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Abstract Although Quantum Key Distribution schemes have been proven

theoretically secure, they are based on assumptions about the devices that are

not yet satisfied with today’s technology. The measurement-device-independent

scheme has been proposed to shorten the gap between theory and practice by

removing all detector side-channel attacks. On the other hand, two-way quan-

tum key distribution schemes have been proposed to raise the secret key gen-

eration rate. In this paper, we propose a new quantum key distribution scheme

able to achieve a relatively high secret key generation rate based on two-way

quantum key distribution that also inherits the robustness of the measurement-

device-independent scheme against detector side-channel attacks.

Keywords Quantum key distribution · Measurement-device-independent ·
Two-way quantum key distribution.

1 Introduction

Labelled as counterintuitive, quantum physics was one of the most debated

theories during the last century. It is only recently that quantum conundrums
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have been used as the basis of many potentially positive applications in the

domain of quantum information transmission (quantum dense coding, quan-

tum key distribution, quantum teleportation, etc.) [1] [2]. Namely, Quantum

Key Distribution (QKD) has known a rapid progress in both theory and prac-

tice. It allows two parties, commonly referred as Alice and Bob, to share a

secret key via quantum channels [1]. The rapid evolution of QKD has been

triggered by the conjunction of many other ones. In the classical key distribu-

tion algorithms, the security lies in the assumption of unproven mathematical

difficulties of certain problems such as the integer factorization problem for

RSA [3] and the discrete logarithm problem for the Diffie-Hellman protocol

[4]. However, in 1997, Peter W. Shor has discovered algorithms able to per-

form integer factorization and find discrete logarithms in polynomial time on

a quantum machine [5]. Such algorithms would make a large number of pri-

vate and secret keys, already used in industry, obsolete. Therefore, private

information would be no longer protected.

In contrast to the classical key distribution schemes, the security of QKD

draws on laws of physics. Indeed, with Heisenberg’s uncertainty principle [6]

and the quantum no-cloning theorem [7], QKD has been proven information-

theoretically secure i.e. no assumptions are made about the amount of re-

sources available to an eavesdropper, Eve, for computing the secret key [8]

[9]. Charles H. Bennett and Gilles Brassard were the first to propose a QKD

scheme in 1984. In the BB84 scheme [10], Alice and Bob use two photon po-

larization bases (rectilinear and diagonal) to encode the binary secret key in

four quantum states {|↑〉, |↓〉, |↖〉, |↗〉}. The secret key is then sent by Alice

to Bob and sifted through bases reconciliation, information reconciliation and

privacy amplification phases. If Eve attempts to measure the photons before

transmitting them to Bob she would disturb the photons’ states and reveal

her presence. Other schemes have also been proposed such as the Six-State

Protocol (SSP) [11], as well as E91 [12] and BBM92 [13] schemes which use

quantum entanglement.

QKD has been demonstrated through many tests out of the laboratories

[14] and commercial QKD applications are currently available on the market,

e.g., Cerberis, QPN-8505 and qOptica created respectively by IdQuantique,

MagiQ and QuintessenceLabs. However, although QKD has been granted un-

conditional security by laws of physics, real-life implementations are still far
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from reaching this level of security and various attacks have been demon-

strated effective against commercial systems [15] [16]. This is due to the fact

that the considered technology in the security proofs of QKD was overlooked

and idealized, and therefore, do not reflect the current available technology.

Indeed, non reliable equipments may produce signals containing more than one

photon prepared in the same state, hence, allowing Eve to conduct a Photon-

Number-Splitting attack (PNS) [17], where she blocks all single-photon signals

and splits off multi-photon signals, keeping a copy of the quantum state and

sending the others to Bob. Therefore, the no-cloning theorem is wasted and

the security of QKD is compromised.

The sources that prepare the quantum signals may also be exploited to

gain information about the secret key without being detected. However, the

sources are typically less likely to be targeted since it is possible for Alice

and Bob to prepare their quantum signals in a fully protected environment

outside the influence of Eve. On the other hand, protecting the measurement

devices is more challenging. In fact, many side-channel attacks targeting the

measurement devices can be performed to completely learn about the secret

key [16]. Other schemes have been proposed in order to cope with the practical

issues of QKD. A relatively easy to implement scheme, named the decoy state

scheme [18] [19], was proposed to detect a PNS attack by using decoy states

in addition to the signal states. The Device-Independent (DI) QKD [20] was

proposed to regain the security by removing side-channel attacks and prove

it without knowing implementation details. The expected key rate is however

too low even at short distances (10−10 bits per pulse) [20]. The Measurement-

Device-Independent (MDI) QKD was then proposed to remove all detector

side-channel attacks while the key generation rate appears to be more prac-

tical: (623 bits/s over 80 km [21], 0.018 bits/s over 200 km [22], 134 kbits/s

at 0 km [23] and even a rate of 1.6 Mbits/s has been reached at 0 km with

sources generating 109 pulses per second [24]). Another way to increase the

distributed secret key rate was proposed in [25], where the secret key is dis-

tributed in a deterministic manner, thus, no qubits have to be discarded due to

base mismatch, which theoretically occurs 50% of the time in One-Way (OW)

QKD. In this class of schemes, named Two-Way (TW) QKD and based on

the idea of Quantum Dense Coding (QDC) [2], Alice performs encoding oper-

ations on quantum states received from Bob without knowing the preparation
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bases. She sends back these quantum states to Bob, who measures them in

the same basis he has prepared them. According to the measurement outputs,

Bob can then recover the secret key encoded by Alice. However, the security

proofs of most TWQKD schemes do not consider the losses in the channels and

the detectors [26]. A Modified Ping-Pong (MPP) scheme, however, has been

proven secure even in lossy channels [26] and experimentally realized [27]. In

this paper, we propose a new QKD scheme that combines the robustness of

the MDI scheme against detector side-channel attacks and the bases reconcil-

iation free MPP scheme to increase the secret key generation rate. Moreover,

the proposed scheme doubles the generated final secret key compared to the

MPP scheme and is more practical for today’s massively exchanged data.

2 The proposed scheme

In its basic setup [28], the MDI QKD scheme allows Alice and Bob to share a

secret key based on prepared phase randomized Weak Coherent Pulses (WCPs)

in the different BB84 polarization states. Alice and Bob send their qubits

to Charles, an untrusted measurement device, which performs a Bell State

Measurement (BSM) on the received qubits. Alice and Bob then post-select

the events where they use the same bases and Charles outputs a successful

result, i.e., when Alice and Bob do not prepare the qubits in the same state

when they both select the rectilinear basis. Depending on Charles output and

their preparation bases, Alice and Bob decide to flip or not their bits. Just

as in typical OWQKD schemes, the qubits are not all used to generate the

final secret key and are simply discarded. In order to make a deterministic

aspect out of the MDI QKD scheme and therefore, raise the secret key rate,

we propose a scheme where the shared secret key bits are encoded according

to the deterministic TWQKD scheme MPP [26]. Thus, our scheme inherits

the immunity against detector side-channel attacks and no prepared qubit is

discarded because of bases reconciliation.

Our scheme is illustrated in Figure 1 and proceeds as follows. First, Bob

prepares N pairs of maximally entangled qubits in the states |ψ+〉 = 1√
2
(|01〉+

|10〉) and |ψ−〉 = 1√
2
(|01〉 − |10〉), with equal probabilities. Bob sends to Al-

ice one of the two qubits; ”the travel qubit” and stores the ”home qubit” in

a quantum memory. Since the pairs are maximally entangled, the reduced
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Fig. 1 Our scheme

state of the travel qubit is maximally mixed. Eve would not have any signif-

icant information about which state Bob has prepared. Alice and Bob both

switch to either control mode or message mode. In control mode, Bob mea-

sures his reserved qubit and Alice measures the travel qubit using the pro-

jectors P = {|v〉 〈v| , |0〉 〈0| , |1〉 〈1|}, where |v〉 is the vacuum state. The mea-

surement results are publicly announced and the probabilities p00, p01, p0v,

p10, p11 and p1v (where pij is the probability that Alice receives |i〉 when

the travel qubit is |j〉) are shared in order to bound Eve’s information on

the secret key. In message mode, Alice performs one of the four unitary

operations on the travel qubit {I0, I1, Y0, Y1}, where [26]: I0{|v〉 , |0〉 , |1〉} =

{|v〉 , |0〉 , |1〉} and I1{|v〉 , |0〉 , |1〉} = {|v〉 ,− |0〉 ,− |1〉} are used to encode the

classical bit 0, while Y0{|v〉 , |0〉 , |1〉} = {|v〉 , |0〉 ,− |1〉} and Y1{|v〉 , |0〉 , |1〉} =

{|v〉 ,− |0〉 , |1〉} are used to encode the classical bit 1. Note that the vacuum

state |v〉 will introduce a phase randomization to Eve’s system and limit the

information she can gain about the secret key, while the decoding in Bob’s side

is not affected. Also in message mode, Alice and Bob both send their part of

the pair to Charles (untrusted measurement device), where he performs a Bell

State Measurement (BSM) and projects the received qubits into either |ψ+〉
or |ψ−〉. The results are then publicly revealed. If Bob prepares the system

in the state |ψ+〉 (respectively |ψ−〉), receiving the result |ψ+〉 (respectively

|ψ−〉) from Charles means that Alice has encoded the classical bit 0, while

receiving the result |ψ−〉 (respectively |ψ+〉) means that Alice has encoded

the classical bit 1. Once all the travel qubits are sent, Bob and Alice estimate
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the error rate e of the raw key through an authenticated channel and perform

information reconciliation and privacy amplification to generate a correlated

and secure final key.

It is important to note that in the MPP scheme, Bob and Alice do not

announce beforehand which trials are in control mode and which ones are in

message mode because Eve would know when not to disturb the transmission.

Therefore, Alice and Bob may not always be in the same mode. When Alice

is in CM and Bob is in MM for instance, the trial will not serve to control the

transmission in order to detect Eve because Bob will not measure its home

qubit and compare his results with Alice’s measurement; neither will the trial

serve to generate the secret key since Alice will not encode anything in the

travel qubit. Consequently, when they are not in the same mode, Alice and

Bob have to discard the trial, similar to when the two pairs have to discard all

the qubits they did not measure in the same basis in One-Way QKD. Thus,

the bases reconciliation disadvantage of One-Way schemes would only become

a mode reconciliation problem for MPP. Note also that without knowing the

preparation of Bob, Eve cannot determine which bit has been encoded by

Alice. Since the result of the BSM is also known by Alice, therefore, Alice

knows the preparation of Bob. If Alice chooses to encode the classical bit 1

(respectively 0), she will (not) modify the state of the prepared entangled

qubits. Then, according to the result of Charles, she will know whether Bob

has prepared |ψ+〉 or |ψ−〉. We can make use of this ”extra” knowledge to

encode an additional bit per shared maximally entangled states. The first bit

will be determined by which operation Alice uses to encode the travel qubit

(Ii for 0 and Yi for 1 where i ∈ {0, 1}) and the second bit will be determined

by Bob’s preparation. They will associate for example the classical bit 0 to

|ψ+〉 and the classical bit 1 to |ψ−〉.

An example of our scheme’s process is as follows. Suppose that Alice wants

to send the classical bit 0 and Bob wants to send the classical bit 1. Alice would

choose to use either I0 or I1 to encode the first bit 0 and Bob would prepare

the qubits in the state |ψ−〉. Once the result of the BSM is known, Alice would

use it to know which state Bob has prepared, and therefore which bit he wants

to share. Bob, on the other hand, would use it to know which bit Alice has

encoded in the travel qubit. If the BSM result is |ψ−〉, Bob would know that

Alice has encoded the bit 0 and Alice would know that Bob has prepared the



Deterministic MDI QKD with two secret bits per shared entangled pair 7

state |ψ−〉 which is associated with the classical bit 1. The first bit is encoded

in the travel qubit while the second one is determined by Bob’s preparation.

This is illustrated in Table 1.

Table 1 Possible outcomes of the secret key bits

• I0 I1 Y0 Y1

|ψ+〉 00 00 10 10
|ψ−〉 01 01 11 11

3 Security proofs

The secret key generated in our scheme depends on both Bob’s preparation

and Alice’s encoding. The probabilities of Bob preparing |ψ〉+ and |ψ〉− are 1
2 .

Since the prepared pairs of qubits are maximally entangled, the reduced states

of the travel and home qubits are maximally mixed and neither Eve nor Alice

can gain any information on which state Bob has prepared given only the travel

qubit. In our scheme, as in the MDI QKD scheme, the measurement device,

Charles, can be untrusted; Eve can control the BSM results. Fortunately, that

would not compromise the security; Alice and Bob can verify the honesty of

Charles by comparing a random set of their data [28]. Moreover, in our scheme,

Bob’s preparation cannot be found given only the BSM results.

As for gaining information on Alice’s encoding, we can describe the most

general collective attack on the Bob-Alice channel as a unitary interaction

between Eve’s probe and the travel qubit [26]:

U |0〉 |ε〉 =
√
p0v |v〉 |ε0v〉+

√
p00 |0〉 |ε00〉+

√
p01 |1〉 |ε01〉 , (1)

U |1〉 |ε〉 =
√
p1v |v〉 |ε1v〉+

√
p10 |0〉 |ε10〉+

√
p11 |1〉 |ε11〉 , (2)

where U is the unitary operator and |εij〉 are Eve’s possible quantum an-

cillary states after the interaction. p0v, p01, p1v and p10 are the probabilities

that Eve’s operation has altered the travel qubit, while p00 and p11 are the

probabilities that the travel qubit has not been altered.
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The probabilities of encoding key bit 0 or 1 are 1
2 and Eve cannot obtain

any information from the vacuum state. Following the same line sketched in

[26], we obtain the Von Neumann entropy on Alice’s part of the key bit A′

given the system AE:

S(A′|AE) = 1−H(p′01), (3)

where p′01 = p01/(p00 + p01).

Later, Alice and Bob send their qubits to Charles, Eve’s total entropy on

Alice becomes:

S(A′|AE) ≥ −H(p′01) +H(p′10)

2η
, (4)

where η is the channel efficiency.

Finally, they can estimate the error rate e by comparing a set of their

shared bits to perform information reconciliation and privacy amplification to

finally generate the secret key.

Since Bob’s preparation is also taken into account, the final key bits in

our proposal are doubled in comparison with MPP [26] and much higher than

MDI [28] because of the possible base mismatch, so is the rate. The secret key

generation rate R is given by:

R = 2 ·RMPP ≥ 2 ·
(

1− H(p′01) +H(p′10)

2η
−H(e)

)
. (5)

4 Simulation

Numerical simulation is given in this section to evaluate the performance of

our proposal. For the sake of comparison, we use off-the-shelf experimental

parameters and the same assumptions as MPP [26]: optical fiber is used to

transmit the polarized photons and its transmission efficiency η is the same in

the Bob-Alice, Alice-Charles and Bob-Charles channels. The optical fiber loss

coefficient is 0.2 dB/km, detection efficiency is ηd = 10%, its dark count rate

is pd = 10−5 and the misalignment of detector is de = 1%. The polarization

errors corresponding to p′01 come from the dark count of single photon detector:

p′01 =
ηηdde + (1− ηηd)pd
ηηd + 2(1− ηηd)pd

, (6)
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and the error rate e only comes from dark count:

e =
(1− η2)η2ηdpd

η4η2d + 2(1− η2)η2ηdpd
. (7)

The key generation rate is:

R = 2 · η4
(

1− H(p′01) +H(p′10)

2η
−H(e)

)
. (8)

To calculate the key generation rate as a function of the distance d, we use

the relation between the transmission efficiency and the distance, such as

η = 10−0.02·d, (9)

which we replace in Eq. 8.

Fig. 2 Key generation rate
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Simulation results, illustrated in Figure 2, show that the secret key gen-

eration rate of our scheme at slightly more than 0 km is R = 1.8 and for a

distance of 50 km, the rate is R = 10−5 (10 dB loss). With light sources gen-

erating pulses at 4 MHz effective clock rate, our scheme would produce secret

key rates ranging from about 40 bits/s at 50 km to more than 7 Mbits/s at 0

km. This results show that our scheme can distribute keys at relatively high

rates.

To show more about the advantage of our proposal, we have calculated the

number of pairs of photons N needed to be prepared in order to generate a

secret key over 25 km for both our proposal and the MPP scheme. This is

illustrated in Figure 3.

Fig. 3 Final key and raw key
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It is clearly observable that our scheme is better for establishing the long

secret keys needed nowadays for encrypting massive data. In fact, our scheme



Deterministic MDI QKD with two secret bits per shared entangled pair 11

does not need as many pairs of photons as MPP to establish secret keys of

a certain length. For instance, less than N = 3.5 × 108 pairs of photons are

needed to establish a secret key of 50 Mbytes with our scheme, while about

N = 7.2× 109 pairs are needed for the MPP scheme.

5 Conclusion

The implementation of QKD schemes has been challenged by loopholes in the

devices, which have lowered the security level of those schemes. The MDI QKD

have been proposed to remove all detector side-channel attacks, arguably the

most critical part of QKD implementation [28]. Because of the base mismatch

in MDI QKD, only 50% of the shared qubits are used to estimate errors and

generate the final key. TWQDK has been proposed to avoid bases reconcilia-

tion and therefore, make use of every prepared and encoded bit. In this paper,

we have proposed a new QKD scheme which allows two pairs, Alice and Bob,

to share a secret key used for encryption. The proposed scheme is designed

similarly to the MDI QKD scheme in order to gain its robustness against de-

tector side-channel attacks. In order to overcome the base mismatch problem,

TWQKD principle is applied and Alice’s key bits are encoded with the same

unitary operators as the MPP scheme. Bob’s preparation is also included in

the process of our scheme allowing us to obtain a higher and more practical

final secret key generation rate.
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