
ar
X

iv
:1

70
7.

07
12

7v
2 

 [
m

at
h-

ph
] 

 2
8 

Ju
l 2

01
7
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Abstract. We introduce a family of discrete-time quantum walks, called two-partition model, based on
two equivalence-class partitions of the computational basis, which establish the notion of local dynamics.
This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators
studied in literature, such as the coined model, Szegedy’s model, and the 2-tessellable staggered model. We
also analyze the connection of those models with the two-step coined model, which is driven by the square of
the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined
model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily
equivalent. Then, selecting one specific model among those families is a matter of taste not generality.

1 Introduction

The quantum walk is a quantized version of the classical random walk. The discrete-time version
can be obtained from the path-integral formulation of quantum mechanics [10], which was addressed
for instance in Refs. [1, 8] for the infinite line. The most-studied discrete-time version on graphs
was proposed in Ref. [5] and is known as the coined model because the walker must have an
internal state, which is used to determine the direction of the step. The coin is not mandatory,
in fact, neither the Szegedy quantum walk [28] nor the staggered model [25] has a coin operator.
These latter models define partitions of the vertex set in order to establish the model’s evolution
operator. The quantum walk offers a good opportunity for experimental implementations (see [19]
and references therein) and is an interesting model for analyzing topological phases [14].

Quantum walks are discussed from many viewpoints as an interdisciplinary research field. From
the pure-mathematics viewpoint, the quantum random walk was discussed in the area of quantum
probability [11, 20] and, more recently, Refs. [12, 13] introduced the notion of quantum-graph
walks. Ref. [17] proposed an extension of quantum walks to simplicial complexes, Ref. [7] used
CMV matrices, proposed in [6] for studies of orthogonal Laurent polynomials on the unit circle,
in the analysis of quantum walks, and Ref. [15] obtained limit theorems for quantum walks on the
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line. From the scattering viewpoint, quantum walks can be seen as waves that are transmitted and
reflected at each vertex [9]. From the computer-science viewpoint, quantum walks can be used to
detect and to find marked vertices faster than classical random walks [2, 28, 27].

In this paper, we introduce the notion of partition-based quantum walk with the goal of analyz-
ing the equivalence of quantum walk models under a common framework. We address four models:
The coined, Szegedy, 2-tessellable staggered quantum walks, and a new model called two-partition
quantum walk, which is a partition-based quantum walk defined by two independent partitions of
the computational basis. The partition elements establish the notion of locality or neighborhood.
We prove that the coined, Szegedy, and 2-tessellable staggered models are two-partition quantum
walks. We also address the converse statement. In order to show that the two-partition model is
contained in the Szegedy and 2-tessellable staggered models, we have to extend the Szegedy model
for multigraphs and we have to loosen the way one chooses the local unitary operators. Notice
that, as a corollary, we obtain that the coined model is included in the extended Szegedy and
2-tessellable staggered models. Those results generalize the analysis of Refs. [22, 26].

The two-partition model is not contained in the coined model even extending the shift operator.
It is well known that the Szegedy quantum walks can be included in the two-step coined model,
which employs an evolution operator that is the square of the evolution operator of the coined
model, by using the swap operator as the shift operator [16]. This motivates us to analyze the
two-step coined model. We are able to prove that the two-partition model is included in the two-
step coined model. Since the two-step coined model is a two-partition model, we prove that those
models are unitarily equivalent (see Lemma 1). Our results show that the two-step coined model
and the extended versions of the Szegedy and 2-tessellable models are unitarily equivalent (see
Theorem 1).

In order to establish a unitary equivalence of the evolution operators of the quantum walk
models, we need to give a precise interpretation of the mathematical description of the walker’s
allowed locations for each model. In the coined model, the walker steps on the arcs of the graph.
In the Szegedy model, the walker steps on the edges of the graph, and in the staggered model, the
walker steps on the vertices of the graph. In the original coined model, it is possible to give a precise
direction to the walker’s steps via the shift operator. In the Szegedy and 2-tessellable staggered
models, the evolution operator is the product of two local unitary operators and, under the action
of each local operator, the walker goes to more than one location, using the state superposition
principle of quantum mechanics. The coined model and the extended version of the Szegedy model
use multigraphs. The staggered model always uses simple graphs.

This paper is organized as follows. In section 2, we define the two-partition quantum walk.
In section 3, we show that the coined, Szegedy, and 2-tessellable quantum walks are two-partition
quantum walks. We also define quantum walks on hypergraphs and show that it is also a two-
partition quantum walk. In section 4, we address the unitary equivalence among the models and
prove Theorem 1, which is the main result of this work. Finally, in section 5, we perform the
spectral analysis of coined walks.

2 Two-partition quantum walk

Let Ω = {ω1, ω2, . . . } be a countable set. We define two decompositions of Ω induced by equivalence
relations π1 and π2 over Ω, such that

Ω/π1 = {[ω]π1 | ω ∈ Ω},

Ω/π2 = {[ω]π2 | ω ∈ Ω},
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where [ω]πj = {ω′ ∈ Ω | ω′ πj∼ ω} (j = 1, 2) is the equivalence class of ω. Let Ji be the cardinality
of the quotient set Ω/πi (i = 1, 2) and let [Ji] denote the set {1, 2, . . . , Ji} (i ∈ 1, 2). We call the
elements of Ω/π1 by Ci for i ∈ [J1] and the elements of Ω/π2 by Dj for j ∈ [J2] and we assume
that |Ci| <∞ and |Dj | <∞.

The Hilbert space induced by Ω is defined as

H = ℓ2(Ω) = {ψ : Ω → C |
∑

ω∈Ω
|ψ(ω)|2 <∞},

whose inner product is the standard one. Each equivalence relation πj induces an orthogonal
decomposition of H as follows

H =
⊕

i∈[J1]
Ci =

⊕

j∈[J2]
Dj,

where

Ci = {ψ ∈ H | ω /∈ Ci ⇒ ψ(ω) = 0}, (i ∈ [J1]),

Dj = {ψ ∈ H | ω /∈ Dj ⇒ ψ(ω) = 0}, (j ∈ [J2]),

that is, Ci = span{δω | ω ∈ Ci} and Dj = span{δω | ω ∈ Dj}, where δω(·) is the Kronecker delta
function

δω(ω
′) =

{

1 if ω = ω′,

0 otherwise.

Let Êi and F̂j be local unitary operators on Ci and Dj for each i ∈ [J1] and j ∈ [J2], respectively.
Êi is a local operator on Ci when 〈δω′ , Êiδω〉 = 0 if ω or ω′ does not belong to Ci, and, in the
same way, F̂j is a local operator on Dj when 〈δω′ , F̂jδω〉 = 0 if ω or ω′ does not belong to Dj . We
set Ê = ⊕i∈[J1]Êi, F̂ = ⊕j∈[J2]F̂j . Thus, 〈δω′ , Êδω〉 = 0 if ω and ω′ belong to different partition

elements of π1, and also 〈δω′ , F̂ δω〉 = 0 if ω and ω′ belong to different partition elements of π2.

Definition 1. The two-partition walk (Ω;π1, π2; Û ) is defined by the following items:

(1) The associated Hilbert space is H = ℓ2(Ω) endowed with the standard inner product.

(2) The evolution operator on H is Û(Ω, π1, π2; {Êi}i∈[J1], {F̂j}j∈[J2]) := F̂ Ê and denoted simply

by Û .

(3) The probability distribution is µ
(ψ0)
n : Ω → [0, 1] for n ∈ N, ψ0 ∈ H such that

µ(ψ0)
n (ω) = |Ûnψ0(ω)|

2,

or µ
(ψ0)
n (Cj) :=

∑

ω∈Cj
µ
(ψ0)
n (ω).

The two-partition walk is a quantum walk on the discrete set Ω with an evolution operator Û
that depends on partitions π1 and π2, which provide the notion of locality in Ω. The partitions
allow us to choose two block diagonal unitary operators Ê and F̂ , which determine the evolution
operator through the expression Û = F̂ Ê. We use Û as representing the whole framework of the
two-partition walk (Ω, π1, π2; Û ).
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Example 1. Let Ω = {(a, b), (a, c), (d, c)} and let partitions π1 and π2 be respectively defined by

(α, β)
π1∼ (α′, β′) ⇐⇒ β = β′,

(α, β)
π2∼ (α′, β′) ⇐⇒ α = α′.

In this setting, we have C1 = {(a, b)}, C2 = {(a, c), (d, c)}, D1 = {(a, b), (a, c)}, D2 = {(d, c)} and
the matrix expression for the first and second operators Ê and F̂ are given by

Ê =





∗ 0 0

0 ∗ ∗
0 ∗ ∗



 , F̂ =





∗ ∗ 0
∗ ∗ 0

0 0 ∗





in the standard orthogonal basis of C3, δ(a,b) ∼= [1, 0, 0]T , δ(a,c) ∼= [0, 1, 0]T , δ(d,c) ∼= [0, 0, 1]T , and
the entries ∗ can be nonzero.

3 Examples of two-partition walk

3.1 Bipartite walk

The bipartite walk is defined on the edge set E of a bipartite multigraph G = (X ⊔ Y,E), where
X ⊔Y is the disjoint union of sets X and Y . The multigraph is connected and, as a particular case,
can be a bipartite simple graph. The X-end point of e ∈ E is denoted by X(e) and the other end
point is denoted by Y (e). Setting Ω = E, we define equivalence relations π1 and π2 on E by

e
π1∼ f ⇐⇒ X(e) = X(f),

e
π2∼ f ⇐⇒ Y (e) = Y (f).

The equivalence relation π1 provides a partition of E into equivalence classes [e]π1 = {f ∈ E | f
π1∼ e}

and, likewise, π2 provides a partition into [e]π2 = {f ∈ E | f
π2∼ e}. The respective quotient sets are

Ω/π1 = {[e]π1 | e ∈ E} = {Cx | x ∈ X} ∼= X,

Ω/π2 = {[e]π2 | e ∈ E} = {Dy | y ∈ Y } ∼= Y,

where Cx = {e ∈ E | X(e) = x} and Dy = {e ∈ E | Y (e) = y}.
The one-step dynamics of this walk from an initial edge e ∈ E is as follows: In the first half

step under the action of the unitary operator Ê, the walker moves from e to a neighbor edge f
so that e and f share a common end vertex in X, that is, X(e) = X(f). In the second half step
under the action of the unitary operator F̂ , the walker moves from f to a neighbor edge g so that
f and g share a common end vertex in Y , that is, Y (f) = Y (g). The bipartite walk is determined
by a bipartite multigraph G and by an evolution operator Ŵ , which is the product of two local
unitary operators each one obtained from the direct-sum of {R̂x}x∈X and {R̂y}y∈Y , respectively.
The bipartite walk is described by (G; Ŵ ) or simply by Ŵ .

The Szegedy model [28] is a subclass of the class of bipartite walks. A bipartite walk is an
instance of the Szegedy model if the multigraph G is a simple bipartite graph (no multiple edges)
and the local unitary operators are obtained from stochastic matrices associated with a classical
Markov chain, as described in Ref. [28].

Extending the Szegedy model

Now we present an extension of the Szegedy model for bipartite multigraphs using the bipartite
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walk. Consider a classical Markov chain defined on a connected multigraph H = (V,E). Since
the bipartite walk is defined on a bipartite multigraph, we consider the duplication of the original
multigraph H similar to the method used by Szegedy. The duplicated multigraph is the bipartite
multigraph G = (V2, E2), where V2 = V ∪V ′, V ′ is a copy of V , that is, V ′ = {v′ | v ∈ V }, and each
edge (u, v) ∈ E corresponds to an edge (u, v′) ∈ E2 so that |E(u, v)| = |E2(u, v

′)|, where E(u, v) is
the set of edges in E whose end vertices are u and v.

Consider two functions p : E(G) → [0, 1] and q : E(G) → [0, 1] with

∑

V (e)=x

p(e) =
∑

V ′(e)=y

q(e) = 1, ∀x ∈ V, ∀y ∈ V ′, (3.1)

so that the original Markov chain on H is naturally lifted up to this duplicated multigraph G by
demanding that, for all u, v ∈ V ,

{p(e) | e ∈ E2(u, v
′)} = {q(e) | e ∈ E2(u

′, v)}.

In the framework of two-partition walks, we set Ω = EM and define π1 and π2 as

e
π1∼ f ⇐⇒ V (e) = V (f),

e
π2∼ f ⇐⇒ V ′(e) = V ′(f).

We assign the local unitary operators {R̂x}x∈V and {R̂y}y∈V ′ on each vector spaces Cx and Dy

using the following formulas

R̂x = 2|αx〉〈αx| − 1Cx ,

R̂y = 2|βy〉〈βy| − 1Dy ,

where “|γ〉〈γ|” represents the orthogonal projection operator onto γ ∈ H, and |αx〉 and |βy〉 belong
to Cx and Dy, respectively, defined by

αx(e) =

{

√

p(e) if V (e) = x,

0 otherwise,

βy(e) =

{

√

q(e) if V ′(e) = y,

0 otherwise.

The evolution operator is Ŵ =
(

⊕y∈V ′R̂y

)(

⊕x∈V R̂x
)

.

Quantum search in the extended Szegedy model

Suppose we define a classical Markov chain in a connected multigraph H = (V,E). Searching
a vertex in H employing the Markov chain is accomplished as follows: The marked vertices are
converted into sinks (or absorbing vertices), by removing the arcs outgoing from the marked vertices.
This procedure generates a new directed multigraph that we call HM = (VM , EM ), where M is the
set of marked vertices. The same procedure is used in the extended Szegedy model. The bipartite
graph G = (V2, E2) is also converted into a directed bipartite multigraph GM = (VM

2 , AM2 ), which
is called modified multigraph. The first column of Fig. 3.1 depicts an example of a multigraph H
and its version with one marked vertex represented as an empty vertex. The second column depicts
the corresponding bipartite versions, on which the extended Szegedy quantum walk takes place.

Note that it is possible to preserve completely the above classical dynamics on the directed
multigraph GM with sinks even on the non-directed bipartite multigraph, whose edge set is the
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Figure 1: Example of a multigraph H and its corresponding bipartite multigraph G (duplicated
multigraph). If M = {3}, HM is a directed multigraph and GM is its corresponding directed
bipartite multigraph, which has edges linking each marked vertex and its copy. A marked vertex
is a sink and is represented by an empty vertex.

support of the arc set of GM when we modify the transition probability in the following way. Let
E3 be the set of non-directed edges linking each marked vertex with its copy. The modified p′ and
q′ with domain EM2 = {|a| | a ∈ AM2 } are given by

p′(e) =











p(e) if V (e) /∈M ,

1 if e ∈ E3,

0 otherwise

q′(e) =











q(e) if V ′(e) /∈M ,

1 if e ∈ E3,

0 otherwise.

Since bipartite walks are defined on non-directed bipartite multigraphs, the quantum-walk dynamics
on the modified multigraph is readily obtained from the extended Szegedy model as soon as we
describe the modified stochastic transition matrix:

(P ′)u,v =

{

∑

u=V (e),v=V ′(e) p
′(e) : u ∈ V, v ∈ V ′,

∑

u=V ′(e),v=V (e) q
′(e) : u ∈ V ′, v ∈ V .

The dynamics is driven by Ŵ =
(

⊕y∈V ′R̂′
y

)(

⊕x∈V R̂′
x

)

on ℓ2(EM2 ), where R̂′
x and R̂′

y are

defined in terms of α′
x(e) and β

′
y(e) given by

α′
x(e) =

{

√

p′(e) if V (e) = x,

0 otherwise,

β′y(e) =

{

√

q′(e) if V ′(e) = y,

0 otherwise.

Notice that α′
o(a)(|a|) = 0 for the edge |a| corresponding to removing arc a with o(a) ∈ M in GM ,

as well as α′
o(b)(|b|) = 0 for the edge |b| corresponding to removing arc b with o(b) ∈M ′ in GM .
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We consider Ŵδe with e ∈ E3, since αV (e) = δe and βV ′(e) = δe, we have R̂V (e)δe = δe and

R̂′
V ′(e)δe = δe. Therefore Ŵ δe = δe holds, which implies that Ŵ acts as the identity operator on

the subspace spanned by {δe | e ∈ E3}. From this above observation, under the decomposition
ℓ2(EM2 ) = ℓ2(E2)⊕ ℓ2(E3), R̂X := ⊕x∈XR̂x and R̂Y := ⊕y∈Y R̂′

y are reexpressed by R̂X = R̂X,M ⊕

1E3 , R̂Y = R̂Y,M ⊕ 1E3 , where

R̂X,M = 2
∑

x∈X
|αM,x〉〈αM,x| − 1E2 ,

R̂Y,M = 2
∑

x∈X
|βM,x〉〈βM,x| − 1E2 .

Here αx,M , βy,M ∈ ℓ2(EM ) are the cut off on the marked elements of α′
x and β′y, for x ∈ V , y ∈ V ′,

respectively, defined by

αx,M (e) =

{

α′
x(e) if x /∈M ,

0 otherwise,
and βy,M (e) =

{

β′y(e) if y /∈M ′,

0 otherwise.
(3.2)

Then, the bipartite walk with the quantum search is expressed by

Ŵ = R̂Y R̂X = R̂Y,MR̂X,M ⊕ 1E3

under the decomposition ℓ2(EM ) = ℓ2(E2)⊕ ℓ2(E3). Since the initial state is usually given by

ψ0 =
1

√

|V |

∑

e∈E2

√

p(e)δe ∈ ℓ2(E2),

which has no overlap to the eigenspace spanned by E3, we can concentrate on the main operator
R̂Y,M R̂X,M on the subspace generated by E2.

Thus, the evolution operator of the extended Szegedy model for M ∪ M ′ ⊂ V2 driven by a
bipartite walk can be reduced to the following settings:

Ω = E2,

e
π1∼ f ⇔ V (e) = V (f), (3.3)

e
π2∼ f ⇔ V ′(e) = V ′(f).

The evolution operator Ŵ = F̂ Ê on G2 with F̂ = ⊕y∈V ′F̂y and Ê = ⊕x∈V Êx is expressed by

Êx = 2|α̃x〉〈α̃x| − 1Cx ,

F̂y = 2|β̃y〉〈β̃y| − 1Dx , (3.4)

where α̃x, β̃y ∈ ℓ
2(E2) satisfy

(1) α̃x(e) = β̃x′(f) for every e, f ∈ E2 and

(V (e))′ = V ′(f), (V (f))′ = V ′(e),

(2) if V (e) 6= x then α̃x(e) = 0,

(3) for every x ∈ V

||α̃x|| =

{

1 if x /∈M ,

0 otherwise.

Conditions (1) and (2) are generalization of (3.1). Condition (3) is equivalent to (3.2). From now
on, we can regard R̂Y,M R̂X,M on E2 as the evolution operator of the extended Szegedy model.
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3.2 Coined walk

The coined walk is determined by a multigraph G = (V,A), where A is the set of symmetric arcs
induced by edge set of G, that is, a ∈ A if and only if ā ∈ A, where ā is the inverse arc of a. The
origin of a is denoted by o(a) ∈ V and the terminus of a is denoted by t(a). For a ∈ A, |a| is the
edge in E inducing a. Setting Ω = A, we define the following equivalence relations

a
π1∼ b ⇐⇒ t(a) = t(b),

a
π2∼ b ⇐⇒ |a| = |b|.

The equivalence relation π1 provides a partition of A into equivalence classes [a]π1 = {b ∈ A | b
π1∼ a}

and, likewise, π2 provides a partition into [a]π2 = {b ∈ A | b
π2∼ a}. The respective quotient sets are

Ω/π1 = {[a]π1 | a ∈ A} = {Cu | u ∈ V } ∼= V,

Ω/π2 = {[a]π2 | a ∈ A} = {De | e ∈ E} ∼= E.

We set Cu := {a ∈ A | t(a) = u} and De := {a ∈ A | |a| = e}. The unitary operator Ê = ⊕u∈V Êu
associated with Cu is called the coin operator. The unitary operator F̂ = ⊕e∈EF̂e associated with
De is usually defined as F̂|a|δa = δā and F̂|a|δā = δa, and is called the flip-flop shift operator. The
one-step dynamics of this walk from an initial arc a ∈ A is as follows: At the first half step under
the action of the coin operator Ê, a walker on the arc a moves to a neighbor arc b that has a
common terminal vertex, that is, t(a) = t(b). At the second half step under the action of the
flip-flop shift operator F̂ , the walker on b flips the direction to b̄. One time-step can be regarded as
the dynamics of a plane wave, which is reflected and transmitted in every vertex and its relation
to the quantum graph is addressed in Ref. [12]. The evolution operator is Γ̂ = F̂ Ê.

Extending the shift operator

A natural extension of the coined walk is to extend the “shift” operator F̂e corresponding to the
transposition so that F̂e is a general two-dimensional unitary operator. When we perform such
an extension, we can find the unitary matrices in the studies of the CMV matrix [6], a radio
activity isotope separation by alternative terahertz pulse engineering [18], and quantum simulation
of topological phases [14, 4]. For example, for the CMV matrix, the corresponding coined walk with
the extended shift operator is expressed as follows: the graph is the one-dimensional half integer
lattice, and the coin and extended shift operators are

C = 1⊕

[

γ̄1 ρ1
ρ1 −γ1

]

⊕

[

γ̄3 ρ3
ρ3 −γ3

]

⊕ · · ·

S =

[

γ̄0 ρ0
ρ0 −γ0

]

⊕

[

γ̄2 ρ2
ρ2 −γ2

]

⊕ · · ·

under the order of the standard basis of the coined walk (0;−), (1;+), (1;−), (2;+), (2;−), . . . ,
where (i; ǫ) is the arc of the half integer whose terminus is i and origin is i− ǫ. Here γj ∈ C with
|γj | ≤ 1 is called the Verblunsky parameter and ρj =

√

1− |γj |2. The CMV matrix is expressed
by (SC)T .

Quantum search driven by coined QW

In particular, if we assign the following local coin operator Êu to each u ∈ V with the marked
vertex set M ⊂ V , then it is called Szegedy’s coined walk with the marked vertices M : Let αu be
a unit vector on Cu, and f0 : V → {0, 1} be f0(u) = 1 if u ∈M and f0(u) = 0 if u /∈M .

8



(1) Case (I):

Êu = 2|αu,M 〉〈αu,M | − 1Cu ,

where αu,M is

αu,M = f0(u)αu.

Let AM ⊂ ℓ2(A) be the subspace spanned by the target space as follows:

AM = span{αu | u ∈M}.

The evolution operator ÛM = ŜĈM : ℓ2(A) → ℓ2(A) with ĈM = ⊕u∈V Êu and the flip-flop
shift operator Ŝ is reexpressed by

ÛM = Û∅(ΠA⊥
M

−ΠAM
),

where Û∅ is the unitary operator replacing αu,M with a unit vector αu(6= 0) for every u ∈ V ,

since ĈM = Ĉ∅ − (Ĉ∅ − ĈM ) = Ĉ∅ − 2ΠAM
= Ĉφ(1− 2ΠAM

) = Ĉφ(ΠA⊥
M

−ΠAM
).

(2) Case (II): Another natural way of extending is as follows. Let γu be a unit vector on Cu.
Then we define

Êu = (−1)f0(u) (2|γu〉〈γu| − 1Cu) .

Remark on a vertex based formulation

There is a vertex-based formulation when the coined walk on multigraphs is based on arcs. The
vertex-based formulation of the coined walk is quite useful when we consider the quantum walk on
a d-dimensional torus lattice Td or an infinite lattice Zd. This formulation is rather familiar for
some researchers in the area of quantum walks. However, the efficiency of this formulation seems
to be restricted to at most a regular multigraph. Here we consider only a regular lattice as the
graph G = (V,E) for a simplicity. Let us consider the Hilbert space

H′ = ℓ2(V ;C2d) = {ψ : V → C
2d |

∑

x∈Zd

||ψ(x)||2
C2d <∞}.

The inner product of ℓ2(Zd;C2d) is

〈ψ,ϕ〉H′ =
∑

x∈V
〈ψ(x), ϕ(x)〉C2d .

The dimension of the internal space C
2d corresponds to the direction e1,−e1, . . . ,ed,−ed, where

e1 = [1, 0, . . . , 0]T , e2 = [0, 1, . . . , 0]T , . . . ,ed = [0, 0, . . . , 1]T ∈ Z
d. We set the complete orthogonal

system of C2d by {|j〉, | − j〉 | j = 1, . . . , d} with

| − 1〉 = [1, 0, . . . , 0, 0]T , |1〉 = [0, 1, . . . , 0, 0]T , · · ·

· · · , | − d〉 = [0, 0, . . . , 1, 0]T , |d〉 = [0, 0, . . . , 0, 1]T ∈ C
2d.

The evolution operator ÛV = ŜV ĈV is expressed as

(ŜV ψ)(x) = [ψ−1(x+ e1), ψ1(x− e1), . . . , ψ−d(x+ ed), ψd(x− ed)]
T ,
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for ψ(x) = [ψ−1(x), ψ1(x), . . . , ψ−d(x), ψd(x)]T .
Let Ĉ ′ : V → { 2d-dimensional unitary operators }. Then

(ĈV ψ)(x) = Ĉ ′(x)ψ(x).

We have the following expression which is a derivation that shows why quantum walks are called
quantum analogue of random walks:

(ÛV ψ)(x) =

d
∑

j=1

P̂j(x− ej)ψ(x− ej) + P̂−j(x+ ej)ψ(x+ ej),

where P̂±j(x) = | ± j〉〈±j|Ĉ ′(x).
Each arc a with t(a) = x of G is labeled by

a =

{

(x;−j), if o(a) = x+ ej ,

(x; j), if o(a) = x− ej ,

for j = 1, . . . , d. We define the unitary map from the vertex based space ℓ2(V ;C2d) to the arc based
space ℓ2(A) as follows:

(Γφ)(x; j) = 〈j, φ(x)〉C2d

for j ∈ {±1, . . . ,±d}. The inverse map Γ−1 : ℓ2(A) → ℓ2(V ;C2d) is

(Γ−1ψ)(x) = [ψ(x;−1), ψ(x; 1), . . . , ψ(x;−d), ψ(x; d)]T .

Proposition 1. For any vertex-based formulation ÛV , there exists an arc-based formulation ÛA
such that

ÛV = Γ−1ÛAΓ.

Proof. Let Ŝσ : ℓ2(V ;C2d) → ℓ2(V ;C2d) be a permutation operator such that

(Ŝσϕ)(x) = [ϕ1(x+ e1), ϕ−1(x− e1), . . . , ϕd(x+ ed), ϕ−d(x− ed)]
T

We have
(ΓŜσΓ

−1ψ)(x; j) = ψ(x− sgn(j)ej ;−j),

which implies ŜA := ΓŜσΓ
−1 is the flip-flop shift operator of ℓ2(A), that is, (ŜAψ)(a) = ψ(ā).

Notice that

(ŜσŜV ϕ)(x) =





d
⊕

j=1

[

0 1
1 0

]



ϕ(x).

Combining the above expressions, we have

ΓÛV Γ
−1 = (ΓŜσΓ

−1) · (ΓŜσŜV ĈΓ−1) (3.5)

= ŜAĈA, (3.6)

where ĈA = ⊕x∈V Ĉ ′(x) : ℓ2(A) → ℓ2(A) such that

Ĉ ′(x) = Γ









d
⊕

j=1

[

0 1
1 0

]



 Ĉ ′(x)



Γ−1. (3.7)

Notice that as expressed by (3.7), the rows which indicate the positive and negative direction of
ej are swapped between the local coin operators in the vertex and arc representations (j = 1, . . . , d).
The shift operator Ŝσ is called the flip-flop shift and ŜV is called the moving shift.
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3.3 Staggered walk

A quantum walk is a staggered walk on a connected simple graph G = (V,E) when it is based on
a tessellation cover. A tessellation T is a partition of the graph into cliques∗, where each partition
element is called a polygon. A tessellation cover is a set of tessellations {T1, ...,Tk} that covers the
graph edges, that is, ∪kℓ=1E(Tℓ) = E, where E(T ) is the set of edges of tessellation T . An edge
belongs to a tessellation if the vertices incident to the edge belongs to the same polygon. When
the tessellation cover has size k, the graph is called k-tessellable [25, 23]. Given a graph G, an
interesting problem in graph theory is to determine the minimum size of a tessellation cover of G.

In this work we address only 2-tessellable staggered walks. A graph G is 2-tessellable if and
only if the clique graph K(G) is 2-colorable [23]. It is known that a graph G has a 2-colorable
clique graph if and only if G is the line graph of a bipartite multigraph [21]. Then, in our case, G
is the line graph of a bipartite multigraph. Notice that the line graph of a bipartite multigraph is
a simple graph.

Suppose that graph G = (V,E) admits a tessellation cover {T1,T2} of size 2. Let T1 =
{K1, ...,K|T1|}, where each Kp is a polygon of T1 and |T1| is the number of polygons in T1. Besides,

Kp is a clique and Kp ∩ Kp′ = ∅ for p 6= p′ and ∪
|T1|
p=1Kp = V . Likewise, T2 = {K ′

1, ...,K
′
|T2|},

where the set {K ′
1, ...,K

′
|T2|} is a second partition of the graph into cliques. The tessellation

union must cover the graph edges, that is, E(T1) ∪ E(T2) = E, where E(T1) = ∪
|T1|
p=1E(Kp) and

E(T2) = ∪
|T2|
p=1E(K ′

p).
In the framework of two-partition walks, we set Ω = V and define π1 and π2 as

u
π1∼ v ⇐⇒ ∃p ∈ T1 such that u, v ∈ V (Kp),

u
π2∼ v ⇐⇒ ∃q ∈ T2 such that u, v ∈ V (K ′

q).

The respective quotient sets of V by π1 and π2 are

V/π1 = {Cp | p ∈ T1} ∼= T1,

V/π2 = {Dq | q ∈ T2} ∼= T2,

where Cp = {u ∈ V | u ∈ V (Kp)} and Dq = {u ∈ V | u ∈ V (Kq)}. Thus, the staggered walk is
determined by (G;T1,T2; Û), where G is a 2-tessellable simple graph; T1 and T2 are tessellations of
G; and the evolution operator is Û = F̂ Ê, where Ê = ⊕p∈|T1|Êp and F̂ = ⊕q∈|T2|F̂q.

The association between a tessellation and a unitary operator in the staggered model is per-
formed in the way described in [25, 24]. Here we extend this connection. Consider tessellation T1,
which is the set of polygons Kp for 1 ≤ p ≤ |T1| and tessellation T2, which is the set of polygons K ′

q

for 1 ≤ q ≤ |T2|. A polygon Kp must be associated with a Hermitian operator Ĥp in the Hilbert
space Cp spanned by the vertices of Kp and, likewise, a polygon K ′

q must be associated with a

Hermitian operator Ĥ ′
p in the Hilbert space Dq spanned by the vertices of K ′

q. Any choice of Ĥp

and Ĥ ′
p is acceptable as long as Ĥp and Ĥ ′

p are Hermitian. A natural way to choose Ĥp and Ĥ ′
p is

to use a classical Markov chain with symmetric transition matrix or to use the adjacency matrix A
of G. Ĥp and Ĥ ′

q are obtained from A by deleting the lines and columns of A associated with the
vertices V \Kp and V \K ′

q, respectively. Notice that the Markov chain and the staggered walk are

defined on the same graph G. Following [24], the local unitary operators {Êp}p∈T1 and {F̂q}q∈T2
∗A clique of G is a set of vertices that induces a complete subgraph of G.
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are defined as

Êp = exp(iθ1Ĥp),

F̂q = exp(iθ2Ĥ
′
q),

where θ1 and θ2 are angles.
An interesting form for operators Ĥp and Ĥ ′

q discussed in [24] is

Ĥp = 2|αp〉〈αp| − 1Cp ,

Ĥ ′
q = 2|βq〉〈βq| − 1Dq ,

where |αp〉 and |βq〉 are unit vectors in Cp and Dq, respectively. Notice that in this case

Êp = cos(θ1)1Cp + i sin(θ1)Ĥp,

F̂q = cos(θ2)1Dq + i sin(θ2)Ĥ
′
q.

Quantum search in the staggered model

One of the most interesting method to search a marked vertex assuming that the graph G has M
marked vertices is use the query operator

ÛM = 2
∑

u∈M
|u〉〈u| − 1H. (3.8)

In this case, the evolution operator is Û = F̂ Ê ÛM . This method is similar to the one used in the
Grover algorithm. There is a slight variation that uses the operator Û = F̂ ÛM Ê ÛM . Ref. [3] used
the query-based method to show an example which is quadratically faster compared to random-walk
based algorithms on the same graph.

The query-based search does not directly reproduce the searching method employed in the
extended Szegedy model. To exactly reproduce Szegedy’s method, it is necessary to introduce the
concept of partial tessellations, which was addressed in [25, 22]. In the staggered model, it is not
necessary to modify the graph in order to search for a marked vertex. The concept of partial
tessellation exactly reproduce the method that uses sinks in directed multigraphs in Szegedy’s
model.

3.4 Quantum walk on hypergraphs

We propose a quantum walk on hypergraph H = (V, E), where V is a discrete set called the vertex
set and E ⊆ 2V is called the hyperedge set. If v, u ∈ e ∈ E , then we say that u and v are adjacent.
In particular, if we set E ⊆

(V
2

)

, then the hypergraph reduces to a graph. In the framework of
two-partition walks, we set

Ω = A := {(e, u) | e ∈ E , u ∈ e},

and define the equivalence relations π1 and π2 as

(e, u)
π1∼ (e′, u′) ⇐⇒ u = u′,

(e, u)
π2∼ (e′, u′) ⇐⇒ e = e′.

The quotient sets are

A/π1 = {{(e, u) | ∀e, u ∈ e} | u ∈ V },

A/π2 = {{(e, u) | ∀u, u ∈ e} | e ∈ E}.
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Walk Bipartite (B) Coined(C) Staggered(S) Hypergraph

(Sec. 3.1) (Sec. 3.2) (Sec. 3.3) (Sec. 3.4)

edge set symmetric arc vertex set pair of hyperedges
Ω of a bipartite set of a of a and its

multigraph multigraph 2-tessellable graph contained vertex

Ω/π1 X-end vertices terminal vertices tessellation T1 vertices

Ω/π2 Y -end vertices edges tessellation T2 edges

Table 1: Examples of two-partition quantum walks.

When we take E ⊆
(V
2

)

, A is isomorphic to the symmetric arc set A of the graph induced by the
following bijection φ : A → A. If e = {u, v} ∈ E , then

t(φ((e, u))) = u, o(φ((e, u))) = v.

Thus the inverse is expressed by

φ−1(a) = (|a|, t(a)), a ∈ A.

Remark 1. Assume that E ⊆
(V
2

)

. Using the above bijection map, we define a = φ(e, u), b =
φ(e′, u′). Then, we have

(e, u)
π1∼ (e′, u′) ⇐⇒ t(a) = t(b),

(e, u)
π2∼ (e′, u′) ⇐⇒ |a| = |b|.

Thus, a and b satisfy the equivalence relations π′1 and π′2 of the arc set of the graph for the coined
walk case in Sec. 3.2. This quantum walk is naturally extended from the coined walk on a simple
graph to a quantum walk on a hypergraph.

4 Unitary equivalence of quantum walks

Let P, B, and S be the family of all two-partition walks, all bipartite walks, and all 2-tessellable
staggered walks, respectively. The family of all coined walks is denoted by C, which has evolution
operator Γ̂ = Γ̂(G; {Cu}u∈V ). We also define the family of the two-step coined quantum walks,
which is denoted by C2 and has Γ̂2 as evolution operator. The two-step coined walk can also be
formulated in terms of the two-partition walk model, see Lemma 1 for details. Table 1 summarizes
the quantum walk families analyzed in this work. Each quantum walk model is described by
(L; Θ̂), where L is the discrete set K (walker’s positions) together with two partitions, and Θ̂ is
the evolution operator. The evolution operator Θ̂ acts on ℓ2(K). Table 2 describes L, K, and Θ̂
for each family of quantum walk model. We define an order between the families of quantum walk
models as follows.

Definition 2. Assume that A ∈ {P,B, C, C2,S}. For any quantum walk in A with the evolution
operator Θ̂ that acts on ℓ2(K), if there exists a quantum walk in A′ ∈ {P,B, C, C2,S} with evolution
operator Θ̂′ that acts on ℓ2(K ′), and an injection map η : K −→ K ′, such that

Θ̂ = U−1
η Θ̂′ Uη,

then we denote A ≺ A′. Here Uη : ℓ2(K) → ℓ2(η(K)) is the unitary map, that is, (Uηψ)(a) =
ψ(η−1(a)). In particular if the converse also holds, that is, A ≻ A′, then we denote A ∼= A′.
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P B C C2 S

L Ω;π1, π2 bipartite multigraph multigraph 2-tessellable
multigraph graph; T1,T2

induced induced
K Ω edge set symmetric symmetric vertex set

arc set arc set

Θ̂ (⊕i∈Ω/π2F̂i) (⊕y∈Y R̂y) Ŝ · (⊕u∈V Ĉu) (Ŝ · (⊕u∈V Ĉu))2 (⊕q∈T2F̂q)
·(⊕j∈Ω/π1Êj) ·(⊕x∈XR̂x) ·(⊕p∈T1Êp)

Table 2: Family of quantum walks P, B, C, C2, and S, which are characterized by (L, Θ̂), where L
is the discrete set K together with two partitions, and Θ̂ is the evolution operator.

The previous examples in Secs. 3.1, 3.2, and 3.3 show that B, C,S ≺ P, respectively. Next, we
show “B ≻ P” in Sec. 4.1, “S ≻ P” in Sec. 4.2, “B ≺ C2” in Sec. 4.3, and “B ≻ C2” in Sec. 4.4. See
also Fig. 1 for the commutative diagram. In this section, we show the following theorem:

Theorem 1. Let P,B, C, C2,S be the families above defined. Then,

C ≺ B ∼= P ∼= S ∼= C2.

See the commutative diagram in Figs. 2 and the injection maps in Table. 3.

Figure 2: Commutative diagram of B, P, S and C2.

γE : Ω → E(Ω;π1, π2)
X(γE(ω)) = γV (C(ω)), Y (γE(ω)) = γV (D(ω))

ξX : E(G) → AX(G)
t(ξX(e)) = X(e), o(ξX(e)) = Y (e)

η−1 : A(G) → E(G2)
V (η−1(a)) = t(a), V ′(η−1(a)) = o(a)

Table 3: Maps γE, ξX , and η
−1 (see also Fig. 2).
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Figure 3: Maps γE, ξX , and η
−1.

4.1 Proof of P ≺ S

We define the following simple graph by H(Ω;π1, π2). Here

V = φ(Ω),

where φ is a bijection map from Ω to V . For u, v ∈ V with u 6= v,

{u, v} ∈ E ⇔ φ−1(u)
π1∼ φ−1(v) or φ−1(u)

π2∼ φ−1(v).

It is obvious that this graph is 2-tessellable and tessellation T1 is isomorphic to Ω/π1 and tessellation
T2 is isomorphic to Ω/π2. We have T1 = φ(Ω/π1), T2 = φ(Ω/π2), and φ

−1(p) = {ω | φ(ω) ∈ p} ∈
Ω/π1, φ

−1(q) = {ω | φ(ω) ∈ q} ∈ Ω/π1 for p ∈ T1, q ∈ T2. Then, we have the following proposition
which completes the proof of P ≺ S:

Proposition 2. Given Û =
(

⊕j∈[J2]F̂j
)(

⊕i∈[J1]Êi
)

∈ P in (Ω;π1, π2), let H = (V,E) be the above

2-tessellable graph. Let Uφ : ℓ2(Ω) → ℓ2(V ) be a unitary map such that (Uφψ)(v) = ψ(φ−1(v)).

Then, there exists R̂ =
(

⊕q∈T2F̂
′
q

)(

⊕p∈T1Ê
′
p

)

on ℓ2(V ) under the clique decompositions T1 =

φ(Ω/π1) and T2 = φ(Ω/π2), such that

Û = U−1
φ R̂ Uφ,

which implies P ≺ S. Here, F̂ ′
q = UφF̂φ−1(q)U

−1
φ and Ê′

p = UφÊφ−1(p)U
−1
φ .

Proof. We show that UφÛU−1
φ is an evolution operator of a 2-tessellable staggered walk on H =

(V,E) induced by (Ω;π1, π2). The operator UφÛU−1
φ is a unitary operator on ℓ2(V ) since we

just take a relabeling the standard bases of ℓ2(Ω) by the bijection map φ. Thus, the problem is
reduced to show that UφÊjU

−1
φ and UφF̂iU

−1
φ are local unitary operators on span{δu | u ∈ φ(Cj)},

span{δu | u ∈ φ(Di)} ⊂ ℓ2(V ), respectively, since Ti = φ(Ω/πi) (i = 1, 2). It is sufficient to show
the locality because it is clear that they are unitary.

We put u = φ(ω) and v = φ(ω′). Notice that

u ∈ φ(Cj) ⇔ φ(ω) ∈ φ(Cj) ⇔ ω ∈ Cj .
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Using this, we have

u /∈ φ(Cj) or v /∈ φ(Cj) ⇔ ω /∈ Cj or ω
′ /∈ Cj

⇒ 〈δω, Êjδω′〉 = 0

since Êj is a local operator on span{δω | ω ∈ Cj} ⊂ ℓ2(Ω). Thus

u /∈ φ(Cj) or v /∈ φ(Cj) ⇒ 〈U−1
φ δφ(ω), ÊjU

−1
φ δφ(ω′)〉 = 0

⇔ 〈δφ(ω),UφÊjU
−1
φ δφ(ω′)〉 = 0

which implies that UφÊjU
−1
φ is a local operator on span{δu | u ∈ φ(Cj)}.

Figure 4: The graph induced by (Ω;π1, π2) of Example 1: Figure (i) depicts the subgraphs induced
by π1 and π2, respectively, whose union is the graph associated with Example 1. Fig. (ii) depicts
tessellations T1 and T2.

4.2 Proof of P ≺ B

Given a two-partition walk (Ω;π1, π2) with Ω/π1 = {Ci}, Ω/π2 = {Dj}, we define C(ω) = Ci and
D(ω) = Dj for any ω ∈ Ci ∩Dj .

Definition 3. Let Ω be a discrete set and π1, π2 be partitions, that is, Ω/π1 = {Ci}i∈[J1], Ω/π2 =
{Dj}j∈[J2]. The generalized intersection graph induced by (Ω;π1, π2), G(Ω;π1, π2) = (X ⊔ Y,E), is
defined as follows:

X = γV (Ω/π1), Y = γV (Ω/π2),

E = γE(Ω).

The bijection maps γV : Ω/π1 ∪ Ω/π2 → X ∪ Y and γE : Ω → E are defined as follows:

γV (Ci) = i, γV (Dj) = j,

X(γE(ω)) = γV (C(ω)), Y (γE(ω)) = γV (D(ω)).

The graph G(Ω;π1, π2) is a bipartite multigraph; the multiplicity between x ∈ X and y ∈ Y
is described by |γ−1

V (x) ∩ γ−1
V (y)|. Conversely, given an arbitrary connected bipartite multigraph

G = (X ⊔ Y,E), we can induce (Ω;π1, π2) as follows: Ω = E, e
π1∼ f ⇔ X(e) = X(f), e

π2∼ f ⇔
Y (e) = Y (f). Therefore, the set of all connected bipartite multigraphs and the set of all (Ω;π1, π2)
are isomorphic. Using the above bijection map γE : Ω → E, we have the following proposition
which completes the proof of P ≺ B:
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Figure 5: The intersection graph induced by (Ω;π1, π2) in Example 1
.

Proposition 3. Let UγE : ℓ2(Ω) → ℓ2(E) be

(UγEψ)(e) = ψ(γ−1
E (e)),

where E is the edge set induced by (Ω;π1, π2). Then, for any two-partition walk Û := Û(Ω;π1, π2;
{Êi}, {F̂j}) ∈ P, there exists a bipartite walk Ŵ ∈ B on the generalized intersection graph (X⊔Y,E)
of (Ω;π1, π2) with {R̂i}i∈X , {R̂j}j∈Y such that

Û = U−1
γE ŴUγE .

Here X = γV (Ω/π1), Y = γV (Ω/π2) and R̂i = UγE ÊiU
−1
γE , R̂j = UγE F̂jU

−1
γE .

Proof. It is sufficient to show that UγE ÊiU
−1
γE and UγE F̂jU

−1
γE are local operators on span{δe | X(e) =

γV (Ci)} and span{δe | Y (e) = γV (Dj)} ⊂ ℓ2(E). respectively. Putting e = γE(ω), f = γE(ω
′), we

have the following equivalent deformation as follows:

X(e) 6= γV (Ci) or X(f) 6= γV (Ci) ⇔ γV (C(ω)) 6= γV (Ci) or γV (C(ω′)) 6= γV (Ci)

⇔ C(ω) 6= Ci or C(ω′) 6= Ci

⇔ ω /∈ Ci or ω
′ /∈ Ci

Since Êi is a local operator on span{δω | ω ∈ Ci}, then

X(e) 6= γV (Ci) or X(f) 6= γV (Ci) ⇒ 〈δω, Êiδω′〉 = 0

⇔ 〈U−1
γE δγE(ω), ÊiU

−1
γE δγE(ω′)〉 = 0

⇔ 〈δe,UγE ÊiU
−1
γE δf 〉 = 0.

Therefore UγE ÊiU
−1
γE

is a local operator on span{δe | X(e) = γV (Ci)}. In the same way, we can

show that UγE F̂jU
−1
γE

is a local operator on span{δe | Y (e) = γV (Dj)}.

From Secs. 4.1 and 4.2, we obtain automatically the equivalence relation between B and S.
The line graph of G = (V,E), L(G) = (VL, EL), is defined as follows:

VL = E;

EL = {{e, f} | e ∩ f ∈ V }.

Remark 2. The graph H(Ω;π1, π2) in Sec. 4.1 is the line graph of G(Ω;π1, π2) of Definition 3.
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4.3 Proof of B ∼= C2

As a preparation for the proof, we reexpress C2, whose evolution operator is described by two steps
of a coined walk, in the framework of the two-partition quantum walks, which will be useful for the
proof.

Lemma 1. Every two-step coined walk on multigraph G = (V,E) is formulated by a two-partition
walk (Ω;π1, π2; {Êu}u∈V , {F̂v}v∈V ), where Ω = A,

a
π1∼ b⇔ t(a) = t(b),

a
π2∼ b⇔ o(a) = o(b),

and F̂u = ŜÊuŜ, u ∈ V .

Proof. The evolution operator of the two-step coined walk is described by

Γ̂2 = (ŜĈŜ) Ĉ,

where Ŝ and Ĉ = ⊕u∈V Êu are the shift and coin operators, respectively. The coin operator is the
direct sum of local unitary operators Êu. Since Êu is a local operator on Cu, it holds

t(a) 6= u or t(b) 6= u⇒ 〈δb, Êuδa〉 = 0.

This is equivalent to

o(a) 6= u or o(b) 6= u⇒ 〈δb, ŜÊuŜδa〉 = 0,

since Ŝ flips the direction of each arc. Therefore ŜĈŜ follows the decomposition A/π2 and the
local unitary operators {F̂u}u∈V are {SÊuS}u∈V .

4.3.1 Proof of B ≺ C2

For given Ŵ ∈ B with G = (X ⊔ Y,E) and {R̂x}x∈X , {R̂y}y∈Y , we will show that Ŵ is expressed

by some (⊕u∈V F̂u)(⊕u∈V Êu) ∈ C2 using Lemma 1.
Let A be the set of symmetric arcs induced by E for given bipartite multigraph G = (X ⊔Y,E).

We define injection maps ξX , ξY : E → A such that

t(ξX(e)) ∈ X, o(ξX(e)) ∈ Y,

t(ξY (e)) ∈ Y, o(ξX(e)) ∈ X.

Setting AX = {a ∈ A | t(a) ∈ X} and AY = {a ∈ A | t(a) ∈ Y }, we have ξX(E) = AX ,
ξY (E) = AY ⊂ A. The inverse maps restricted to the domains by AX and AY are ξ−1

X (a) = |a|,
ξ−1
Y (a) = |a|, respectively. We define a unitary map UξZ : ℓ2(E) → ℓ2(AZ) by

(UξZψ)(a) = ψ(ξ−1
Z (a)) (Z = X,Y ).

Using these unitary maps, we obtain the following proposition which implies B ≺ C2.

Proposition 4. For any bipartite walk Ŵ = R̂′
Y R̂X ∈ B on a connected bipartite multigraph

G = (X ⊔ Y,E), let the unitary map UξZ : ℓ2(E) → ℓ2(AZ) be as above described (Z = X,Y ).

Then, there exists a coined walk Û ∈ C in ℓ2(A) such that

Ŵ = U−1
ξX
Û2UξX ,

where Û is the evolution operator of a coined quantum walk on ℓ2(A) so that Û = ŜĈ with Ĉ =
UξX R̂XU

−1
ξX

⊕ UξY R̂Y U
−1
ξY

under the decomposition ℓ2(A) = ℓ2(AX)⊕ ℓ2(AY ).
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Figure 6: The maps ξX and ξY .

Proof. First we show that UξX R̂xU
−1
ξX

and UξX R̂
′
yU

−1
ξX

(x ∈ X, y ∈ Y ) are local operators on

{δa | t(a) = x}, {δb | o(b) = y} ⊂ ℓ2(A), respectively. It holds

t(a) = x⇔ t(ξX(e)) = x⇔ X(e) = x,

where we put a = ξX(e) and a
′ = ξX(e

′). Using this, we have

t(a) 6= x or t(a′) 6= x⇔ X(e) 6= x or X(e′) 6= x

⇒ 〈δe, R̂xδe′〉 = 0

⇔ 〈δa,UξX R̂xU
−1
ξX
δa′〉 = 0.

Thus UξX R̂xU
−1
ξX

is a local operator on span{δa | t(a) = x}. In the same way, it holds

o(b) = y ⇔ o(ξX(e)) = y ⇔ Y (e) = y,

where we put b = ξX(e) and b
′ = ξX(e

′). Using this, we have

o(b) 6= y or o(b′) 6= y ⇔ Y (e) 6= y or Y (e′) 6= y

⇒ 〈δe, R̂
′
yδe′〉 = 0

⇔ 〈δb,UξX R̂
′
xU

−1
ξX
δb′〉 = 0.

Thus UξX R̂
′
yU

−1
ξX

is a local operator on span{δb | o(b) = y}. On the other hand, in a similar

fashion, we can also show that UξY R̂
′
yU

−1
ξY

and UξY R̂xU
−1
ξY

are local operators on {δa | t(a) = y},

{δa | o(a) = x} ⊂ ℓ2(A), respectively. By Lemma 1, setting

Ê := UξX R̂XU
−1
ξX

⊕ UξY R̂
′
Y U

−1
ξY
,

F̂ := UξX R̂
′
Y U

−1
ξX

⊕ UξY R̂XU
−1
ξY

under the decomposition ℓ2(A) = ℓ2(AX) ⊕ ℓ2(AY ), we see that F̂ Ê : ℓ2(A) → ℓ2(A) describes an
evolution operator of a two-step coined walk Û2 on G. Therefore

Û2 = UξX R̂Y R̂XU
−1
ξX

⊕ UξY R̂XR̂Y U
−1
ξY
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Putting Πℓ2(AX ) as the projection onto ℓ2(A)X , we have

Û2Πℓ2(AX) = UξX R̂Y R̂XU
−1
ξX

⇔ Û2Πℓ2(AX)UξX = UξX R̂Y R̂X

⇔ Û2UξX = UξX R̂Y R̂X

⇔ U−1
ξX
Û2UξX = R̂Y R̂X = Ŵ .

Thus, we obtain the desired conclusion.

4.3.2 Proof of B ≻ C2

Let G2 = (V2, E2) be the duplicated multigraph of G = (V,E). We call the bijection map from
V → V ′ by φ, where V ′ is the copy of V , that is, φ(v) = v′ and φ−1(v′) = v. The end vertex in V
is denoted by V (e), and one in V ′ is denoted by V ′(e) for e ∈ E2. The symmetric arc set of G is
denoted by A. The central players are E2 and A, and the bijection map η : E2 → A is defined by

t(η(e)) = V (e), o(η(e)) = φ−1(V ′(e)).

The inverse map is
V (η−1(a)) = t(a), V ′(η−1(a)) = φ(o(a)).

This is equivalent to that u and φ(v) is adjacent in G2 if and only if there exists an arc a such that
t(a) = u and o(a) = v in G. Note that η−1(ā) and η−1(a) give the following crossing relation:

φ(V (η−1(a))) = V ′(η−1(ā)), φ(V (η−1(ā))) = V ′(η−1(a)).

The unitary map induced by η, Uη : ℓ
2(E2) → ℓ2(A), is

(Uηψ)(a) = ψ(η−1(a)).

Using the bijection map η, we obtain the following proposition which implies B ≻ C2.

Figure 7: Duplicated multigraph.

Proposition 5. Let Û = ŜĈ be the coined walk on G with Ĉ = ⊕u∈V {Ĉu}. There exists a bipartite

walk Ŵ =
(

⊕v′∈V ′R̂′
v′

)(

⊕v∈V R̂v
)

on G2 such that

Û2 = UηŴ U−1
η .

The local unitary operators of the bipartite walk are

R̂u = U−1
η ĈuUη, R̂

′
u = U−1

η ŜĈuŜUη. (4.9)
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Proof. We show U−1
η Û2 Uη is an evolution operator of a bipartite walk on G2. By Lemma 1, the two-

step coined walk on G is expressed by F̂ Ĉ, where Ĉ and F̂ are direct sums of {Ĉu}u∈V and {F̂u}u∈V
following the decompositions of arcset A; ⊔u∈V {a ∈ A | t(a) = u} and ⊔u∈V {a ∈ A | o(a) = u},
respectively. Here F̂u = SĈuS for every u ∈ V . First we need to show that U−1

η ĈuUη and U−1
η F̂uUη

are local unitary operators on span{δe | V (e) = u} and span{δe | V
′(e) = u′}, where u′ is the copy

of u. We put η−1(a) = e and η−1(b) = f . For u ∈ V , it holds

V (e) = u⇔ V (η−1(a)) = u⇔ t(a) = u.

Using this, we have

V (e) 6= u or V (f) 6= u⇔ t(a) 6= u or t(b) 6= u

⇒ 〈δa, Ĉuδb〉 = 0

⇔ 〈δe,U
−1
η ĈuUηδf 〉 = 0.

In the same way, for u′ ∈ V ′, it holds

V ′(e) = u′ ⇔ V ′(η−1(a)) = u′ ⇔ o(a) = u.

Using this, we have

V ′(e) 6= u′ or V ′(f) 6= u′ ⇔ o(a) 6= u or o(b) 6= u

⇒ 〈δa, F̂uδb〉 = 0

⇔ 〈δe,U
−1
η F̂uUηδf 〉 = 0.

Then, U−1
η ĈuUη and U−1

η F̂uUη are local unitary operators on span{δe | V (e) = u} and span{δe | V
′(e) =

u′} for every u ∈ V . Therefore, by Lemma 1, U−1
η F̂ ĈUη is the evolution operator of a bipartite

walk on G2. This completes the proof.

In the rest of this section, we consider a special bipartite multigraph which is a duplicated
multigraph.

Lemma 2. If a bipartite multigraph is the duplicated multigraph of H and the evolution operator
of the bipartite walk Ŵ on this bipartite multigraph is given by {R̂v}v∈V and {R̂′

v′}v′∈V ′ satisfying

〈δe, R̂vδf 〉 = 〈δe′ , R̂
′
v′δf ′〉,

where (V (e′))′ = V ′(e) and (V (f ′))′ = V ′(f), then Ŵ is unitarily equivalent to the two-step coined
quantum walk Û on H as follows:

Ŵ = U−1
η Û2Uη.

Here the local coin operators of Û are described by {UηR̂uU
−1
η }u∈V .

Proof. Similar to the previous proofs, it is easy to show that UηR̂vU
−1
η and UηR̂

′
v′U

−1
η are local

unitary operators on span{δa | t(a) = v} and span{δa | o(a) = v}, respectively (v ∈ V, v′ ∈ V ′).
Moreover for e, e′, f, f ′ ∈ E2 with (V (e′))′ = V ′(e) and (V (f ′))′ = V ′(f), the condition 〈δf , R̂vδe〉 =

〈δf ′ , R̂
′
v′δe′〉 is equivalent to

〈U−1
η δη(f), R̂vU

−1
η δη(e)〉 = 〈U−1

η δη(f ′), R̂
′
vU

−1
η δη(e′)〉.
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Note that η(e′) = η(e), η(f ′) = η(f) ∈ A hold. Thus putting a = η(e) and b = η(f), we have

〈δf , R̂vδe〉 = 〈δf ′ , R̂
′
v′δe′〉

⇔ 〈U−1
η δa, R̂vU

−1
η δb〉 = 〈U−1

η δā, R̂
′
v′U

−1
η δb̄〉

⇔ 〈δa,UηR̂vU
−1
η δb〉 = 〈δā,UηR̂

′
v′U

−1
η δb̄〉

⇔ 〈δa,UηR̂vU
−1
η δb〉 = 〈δa, SUηR̂

′
v′U

−1
η Sδb〉.

Therefore, we have shown that U−1
η ŴUη describes a 2-step coined walk on H.

Lemma 2 leads to the following corollary:

Corollary 1. Let G = (V,E) be a connected multigraph and G2 = (V ⊔ V ′, E2) be its duplicated
multigraph, where V ′ is the copy of V . The set of symmetric arcs of G is denoted by A. The
quantum search driven by a bipartite walk on G2 with respect to (3.3) and (3.4) and the square
of one driven by coined walk on G for case I are unitary equivalent with respect to a unitary map
Uη : ℓ

2(E2) → ℓ2(A). Here the unitary map Uη is denoted as follows:

(Uηψ)(a) = ψ(η−1(a)),

where the bijection map η : E2 → A is

t(η(e)) = V (e), o(η(e)) = φ−1(V ′(e)).

5 Spectral analysis of coined walks

As discussed in the above section, the quantum walks analyzed in this work can be interpreted as
a two-step coined walk. We put our attention in the class of coined walks in order to analyze it
in more detail. The total Hilbert space in this case is H = ℓ2(A). Now we show the spectral map
theorem of coined walks with some special coin.

5.1 Setting

For given connected graph G=(V,A), we assign local unitary operators Ĉu for each u ∈ V under
the decomposition H := ℓ2(A) = ⊕u∈V {ψ | t(a) 6= u ⇒ ψ(a) = 0} in the coined walk. We assume
σ(Ĉu) ⊆ {±1}, where σ(·) is the spectrum. The subspace Cu are decomposed into

Cu = ker(1− Ĉu)⊕ ker(1 + Ĉu).

Remark 3. This setting includes all previous examples for quantum searches of M , that is,

Case I : dimker(1− Ĉu) =

{

1 if u /∈M ,

0 if u ∈M .

Case II : dimker(1− Ĉu) =

{

1 if u /∈M ,

deg(u)− 1 if u ∈M .
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Putting du = dimker(1− Ĉu), we set

Ṽ := {(u, ℓ) | ker(1− Ĉu) 6= {0}, ℓ = 1, . . . , du}. (5.10)

We define K = ℓ2(Ṽ ) such that

K :=
⊕

u:ker(1−Ĉu)6=0

C
du = span{ |u; ℓ〉 | (u, ℓ) ∈ Ṽ }.

Here |u; ℓ〉 denotes the standard basis of V. We set Û = ŜĈ where S is the flip-flop shift operator
and C = ⊕u∈V Ĉu. We will express the spectrum of U on ℓ2(A) whose cardinality is |A| by some
self-adjoint operator on K whose cardinality is reduced to |Ṽ | ≤ |A|.

5.2 Boundary operator

Let the complete orthogonal normalized system (CONS) of ker(1 − Ĉu) 6= {0} be {α
(ℓ)
u }duℓ=1. We

define ∂ : H → K by
(∂ψ)(u; ℓ) = 〈α(ℓ)

u , ψ〉. (5.11)

It is equivalent to

∂δa =

dt(a)
∑

ℓ=1

α
(ℓ)
t(a)(a) |t(a); ℓ〉.

The adjoint operator ∂∗ : K → H is given by

(∂∗f)(a) =

dt(a)
∑

ℓ=1

f(t(a); ℓ)α
(ℓ)
t(a)(a).

We observe that
(∂∗f)(a) =

〈

f(t(a); ·), α
(·)
t(a)(a)

〉

C
dt(a)

.

It is equivalent to
∂∗|u; ℓ〉 = α(ℓ)

u . (5.12)

The following important relations hold:

∂∂∗ = 1K; (5.13)

∂∗∂ = Π⊕u∈V ker(1−Cu), (5.14)

where ΠH′ is the projection onto H′ ⊂ ℓ2(A). Therefore the coin operator Ĉ is expressed by

Ĉ = 2∂∗∂ − 1H. (5.15)

5.3 Underlying graph and a dynamics on it

Definition 4. Let G = (V,A) be the symmetric directed graph which may have multiple arcs and
Ṽ be defined by (5.10) induced by V and {du}u∈V . We set the underlying graph G̃ determined by
(G, {du}u∈V ) as follows. The set of vertices of G̃ is Ṽ . The set of symmetric arcs Ã of G̃ is given
by

#{ã ∈ Ã | t(ã) = (u; ℓ), o(ã) = (u′, ℓ′)} = #{a ∈ A | t(a) = u, o(a) = u′}

for every ℓ = 1, . . . , du and ℓ′ = 1, . . . , du′ .
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We define a weight w : Ã→ C by

w(ã) = α
(ℓ)
t(a)(a)

for ã ∈ Ã such that o(ã) = (o(a); ℓ) and t(ã) = (t(a); ℓ).

Definition 5. The operator T̂ : K → K is defined by

(T̂ f)(ũ) =
∑

b∈Ã : t(b)=ũ

w(b)w
(

b̄
)

f(o(b))

for every ũ ∈ Ṽ and f ∈ K.

Lemma 3.

T̂ = ∂S∂∗;

σ(T̂ ) ⊆ [−1, 1].

Proof. The first part is obtained by a direct computation. For the second part of the proof, put
µ ∈ σ(T̂ ) and f ∈ ker(µ− T̂ ). Then

|µ|2||f ||2 = 〈∂Ŝ∂∗f, ∂Ŝ∂∗f〉

= 〈Ŝf,Π1Ŝ∂f〉 ≤ 〈∂Ŝf, ∂Ŝf〉

= 〈f, f〉 ≤ ||f ||2,

where Π1 := ∂∗∂.

5.4 Spectrum of U2 ∈ C2

We set L := ∂∗K + Ŝ∂∗K ⊂ H, which is called the inherited subspace. In [17], σ(Ĉu) = {±1} and
dimker(1 − Ĉu) = 1 for any u ∈ V were assumed, on the other hand, we relax this assumption to
σ(Ĉu) ⊆ {±1}; the eigenvalues and its multiplicities of Cu depend on u ∈ V . However a similar
argument to [17] holds and the proof is essentially same as [17]. Thus we skip its proof.

Theorem 2. Let G = (V,A) be a connected multigraph. The unitary operator Û on H denotes
the evolution operator of a coined quantum walk on G with the coin operator {Ĉu}u∈V , where
σ(Ĉu) ⊆ {±1}. The evolution operator of the underlying cellular automaton on G̃ is denoted by
T : K → K. Then we have

Û = ÛL ⊕ ÛL⊥

and

ker(eiθ − Û) =














{ 1√
2| sin θ| (1− eiθŜ)∂∗fcos θ | fcos θ ∈ ker(cos θ − T̂ )} : eiθ ∈ σ(Û) \ {±1},

{∂∗fcos θ | fcos θ ∈ ker(cos θ − T̂ )} : eiθ ∈ σ(Û |L) ∩ {±1},

ker(∂) ∩ ker(1± Ŝ) : eiθ ∈ σ(Û |L⊥) ∩ {±1}.

The above theorem immediately leads to the following corollary:
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Corollary 2. The setting and notations are same as begore. Then,

ker(eiθ − Û2) =














{ 1√
2| sin(θ/2)| (1− eiθ/2Ŝ)∂∗fcos(θ/2) | fcos(θ/2) ∈ ker[cos(θ/2)− T̂ ]} : eiθ ∈ σ(Û2) \ {1},

{∂∗fcos(θ/2) | fcos(θ/2) ∈ ker[cos(θ/2)− T̂ ]} : eiθ ∈ σ(Û2|L) ∩ {1},

ker(∂) ∩ ker(∂Ŝ) : eiθ ∈ σ(Û2|L⊥) ∩ {1}.

Let G = (X ⊔ Y,A) be a bipartite graph. We set

AX := {ψ ∈ ℓ2(A) | t(a) /∈ X ⇒ ψ(a) = 0},

and
AY := {ψ ∈ ℓ2(A) | t(a) /∈ Y ⇒ ψ(a) = 0}.

We put ÛY X := ÛΠAX
, ÛXY = ÛΠAY

. Since G is a bipartite graph, we have

(ÛΠAX
)2 = ÛXY ÛY X .

If we are given a two-partition walk Û ′ ∈ P, then by Theorem 1, we can convert this walk on
(Ω;π1, π2) to some two-step coined walk Û2 ∈ C2. This walk is a coined walk on some bipartite
graph G = (X ⊔Y,A) which is an intersection graph and Û ′ is unitary equivalent to UXY UY X with
a unitary map W : ℓ2(Ω) → ℓ2(A). By using the commutative diagram in Fig. 2, the unitary map
W is expressed as follows:

(Wψ)(a) = ψ(γ−1
E ξ−1

X (a)).

Then, the spectral analysis of Û ′ is essentially obtained by the following corollary:

Corollary 3. Let G = (X ⊔Y,A) be the intersection multigraph induced by (Ω;π1, π2), and Û
′ ∈ P

be an evolution operator on (Ω;π1, π2). Moreover, let

Û :=

[

0 ÛY X
ÛXY 0

]

∈ C

be the unitary operator equivalent to Û ′ on (X ⊔ Y,A). Then, we have

ker(eiθ − Û ′) = W−1 ker(eiθ − ÛXY ÛY X)W = W−1ΠAX
ker(eiθ − Û2)W.

6 Conclusions

From the pure-mathematics viewpoint, the quantum walk is a strikingly interesting area due to
the richness of the models. The main result of this work is Theorem 1, which shows that there are
four families of quantum walk models unitarily equivalent, namely, (1) the two-step coined model,
(2) the extension of Szegedy’s model for multigraphs, (3) the two-tessellable staggered model, and
(4) the two-partition model. The details on the equivalence between families (1) and (2) was
addressed in Lemma 1. The family of coined quantum walks (one-step coined model) is strictly
included in all those models listed above, that is, none of the above families is included in the
coined model. Notice that the only demand in the coin choice in the coined model is unitarity,
that is, no explicit formula for the coin operator is imposed. The locality is fulfilled because the
coin space in an internal space. The same kind of unitary freedom must be allowed to the Szegedy
model on multigraphs and to the two-tessellable staggered model provided the locality is fulfilled.
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As a future work, it is interesting to analyze k-tessellable staggered models with k > 2.
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