〈F |Ḟ 〉Γ2(t)







1
2
r1
r2
r3






+







iγ(t)
0
0
0






+ Γ′

2(t)







0
0
0
i







(46)
where

γ(t) =

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

f(m′, k, ~r) (47)

Γ′
2(t) =

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

Wm′

k

and the last term of 〈x2〉t in (10) will be

I2 = 2
(

〈Ḟ |Ḟ 〉+ 1 0 0 2Re(i〈F |Ḟ 〉)
)

Γ1 (t)







1/2
r1
r2
r3







Now our problem reduces to calculations of Γ1,Γ2,Γ
′
2

and γ. For this purpose we use spectral decomposition

which needs eigenvalues and the corresponding eigenvec-
tors of Wk. By straightforward calculations, we have

λ1 = λ2 = 1 , λ3 = ei(θ+π) , λ4 = e−i(θ+π), (48)

and

|e1〉 = 1

N1









sin (k)
cos (k)
sin (k)
cos (k)









|e2〉 = 1

N2









−2
(

cos2 (k) + 1
)

sin (2k)
2 sin2 (k)
sin (2k)









(49)

|e3〉 = |e4〉∗ =
1

N3









0
sin (2k) e2iθ

1− cos (2k) e2iθ

− sin (2k) eiθ









,

where cos (θ) = cos2 (k) and N1, N2, N3 are normalization
factors. So we can write Γ1 (t) in (38) as

Γ1 (t) =

∫ π

−π

dk

2π

t
∑

m=1

Wm
k (50)

=

∫ π

−π

dk

2π

t
∑

m=1

{

|e1〉 〈e1|+ |e2〉 〈e2|

+ e
im(θ+π) |e3〉 〈e3|+ e

−im(θ+π) |e4〉 〈e4|
}

= tA−B

where

A =

∫ π

−π

dk

2π
(|e1〉 〈e1|+ |e2〉 〈e2|) (51)

=









1 0 0 0
0 α 0 α
0 0 1− 2α 0
0 α 0 α









with α = 1−
√
2

2
and

B =

∫ π

−π

dk

2π
2Re

(

eiθ

1 + eiθ
|e3〉 〈e3|

)

(52)

=









0 0 0 0

0
√

2
4

0 3
√

2
4

− 1
0 0 α 0

0 −
√

2
4

0
√

2
4









.

For Γ2 in (40), we can write

Γ2 (t) =

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

Wm
k =

∫ π

−π

dk

2π

t
∑

m=1

(m− 1)Wm
k

=

∫ π

−π

dk

2π

t
∑

m=1

mWm
k − Γ1 (t) (53)
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where we have used (50) for the last term. Calculation of the
first term needs more attention and can be written as

∫ π

−π

dk

2π

t
∑

m=1

mWm
k =

∫ π

−π

dk

2π

t
∑

m=1

m
{

|e1〉 〈e1|+ |e2〉 〈e2|

+ e
im(θ+π) |e3〉 〈e3|+ e

−im(θ+π) |e4〉 〈e4|
}

=
t

2
(t+ 1)A− C (54)

where

C =

∫ π

−π

dk

2π
2Re

(

eiθ

(1 + eiθ)2
|e3〉 〈e3|

)

(55)

=









0 0 0 0

0 3
√

2
16

0 −
√

2
16

0 0
√

2
8

0

0 −
√
2

16
0 3

√
2

16









Note that we use the fact that meim(θ+π) ≡ −i ∂
∂θ

eim(θ+π).
By putting (54) and (50) into (53) we see that,

Γ2 (t) =
t

2
(t− 1)A+B − C. (56)

Γ′
2 (t) is the last matrix we need to calculate,

Γ′
2 (t) =

∫ π

−π

dk

2π

t
∑

m=1

m−1
∑

m′=1

Wm′

k

=

∫ π

−π

dk

2π

{

t

2
(t− 1) (|e1〉 〈e1|+ |e2〉 〈e2|) (57)

+ 2ℜ
(

−teiθ

1 + eiθ
+

eiθ

(1 + eiθ)2
|e3〉 〈e3|

)

}

=
t

2
(t− 1)A− tB + C (58)

Now by putting everything together

σ
2 =

〈

x
2〉− 〈x〉2 = at

2 + bt+ c, (59)

where

a = α− 4α2 (r3 + r1)
2

b = 2
√
2α
(

r
2
3 − r

2
1

)

+ 〈Ḟ |Ḟ 〉+ 〈F |Ḟ 〉2

c = −1

2
(r3 − r1)

2 +
3
√
2

8
.

(60)

We see that, the quadratic term of variance (a) does not
depend on |F 〉 which means that, the position decoherency
keeps the variance quadratic. On the other hand |F 〉 appears
in the linear term (b) in the form of 〈Ḟ |Ḟ 〉+ 〈F |Ḟ 〉2 which is
positive and increases the linear term b. We should note that,
although we derive our formula in asymptotic case (t → ∞),
but very fast decay of time-dependent terms implies that (60)
to be a good approximation even for finite number of steps.

V. EXAMPLE

Suppose a quantum walker on a line which is able to move
to its right and left neighbors with probabilities p and q re-
spectively. If we assume that the walker only moves to the

nearest neighbors, then one step of walking can be written as

ρt+1 =(1− (p+ q))UρtU
†

+ pS+UρtU
†
S

†
+ + qS−UρtU

†
S

†
− (61)

where S± =
∑

x
|x± 1〉 〈x| are shifting operators. If the

walker is able to move to the next nearest neighbors too, then

ρt+1 =
(

1−
(

p
2 + q

2 + 2pq
))

UρtU
†

+ p
2S2

+UρtU
† + q

2S2
−UρtU

† (62)

+ 2pqS+S−UρtU
†

in which we have used super operators S±Õ = S±ÕS
†
± for

simplicity. This model can be extended to general case in
which the walker can move to dth neighbors. So

ρt+1 =

(

1−
d
∑

j=0

(

d
j

)

p
d−j

q
j

)

UρtU
†

+

d
∑

j=0

(

d
j

)

(pS+)
d−j (qS−)

j
UρtU

†
.

(63)

It is not difficult to show that Sd−j
+ Sj

− ≡ Sd−2j
+ . If we make

some simplifications and back to the operator notations

ρt+1 =
(

1− (p+ q)d
)

UρtU
†

+
d
∑

j=0

(

d
j

)

p
d−j

q
j
S+ (d− 2j)UρtU

†
S+ (d− 2j)†

(64)

in which we have used S+ (r) =
∑

x
|x+ r〉 〈x|. By comparing

(64) with (18), (19) we have

P0 =

√

1− (p+ q)d

Pj+1 =

(
√

(

d
j

)

pd−jqj

)

S+ (d− 2j) , j = 0 . . . d
(65)

So from (20) and (23)

F0 =

√

1− (p+ q)d

Fj+1 =

(
√

(

d
j

)

pd−jqj

)

e
−i(d−2j)k

, j = 0 . . . d
(66)

therefore

|F 〉 =































√

1− (p+ q)d

p
d

2 e−idk

...
(
√

(

d
j

)

pd−jqj

)

e−i(d−2j)k

...

q
d

2 eidk































(67)

and finally

〈F |Ḟ 〉 =− i

d
∑

j=0

(d− 2j)

(

d
j

)

p
d−j

q
j (68)

〈Ḟ |Ḟ 〉 =
d
∑

j=0

(d− 2j)2
(

d
j

)

p
d−j

q
j (69)



7

FIG. 1: (Color online) G versus β for various d and
P = 1

4

.

after some calculations we have

〈F |Ḟ 〉 =− id (p+ q)d−1 (p− q) (70)

〈Ḟ |Ḟ 〉 =d (p+ q)d−2
(

d (p− q)2 + 4pq
)

(71)

so the effect of decoherency which appears only in the coeffi-
cient b in (60) can be written as

G (β, d, P ) = 〈Ḟ |Ḟ 〉+ 〈F |Ḟ 〉2 (72)

= dP
d
(

d (2β − 1)2
(

1− P
d
)

+ 4β (1− β)
)

in which we rewrite the equation in terms of β and P using
p = βP and q = (1− β)P . P is the probability of movement
and β is the probability of moving to right in each step.

Clearly G (β, d, P ) ≥ 0, so any neighbor-movement de-
coherency increase the variance of probability distribution.
G (β, d, P ) has an extremum at β = 1

2
(unbiased movement)

and it is symmetric around this point (Fig. 1). At this point,
G (β, d, P ) has very simple form

G

(

1

2
, d, P

)

= dP
d (73)

this function shows that, for small value of P , grater value of
G
(

1
2
, d, P

)

is achievable by smaller d whereas for larger value
of P , larger d is needed (Fig. 2). Note that we define P as the
probability of one movement . So in the case with d allowable
neighbors, we will have d-movements terms with probability
proportional to P d. From (64) we can see that the walker
with probability 1 − P d does not move while it moves and
spreads through the d nearest neighbors with probability P d.
We define Pt = P d as the total probability of movements.
With Pt we are able to investigate the influence of d in QW.
In other words, if the walker with probability Pt moves to
neighbors, what the differences are, if it moves farther?

VI. QUANTUM BEHAVIOR AND SPEED UP

The variance and the standard deviation of probability dis-
tribution are related to the speed of spreading which is poten-
tially related to the speed of quantum walk based algorithms.

FIG. 2: (Color online) G versus P for various d and
β = 1

2

.
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d=1,P=0.25 (Numerical)
d=1,P=0.25 (Analytic)
d=2,P=0.75 (Analytic)
d=2,P=0.75 (Numerical)

FIG. 3: (Color online) σ2 versus t for coherent case
(lower curve), decoherent case with d = 1 ,P = 0.25

(middle curve) and decoherent case with d = 2
,P = 0.75 (upper curve). The discrete symbols are

respective numerical results

.

How much speed up we have, if the walker is able to move
to its neighbors? If we believe that our results are correct only
for asymptotic regime, then the answer of this question would
be “nothing” because we can neglect b in t → ∞, but we can
show that with excellent accuracy, all results are correct, even
for dozens of steps.

As the evidences for our claim, we simulate some cases
and compare them with results (60), see Fig. 3. Our simula-
tion shows that theoretical prediction matches with numerical
results within the accuracy of ±0.5% even for 20 steps. So
not only neighbor-movement decoherency keeps the quadratic
terms of variance same as the coherent QW, but also increases
the linear term by tG which may be valuable for finite num-
ber of steps. For example in the cases plotted in Fig.3, the
variance of decoherent walk for d = 2, P = 0.75 is 24%(18%)
grater than the variance of coherent walk after 20 (30) steps
and it is 5%(3.5%) greater for d = 1, P = 0.25.

Another important result, which we would like to empha-
size, is the saturation of asymptotic coin-position entangle-
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FIG. 4: (Color online) Negativity versus t for Pt = 0.25
and d = 1, 2, 3. Initial state for all cases is
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2
and upper bold curve is negativity of

coherent one
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FIG. 5: (Color online) Negativity versus Pt after t = 50

for d = 1, 2, 3. Initial state for all cases is |ψ0〉 =
|0〉+i|1〉√

2
.

ment (ACPE) in the presence of this decoherency (Fig.4). Our
simulations show that increasing d, decreases the ACPE but
never vanishes it, unlike the coin decoherency [22], (Fig.5).
We can see sharpest reduction of ACPE occurring while the

coherent evolution become decoherent, but changing d does
not affects a lot.(Fig.4)

VII. SUMMARY AND CONCLUSIONS

In this paper we derive a general analytic expression for the
variance of 1DQW with homogeneous position space, consid-
ering the general form of noise over the position space of one
dimensional quantum walks. This expression shows that ex-
istence of noise over the position space of a walker, not only
does not eliminate t2 term, but also increases the linear term
of the variance.

Since, we have derived our expression in asymptotic regime,
it seems that increasing the linear coefficient is negligible, but
we have shown that the fast decay of time-dependent terms
cause these expressions to be correct with a high precision

even for the limited number of steps. Specially our simula-
tions show that in some cases for a limited number of steps,
noise over the position, can increase the variance significantly.

Presenting an example and the related simulations, we have
tested the validity of our expression and showed that noise
over the position space does not make transition to a classical
system. Especially, entanglement between coin and position
(ACPE) of a quantum walker as an another quantum property
of system has also been tested for a walker which can tunnel
out to its neighbors. We found that, unlike the system with
noise on its coin space, ACPE never vanishes.

Expressions and formulas which we have derived in this
paper, not only prove that the environment noise over the
position space of homogeneous-position decoherent QW does
not change the system to a classical one, but also their gen-
erality can be used as a helpful tool for the investigation of
the environmental noise effect on the variance of 1DQW. Fur-
thermore, these relations are calculated generally for any arbi-
trary initial state, therefore they provide us a precise tool for
the effect of the initial states on the variance of the quantum
walks.
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