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Abstract

In this work, a genuine mechanism of entanglement protection of a two-qubit system
interacting with a dissipative common reservoir is investigated. Based on the gener-
ating of bound state for the system-reservoir, we show that stronger bound state in
the energy spectrum can be created by adding other non-interacting qubits into the
reservoir. In the next step, it is found that obtaining higher degrees of boundedness
in the energy spectrum leads to better protection of two-qubit entanglement against
the dissipative noises. Also, it is figured out that the formation of bound state not
only exclusively determines the long time entanglement protection, irrespective to the
Markovian and non-Markovian dynamics, but also performs the task for reservoirs with
different spectral densities.
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I. Introduction

Quantum entanglement, one of the wonderful aspects of quantum mechanics which has no
classical counterpart, has been considered as a main resource in understanding and develop-
ment of quantum information processing protocols [I]. However, since quantum entangle-
ment is so fragile due to decoherence effect, it inevitably undergoes either asymptotic decay
or sudden death processes [2, 3]. So in this regard, unavoidable interaction between any
real quantum system and its surrounding environment alters the quantum system and con-
sequently disentanglement occurs. This is apparently a disadvantageous procedure relative
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to the applications of quantum information processing tasks. Therefore, it is very impor-
tant to find out a mechanism whose advantage leads to an effective long-time entanglement
preservation. So far, a lot of researches have been devoted to entanglement manipulation
and protection, such as quantum Zeno effect (QZE) [4, B [0l [7] and detuning modulation
[8, 9].

It was found that the coupling between an excited atom and electromagnetic vacuum
reservoir leads atom-photon bound state [I0] which in turns exhibits a fractional steady-
state atomic population on the excited state known as populating trapping [II]. On the
other hand, entanglement trapping due to structured environment [12] is a direct conse-
quence of populating trapping. Based on these finding, it was proposed a method for en-
tanglement protection of two qubits in two uncorrelated reservoirs using the non-Markovian
effect along with creating bound state for the system-environment through the manipulating
of the spectral densities [13].

In this paper, we give an actual mechanism for protection of two-qubit entanglement
exclusively on the basis of formation of bound state for the two-qubit system and its common
reservoir using additional qubits. In this approach without manipulating the spectral density
of the environment, system-reservoir bound state can be generated by adding other non-
interacting qubits into the reservoir. It is interesting to note that creating bound state in
the energy spectrum of the total system with higher degree of boundedness is provided by
inserting more additional qubits. As will be figured out, higher degree of boundedness gives
the better protection of entanglement in long time limit irrespective to Markovian or non-
Markovian dynamics. We also examine the performance of the approach for several different
spectral densities and observe that the protection process only depends on the existence of
bound state and completely independent from structure of environment.

This paper is organized as follows. In Sec. II, the model of N non-interacting qubits in a
common zero-temperature reservoir is introduced. We derive the condition for the formation
of bound state in the spectrum of total system. In Sec. III, the entanglement dynamics
of two-qubit system is studied by considering different models for the reservoir structure.
Finally, a brief conclusions are given at the end of the paper.

II. The model

In this section, we consider a system of N non-interacting qubits (two-level atoms) immersed
in a common zero-temperature thermal reservoir. The Hamiltonian H of the system can be
written as (h = 1)

0= Hy+ Hj, (1)
where f]o is the free Hamiltonian and H 1 describes the interaction terms,
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HoszZ&fr&l_—l—Zwkbk b, (2)
=1 k
N A
=1 k

2



lth

In Egs. (2) and (3), 6; (6, ) is the raising (lowering) operator of the I'* qubit with transition

frequency wo and by (b}j) is the annihilation (creation) operator of the k' field mode with
frequency wy. Also, the strength of coupling between the [ qubit and the k" field mode is
represented by gi. The spectrum of the Hamiltonian can be obtained by solving the following
eigenvalue equation

H(t)ib(t)) = E[w(t). (4)

Since the total Hamiltonian commutes with the number of excitations (i. e. [(S.~, 67767 +

>k bAkaAk), H] =0), therefore by considering the single excitation subspace, we have
N
(1) =D CiBID]0)e + > Cr(t)[0)] 1) (5)
=1 k

where |l)s = |g) 5 __, which means that all of the qubits are in their respective ground states
|g) except the I qubit which is in the excited state |e), and [0), = |[¢)®N = |g,9,...,9).
Also, we denote |0). being the vacuum state of the reservoir and |1). is the state for which
there is only one excitation in the kth field mode. Substituting Egs. (1) and (5) into Eq.

(4), yields the following set of N 4 1 equations

QN
[th=¢

Wkok(t) + le\il gZCl(t) = ECk(t)a
woC1(t) + 325 geCi(t) = EC (1),

woCa(t) + >, grCi(t) = EC(1), (6)

WO () + 3, geCi(t) = ECx (1),

Obtaining Cj(t) from the first equation and substituting it in the rest ones gives the following
N integro-differential equations

(B — w)Cy(t) = — [ 2o 52V Gy(t),

w—F

(E —wo)Co(t) = — [;7 222 578, Cut),

(B — wo) Oy (f) = — [ 2 SN )

w—F

Eliminating the coefficients C;(t)s reads

E:wo—N/ J(w)dw
0 w—FE
3

=y(E). (8)



Solving Eq. (8) gives the energy spectrum of the total system, i.e. N-qubit system and
reservoir, which depends effectively on the spectral density of the reservoir. Note that there
is a solution for Eq. (8) when the functions y(F) and y(E) = E are crossed with each
other. Since y(FE) decreases monotonically with the increase of E in the region £ < 0
and limp, o y(E) = wo, so Eq. (8) has an isolated root in this region. The eigenstate
corresponding to this isolated eigenvalue is named the bound state which exists between
the N-qubit system and its common reservoir. It can be easily checked out that there is
bound state solution for Eq. (8) when it satisfies the condition y(0) < 0, otherwise, there
is no bound state. On the other hand, it has only complex solutions when a bound state
is not formed. This means that the corresponding eigenstate experiences decay from the
imaginary part of the eigenvalue during the time evolution and therefore the excited-state
population approaches to zero asymptotically. However, for a bound state the population
of the atomic excited state is constant in time because it has a vanishing decay rate during
the time evolution. In the following, we consider some typical spectral functions such as
Lorentzian, sub-Ohmic, Ohmic and super-Ohmic for the structure of the reservoir, and show
how the addition of non-interacting qubits generates bound state and affects its quality.

III. Entanglement dynamics

To quantify the degree of entanglement between of a two-qubit system, we use concurrence
as a measure of entanglement in this way [14]. The concurrence is defined as

:maX{O>\/)‘71_ \/)‘72_ \/)‘7_ \/)‘74}> (9)

in which A;’s are the eigenvalues, in decreasing order, of the Hermitian matrix R = \/./pp\/p
with g = (0;' ® 0))p*(0;' ® 0)}). Here p* means the complex conjugation of p and o, is
the Pauli matrix. Let us consider m'* and n'* qubits of the system with m # n, prepared
initially in an EPR-type entangled state as follows

|0(0))mn = Cm(0)le, g) + Cn(0)]g, €). (10)

Therefore, at time ¢ > 0, the concurrence of the two-qubit system prepared initially in (10)
is as

Cpmn(t)) = 2[Cn(t)Cu(t)]- (11)

To finding the probability amplitudes C,,(t) and C,,(t), we use the Schrodinger equation in
the interaction picture

d X
i [ (@) = Hi(t)v(1)), (12)

where the Hamiltonian in this picture is given by Hy(t) = et [I,e=#0t and substituting
Eq. (5) and H;(t) into Eq. (12) gives a system of NV + 1 differential equations as

s 1

— —ZngCl —iwo—wi)t (14)



where [ = 1,2, ..., N. Integrating Eq. (14) and substituting it into the Eq. (13) gives the
following set of N closed integro-differential equation

d(’;lt(t) _ /0 f(t—t’);Cu(t)dt’, (15)

where the correlation function f(t—t') is related to the spectral density J(w) of the reservoir
by

fit—t)= /de(w)ei(wo_w)(t_t/). (16)

The solutions of Eq. (15), i.e. Ci(t)’s, depend on the particular choice of the spectral density
of the reservoir, which will be considered in the following subsections.

1. Lorentzian spectral density

We first consider the Lorentzian spectral density as

1 ’}/0)\2

Tw) = 21 (w — wp)? 4+ A2

(17)

where wq is the central frequency of the reservoir equal to the transition frequency of the
qubits. The parameter A defines the spectral width of the coupling and 7, is the coupling
strength. By substituting J(w) into Eq. (16), the correlation function f(t — ') can be
determined analytically. Using Laplace transform, the exact solutions of Eq. (15) can be
obtained as

Cy(t) = e~ /2 (cosh(%) + %sinh(%)) Ci(0)+

(1 — e M2 (cosh(£L) + %sinh(%))),

where D = /A2 — 29 AN, and by considering the point that the dynamics is Markovian
in the weak coupling regime (v < %) and non-Markovian in the strong coupling regime
(70 > 3x)-

For the Lorentzian spectral density which is physically corresponding to a single mode
leaky cavity, solutions of Eq. (8) in the bound state region (E < 0) are given in Fig. la
and Fig. 1c, corresponding to the Markovian and non-Markovian dynamics respectively. For
N = 2, corresponding to the absence of additional qubits, there is no bound state solution
for Eq. (8). Absence of the bound state leads complete decay of two-qubit entanglement for
both Markovian and Non-Markovian dynamics as shown in Fig. 1b and Fig. 1d, respectively.
For N = 8, corresponding to the presence of six additional qubits, we have formation of the
bound state for Markovian and non-Markovian regimes. In this situation, the two-qubit



entanglement is suppressed from death and there is a non-zero steady value for the concur-
rence. As the number of additional qubits grows (for example, N = 12) we have a bound
state whose boundedness becomes stronger which consequently, irrespective to Markovian
and Non-Markovian dynamics, gives a better protection of entanglement.

It is concluded that the generation of bound state for the system-environment through the
addition of non-interacting qubits actually leads to the protection of two-qubit entanglement
against the dissipative noises irrespective to the point that whether its dynamics is Markovian
or non-Markovian.

2. Sub-Ohmic, Ohmic and super-Ohmic spectral density

To making an extension for confirming the performance of the proposed mechanism, we
consider other spectral densities whose unified form is

J(w) = %wg—swse—ﬁ. (19)
where the parameters s = 1/2, 1, 2, are corresponding to sub-Ohmic, Ohmic and super-
Ohmic spectral densities respectively, each of which in turns corresponds to a different
physical context. It is known that the sub-Ohmic case corresponds to the type of noise
appearing in solid state devices, the Ohmic case corresponds to the charged interstitials and
the super-Ohmic case corresponds to a phonon bath [I5]. The cut-off frequency is repre-
sented by w. and v is a dimensionless coupling constant. Unfortunately, there is no analytical
solution for the closed integro-differential equation, i.e. Eq. (15), and so the only recourse
to obtaining the concurrence evolution is numerical methods. Also according to Eq. (8),
we obtain numerically the condition of existence of bound state for the sub-Ohmic, Ohmic
and super-Ohmic cases to investigate how the availability of the bound state is improved by
addition of other non-interacting qubits into the reservoir. As for the Lorentzian spectral
density, for each of the mentioned situations, formation of bound state has a determinative
role in protection of entanglement against the dissipation. Fig. 2a, Fig. 2c¢ and Fig. 2e
indicate the fruitful effects of additional qubits in creating system-environment bound state
for sub-Ohmic, Ohmic and super-Ohmic spectral densities respectively. Also, it is observed
that in the absence of additional qubits (N = 2) there is no bound state in the system
environment spectrum corresponding to the sub-Ohmic, Ohmic and super-Ohmic spectral
densities. Therefore, under this condition, protection of entanglement is completely failed
(see Fig. 2b, Fig. 2d and Fig. 2f).

On the other hand, in the attendance of additional qubits into the reservoir (N = 8),
formation of bound state relative to the respective spectral densities is taken place which
in turns provides the protection of entanglement from sudden death. As observed for the
Lorentzian spectral density in the previous subsection, entering more additional qubits into
the reservoir creates bound state with higher degree of boundedness which, in this regard,
gives better protection of entanglement again.

Consequently, irrespective to the structure of environment, existence of system environ-
ment bound state completely determines the protection process of entanglement in long time
limit from dissipation.



At the end, to give a reasonable physical explanation for our results in this paper, we
remember that the state of whole system in Eq. (5) can be expanded in terms of eigenstates
of the system-reservoir Hamiltonian as

[6(t)) = Dpse P25 |pps) + > Dige Bent|ply). (20)

jEeCB

where |pps) is the potentially formed system-reservoir bound state as an isolated eigenstate
with eigenenergy FEgs, |pcp)’s are eigenstates corresponding to the (quasi)continuous en-
ergy band, Dpg = (pps|t(0)) and Dig = (plg]v(0)). All of the population terms in the
summation of Eq. (20) tend to vanish due to the out-of-phase interference contributed by
the (quasi)continuous spectrum. Therefore, only the first term in Eq. (20) survives in the
long-time limit and plays an important role in controlling the evolution of the whole system.
In the absence of additional qubits (N = 2), the bound state |¢ps) is not formed (see Figs.
1(a,c) and 2(a,c,e)), so according to Eq. (20), no entanglement can be observed between
the considered two qubits (m'™ and n'* qubits) in the long-time limit. But, inserting the
additional qubits into the reservoir (N = 8,12), leads to formation of the respective bound
states which can be entangled with respect to the mentioned two qubits. As a result, the
time evolution of the two-qubit entanglement ultimately reaches to a non-zero steady value.

IV. Conclusions

We investigated a mechanism for two-qubit entanglement protection from dissipation caused
by a common reservoir on the basis of creating bound states for the system and environ-
ment using non-interacting additional qubits. As observed for the reservoir with Lorentzian
spectral density, irrespective to the dynamics of the two-qubit system from Markovian and
non-Markovian point of views, stronger bound state leads to better protection of entan-
glement. In the next step, we examined the procedure for other reservoirs with different
structures such as sub-Ohmic, Ohmic and supe-Ohmic. It was concluded that the formation
of bound state has exclusively a determinative role in the long time entanglement protection
irrespective to the structure of the reservoir. Finally, inspired by this mechanism, other
methods for manipulating of bound states for protection of entanglement could be intro-
duced in future. For example, entanglement protection of a two-qudit system by using this
approach can be regarded as the subject of our future research. As a special case, for preser-
vation of entanglement between two qutrits, it can be investigated that whether the addition
of qubits leads to the desired result or the qutrits.
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Fig. 1. (a, ¢) Diagrammatic solutions of Eq. (8), and (b, d) concurrence dynamics
of a two-qubit system with N = 2 (solid line), N = 8 (dashed line) and N = 12 (dotted
line) for a Lorentizan spectral density. The initial state in Eq. (10) is determined by
Cpn(0) = C,(0) = 1/v/2. We assume that panels (a, b) are plotted in the Markovian regime,
A =15 (in units of wy) and vy = 0.2 (in units of wy), and panels (¢, d) in the non-Markovian
regime, A = 0.5 (in units of wy) and 79 = 1 (in units of wy).



Fig. 2. (a, ¢, e) Diagrammatic solutions of Eq. (8), and (b, d, f) concurrence dynamics
of a two-qubit system with N = 2 (solid line), NV = 8 (dashed line) and N = 12 (dotted line)
for (a,b) sub-Ohmic (s = 1/2), (¢,d) Ohmic (s = 1) and (e, f) super-Ohmic (s = 2) spectral
densities with fixed parameters w, = 1 (in units of wy), v = 1 (in units of wy). The initial
state in Eq. (10) is determined by C,,(0) = C,,(0) = 1/1/2.
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