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We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled NOT)
and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates
thus obtained were experimentally implemented on a three-qubit NMR quantum information pro-
cessor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard
gates form a universal gate set for quantum computing, and are an essential component of several
quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of nat-
ural selection and biological genetics and have been widely used for quantum information processing
applications. The numerically optimized rf pulse profiles of the three-qubit quantum gates achieve
> 99% fidelity. The optimization was performed under the constraint that the experimentally im-
plemented pulses are of short duration and can be implemented with high fidelity. Therefore the
gate implementations do not suffer from the drawbacks of rf offset errors or debilitating effects of
decoherence during gate action. We demonstrate the advantage of our pulse sequences by comparing

our results with existing experimental schemes.
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I. INTRODUCTION

Quantum technologies that have been proposed to
build quantum computers should be able to achieve a
high degree of control over a universal set of quan-
tum gates that form the basic elements of quantum cir-
cuits ﬂ] Any quantum computing circuit can be realized
using a universal set of two-qubit gates and a set of local
unitaries @] However using this basic set of single- and
two-qubit gates to decompose multiqubit unitary propa-
gators for large qubit registers, leads to problems of scala-
bility and decoherence due to long operation times of the
circuits B] Hence, the idea of multi-level quantum logic
was developed which used three- and four-qubit quantum
gates to considerably simplify the quantum circuit M, B]

Three-qubit gates such as the Toffoli gate (which is
equivalent to controlled-controlled-NOT operation) and
the Fredkin gate (which is equivalent to a controlled-
SWAP operation) play an important role in quantum
circuits ﬂﬁ] ﬁngerprmtmgdﬂboptlmal cloning [§] and
quantum error correction The Fredkin gate was
discussed early on as a useful gate for optical imple-
mentations of quantum computing ﬂﬂ, @] The Toffoli
and the Fredkin gates, in conjunction with the single-
qubit Hadamard gate, form a universal set of quantum
gates ﬂE, @] Previous implementations of these univer-
sal three-qubit gates relied on their decomposition into
sets of single- and two-qubit gates , ] Efficient con-
struction of three- and four-qubit gates using an opti-
mal set of global entangling gates has been recently ex-
plored ﬂﬂ], and a machine learning type of algorithm has
been used to design high-fidelity single-shot three-qubit
gates which do not require prior decomposition into sets
of two-qubit gates [18, [19]

Three- and four-qubit gates were experimentally re-
alized early on in NMR quantum computing by several
groups ] The Toffoli gate has been experimentall
implemented using trapped ions %and circuit QED [25]
and superconducting qubits , 127]. Several studies of
the Toffoli gate have focused on its experimental real-
ization using optical setups @@] Other implementa-
tions of the Toffoli gate include an optimal version using
a reduced set of two-qubit gates ﬂﬂ, @] The Fredkin
(controlled-SWAP) gate was recently experimentally re-
alized using photonic qubits [33].

Several optimization techniques have been successfully
developed for quantum control such as strongly modu-
lated pulses [34], GRAPE optimization [3, 36], sequen-
tial convex programming [37] and optimal dynamical dis-
crimination [3&]. A novel set of optimization techniques
broadly categorized as ‘Genetic Algorithms (GAs)’, have
also been proposed as a means to achieve a global min-
imum for the optimization @] GAs borrow their opti-
mization protocol from the basic tenets of evolutionary
biology, wherein the breeding strategy of a population
is to increase the fitness levels and offspring-producing
capability of individuals by crossing over of genetic in-
formation @] In quantum information processing, GAs
have been used to optimize quantum algorithms
and quantum entanglement [44], for optimal dynamical
decoupling ], and to optimize unitary transformations
for a general quantum computation ﬂﬁ: @]

In this work, we explore the efficacy of GAs in optimiz-
ing the Toffoli and Fredkin gates alongwith a set of single-
qubit gates, on a three-qubit NMR, quantum information
processor. We design an implementation of these gates
which uses only “hard” (i.e. short duration) rf pulses of
arbitrary flip angles and phases, punctuated by inter-
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vals of evolution under the system Hamiltonian. We are
hence able to substantially avoid the pitfalls associated
with “soft” shaped NMR pulses, namely pulse calibration
errors and degradation due to decoherence occurring dur-
ing the long gate times of such pulses. The constraints are
put in from practical considerations, whereby we want to
design the gate using only a certain kind of short duration
rf pulses, and then genetic algorithms are used to opti-
mize the protocol. We compared our experimental results
with previous NMR implementations of these three-qubit
gates using standard transition-selective shaped pulses.
We demonstrate that our scheme is substantially better,
with obtained experimental fidelities ~ 14% higher as
compared to the standard implementations and also re-
port a 5-6 times savings in gate implementation time as
compared to the standard implementations. Our scheme
is general and can be implemented on any quantum hard-
ware to generate circuits for three-qubit gates of high
fidelity.

The material in this paper is arranged as follows: In
Section [[Il we describe the optimization scheme based on
GAs. In Section [Tl we discuss the implementation of
optimized gates on an NMR system of three qubits with
Section [[ITA] containing the details of the NMR system,
Section [[II Bl describing the optimized implementation of
a 90° pulse, Section [IIC] the implementation of a two-
qubit CNOT gate. While Sections and [ITE] de-
scribe the implementation of the optimized Fredkin and
Toffoli gates respectively, in Section [IIT] we compare
our results with standard implementations of these gates.
Section [[V] offers some concluding remarks.

II. NUMERICAL OPTIMIZATION OF
THREE-QUBIT GATES VIA GENETIC
PROGRAMMING

Unitary operators corresponding to controlled opera-
tions and to quantum gates can be implemented on an
NMR quantum information processor by a suitable set of
radiofrequency pulses of a specific frequency, amplitude
and phase, interspersed with delays which correspond to
free evolution under the system Hamiltonian. The prob-
lem of numerical optimization of any quantum gate can
hence be recast as an optimization problem in genetic
programming, wherein the fitness function to be opti-
mized depends on the target unitary operator, with its
corresponding set of pulse parameters and delay times.
The fitness function which determines the relative dis-
tance between two operators, is defined in our scenario

as ﬂﬂ, @]
|Tr(Utgt U;pt)|

f =
\/’I‘r(UtgtUtTgt)’I‘r(UOPtUopt)

(1)

where Uy is the target unitary operator of the desired
gate to be optimized and Uy, is the actual operator gen-
erated by the GA optimization. The fitness function is

normalized such that when Uypt=Usgt, the fitness has the
maximum value of unity.

The derived unitary operator of the gate to be opti-
mized, Ugpt, is defined as:

Uopt = H eXp

Iy, =

HNMR + qublk)ﬂ] eXp[ iHNMR(Sl]

% (04 cos @y + oy singy) (2)
where 2 denotes the amplitude of the rf pulse, ¢; is the
phase of the Ith rf pulse, 7; is the pulse length, ¢; de-
notes an evolution period under the system Hamiltonian,
and o, and o, are the Pauli x and y matrices respec-
tively. The first term in the expression for the desired
unitary operator Uyp (Equ. ) describes the system and
RF Hamiltonians, while the second term describes the
evolution under the the system Hamiltonian. The sys-
tem Hamiltonian Hxuvr in the rotating frame is given
by

HNMR:—WZ('— Tfa—l—Z—J igtod  (3)
i=1

1<j,=1

where n denotes the number of spins, v; and I/i ¢ are the
chemical shift and the rotating frame frequencies respec-
tively, J;; are the scalar coupling constants and o is the
Pauli z matrix.

We choose to decompose the desired unitary operator
Uopt as a set of N hard (i.e. high-power, very short du-
ration) rf pulses, each of fixed amplitude €, pulse length
7; and phase ¢;, and a set of N delays, each of interval
0; in duration. This set of pulses and delays denotes the
basic propagator (Fig. ). These optimal pulse phase,
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FIG. 1. Desired unitary propagator is represented by a set
of N pulses of pulse width 7; and phase ¢;, punctuated by N
delays of interval §; (I = 1...N).

pulse width and delay values (which together constitute
one possible solution to the optimization problem) can
be encoded in the form of a matrix of order N x 4 where
the number of rows () specifies the number of oper-
ations that the desired unitary operator is decomposed
into. By increasing the number of rows, we increase the
accuracy and control. The values of the four columns of
the matrix are detailed below:

e Column 1: represents the width (7) of a hard pulse,
which is used to tune the value of the angle of rotation
of the pulse (6 € {0,27}).



e Column 2 and 3: The phase of rotation of the rf pulse
is represented in these two columns. The second col-
umn takes the values either 0 or 1, implying a positive
or negative phase (¢ € {0,7} or ¢ € {—m, 0}, respec-
tively). The third column contains the entire range of
¢ values from {0, 27}.

e Column 4: The values in this column represent the
time evolution §; between hard pulses. The maximum
value that an element in this column can assume is rel-
ative to the type of gate chosen. A Fredkin gate inher-
ently requires more time than a CNOT gate, and hence
will be given more freedom in choosing delay lengths.

Due to accuracy constraints imposed by the NMR hard-
ware on which the gates are implemented, we can only
obtain a resolution of 0.01 degrees for the phase, and a
resolution of 1us for the delay. Hence the values in our re-
sults are discretized accordingly. It should also be noted
that the power of each hard rf pulse is fixed and is not
optimized.

As the first step in the genetic algorithm, an initial
population of solutions, i.e. n ‘randomly chosen chromo-
somes’ is created. Considering we run the algorithm us-
ing a variable number of rows, we must first decide upon
a suitable population size to run the algorithm with. As
the number of rows increases, so does the time taken
to convert a matrix of rf pulses to a gate matrix. We
thus used population sizes ranging from 350 to 750, for
rows ranging from 3-20. There are three main opera-
tions which form the backbone of the genetic algorithm
as described below [39]:

e Selection: Selecting individuals for crossover and mu-
tation processes is important as it dictates the direction
taken by the population in the fitness landscape @]
We initially use a low selection pressure in order to ex-
plore all possible candidate solutions. If a viable solu-
tion is recognized, the intensity of the selection pressure
is increased, to allow for exploitation of neighbors of
the recognized solution. After attempting existing se-
lection mechanisms such as roulette, rank, tournament
and stochastic acceptance @], we devised our own se-
lection mechanism which we call “Luck-Choose”. The
operation involves first multiplying pseudo-randomly
generated weights to the fitness values of all individ-
uals, and subsequently determining the highest among
the output values. Using the Luck-Choose method, the
algorithm converged to a solution much faster.

e Crossover: The crossover operation in the genetic al-
gorithm method swaps congruent parts of individual
members of the population as follows: Two members
are chosen from the population using the Luck-Choose
selection method. Two numbers are randomly chosen
within the maximum number of rows, and two numbers
are randomly chosen within the maximum number of
columns. The first number of each corresponds to the
starting point of the crossover and the second number
corresponds to the end point. Using the above four

numbers we create a rectangular sub-matrix, which is
swapped between both the selected individuals. In ad-
dition, we added another operation called flip in or-
der to address the problem of non-commutativity of rf
pulses. The flip operation selects a single member us-
ing the Luck-Choose method and swaps its constituent
rOwWS.

e Mutation: This operation depends heavily on the

amount of stochastic noise required. Stochastic noise
adds a random amount of noise to ensure that the al-
gorithm does not stagnate at any of the local optima.
In the initial stages, low stochastic noise is preferred,
so the mutation operation may be disabled. However
after the algorithm explores the population landscape
through a few generations, the chances of getting stuck
in local optima increase. The probability of muta-
tions is then increased in steps upto a threshold value,
above which the stochastic noise would only serve to
drive candidate solutions away from the global opti-
mum. Mutation takes a single member, selected using
the Luck-Choose method, and changes all its data val-
ues.

After running the genetic algorithm, outputs are ob-
tained with fidelities in the lower 0.80 range. In order
to increase the fidelity, we used the concept of a localized
optimizer, which is a GA tool that optimizes only within
a very small region of the fitness landscape. This is done
by localizing the range of values that constituent chromo-
somes can take. As the maximum fidelity increases, we
increase the selection pressure to further minimize the re-
gion of optimization of the algorithm, in the fitness land-
scape. The chromosomes from the main optimizer, which
yield fidelity greater than 0.8 are then passed through
this local optimizer to increase the fidelity. In the gen-
eral case, we let the local optimizer run for 1000 seconds.
If the fidelity crossed 0.99, the solution was deemed ac-
ceptable. In certain cases, local optimizer runtimes were
further increased, to increase the final fidelity. Table [I
gives details of the runtime per iteration in the main
and local optimizers, as well as the corresponding count
of Floating Point Operations per Second (FLOPS), for
the optimization of a 90° spin-selective rf pulse. All the
rows for which the pulse duration is mentioned in the
table have a fidelity greater than 0.99. The genetic algo-
rithm was performed using MATLAB [5(0]. An iteration
of the program running the algorithm for 15 rows and
500 chromosomes, took an average time of 3 hours using
a single core for processing, on an i7-4700MQ processor
with 8 GB of RAM. For parallel processing, the Parallel
Computing Toolbox was used, enabling us to run 6 itera-
tions simultaneously on 6 virtual cores for approximately
4 hours. This reduced the average runtime per iteration
to approximately 40 minutes. The local optimizer how-
ever was run from 10 minutes to 15 hours depending on
the final fidelity required and the fidelity of the starting
matrix.



Row |Main Optimizer |Local Optimizer |Pulse
No. |Time(s)/GFLOPS|Time(s)/GFLOPS|Duration
1 277.8/901.5 NA NA
2 559.1/1814.2 NA NA
3 | 871.3/2827.3 978/3173.6 101.4us
4 1183.8/3841.4 46.16/149.8 146.8 s
5 1435.8/4656.5 59.66/193.6 164.8us
6 1751.5/5683.6 28.5/92.5 253.7us
7 | 2005.6/6508.1 23.2/75.3 243.Tus
8 | 2176.6/7063.1 19.2/62.3 292.3us

TABLE I. Table of total optimization time and total pulse
duration against the number of rows for the optimization of
a 90° spin-selective rf pulse. The optimization time per itera-
tion is shown, alongwith the corresponding number of FLOPs
used.

IIT. EXPERIMENTAL IMPLEMENTATION OF
NUMERICALLY OPTIMIZED GATES

A. Experimental NMR qubits

The three fluorine (1°F) spins of the molecule iodotri-
fluoroethylene were used to encode the three qubits
(Fig. B). The three qubits were initialized into a pseu-

F(1) up = —34011.92 Hz  Jio = 69.65 Hz
vop = —43479.26 Hz  Ji3 = 47.67 Hz
vap = —57296.29 Hz Joz = —128.32 Hz
7, = 537£0.06 s T, = 0.14£0.01 s

F(3) F(2) 717 =8354040s T, = 0124001 s
7% = 556£0.03 s Ty = 0.1240.01 s

FIG. 2. Structure of iodotrifluoroethylene molecule with mea-
sured values of chemical shifts (v;) and scalar couplings (J).

dopure state |110) via the spatial averaging technique [51]
with the density operator given by

1—
P10 = TGI + €[110) (110 (4)

where thermal polarization (¢) is approximately 10~° and
I is a 8 x 8 identity matrix. The experimentally created
pseudopure state was tomographed with a fidelity of 0.97.
All the experimental density matrices were reconstructed
using a reduced tomographic protocol @] and maximum
likelihood estimation i@] with the set of operations given
by {III,IIY,IYY,YII, XY X, XXY, XXX}, where I is
the identity operation, X and Y are the single spin an-
gular momentum operators which can be implemented
by applying a 7/2 pulse on the corresponding spin. The
operators for tomographic protocols were numerically op-
timized using genetic programming, each having a length
of approximately 200 ps and an average fidelity of > 0.99.

The fidelity of the experimental density matrix was com-
puted by measuring the projection between the theoreti-
cally expected and experimentally measured states using
the Uhlmann-Jozsa fidelity measure m, @]

F=Tr ( \/pt_hpexp\/m) (5)

where pg, and pexp denote the theoretical and experimen-
tal density matrices respectively.

Since we used a system of three homonuclear (same
spin species) spins, the control on all three spins hap-
pens simultaneously and the optimization operator Uspt
is modified as:

N
Uopt = H exp[—i(Hnmr + Qg1 + L2 + 15,3))71] ©
=1

eXp[—iHNMR5l]

The amplitude () of the hard rf pulse was kept fixed
at120.88 x 102 rad/s, the hard pulse flip angle was taken
in range of {0, 37/2} and range for length of the pulse (1)
was adjusted according to these two factors. The value of
the delay between the pulses was chosen depending upon
the unitary being optimized.

B. Implementation of 90° selective rf pulse

L n(ps)| &1 |&i(us)
1 16 87.65 21
2 33 | 269.97 21
3 16 92.29 0

TABLE II. Table representing the pulse sequence for selective
pulse. First column represents the number of propagators.
The second, third and fourth columns give the pulse width
(1), phase (¢) and delay (§) values, respectively.

To rotate a single spin in a homonuclear system we
need a selective excitation pulse. We optimized the pulse
sequence via genetic algorithm for a 90° selective pulse on
the third qubit along the Y-axis, using only hard pulses
and delays. The unitary for the selective pulse is given
by,

(1 -10 0 0 0 0 0]
11000000
00 1-1000 0
100110000
=710 00 0 1-10 0 @
000017100
000000 1-1
0000001 1]

The optimized pulse sequence for this unitary is given in
Table [l The pulse sequence was obtained with a the-
oretical fidelity of 0.995 with a pulse duration of 107 u



s. The numerically optimized pulse sequence was exper-
imentally implemented on an initial thermal equilibrium
state, and the result is shown in Fig. Bl There is a sub-

Qubit 1 Qubit 2 Qubit 3

e ss—"—— | E—————————
T T || T T || T T
-90.2 -90.4 -115.2 -115.6 -152.0 -152.4

Wp (in ppm)

FIG. 3. Experimental implementation of a numerically opti-
mized 90° selective pulse on the third qubit along the Y-axis,
applied on a thermal equilibrium state.

stantial advantage in the much shorter duration of the
optimized selective pulse which is in us as compared to
the standard pulses which usually take tens of millisec-
onds, depending on the system interactions. The spectra
in Figure [}l show a clean excitation of the third qubit,
with no spillover excitation of the other two qubits.

C. Implementation of CNOT gate

Since the interactions in NMR are always “on”, it is
most often non-trivial to implement a two-qubit gate in
an N qubit system, while doing nothing on the other (N —
2) qubits in the system, as compared to implementing the
same two-qubit gate in a system of two NMR qubits ﬂ@]
We hence optimized the two-qubit CNOT gate on our
three-qubit system, with the first qubit considered the
control qubit while the second qubit was considered the

target qubit. The corresponding unitary matrix is given
by

Ut gt —

O R O O O O O O
_ O O O O o o O
SO O O = O OO o O
O O R O O O O O

O O O O O O O
O O O O O O = O
O O O O O = O O
O O O O = O o O

The optimized pulse sequence for this quantum gate is
shown in Table [T, and was obtained with a theoretical
fidelity of 0.993 with a pulse duration of 7 ms.

The pulse sequence was experimentally implemented
on an initially prepared pseudopure state |110). The fi-
nal state was |100) as expected, with an experimental
fidelity of 0.97. The experimentally tomographed results
are shown in Figure @
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FIG. 4. Real (left) and imaginary (right) parts of the ex-
perimental tomographs of (a) Initial [110) state. (b) After a
CNOT gate applied on the [110) state.

Ln(us)| & |0(ps) Ln(us)| &1 |di(ps)
1| 30 |321.81| 277 11 4 (27197 305
21 33 [320.75| 69 121 39 |329.86| 11
3 3 59.02 1 13] 14 |352.56| 83
41 39 |66.28 | 636 141 24 |359.89| 657
51 29 [306.06| 292 151 1 2.52 | 1748
6 9 1302.12| 19 16 55.02 | 69
71 39 |312.81| 1755 171 4 (31245 2
81 11 [294.12 1 18| 37 |309.7| 96
91 39 [296.16| 636

100 1 |157.81| 256

TABLE III. Table representing the pulse sequence for a two-
qubit CNOT gate. The first column represents the number
of propagators. The second, third and fourth columns rep-
resent the pulse width (7), phase (¢) and delay (8) values,
respectively.

D. Implementation of Fredkin gate

We optimized the three-qubit Fredkin gate (corre-
sponding to a controlled-SWAP operation) in a single
shot i.e. without breaking it down into other unitaries,
and using only a set of hard pulses and delays. The first
qubit was designated as a control qubit and if the control
qubit is 1, then the other two qubits swap their states.
The unitary matrix corresponding to the Fredkin gate is



given by

Utgt -

S O O O O o o
O O O O O O = O
O O O O O = O O
o O O O = o o O
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0

The optimized pulse sequence for this gate is shown in
Table [Vl and was obtained with a fidelity 0.99 and a
pulse duration of 51 ms. The pulse sequence was ex-
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FIG. 5. Real (left) and imaginary (right) parts of the ex-

perimental tomographs of (a) Initial |[110) state. (b) After

Fredkin gate applied on the |110) state.
1 T](;LS) (,251 51(ms) 1 T](,LLS) ¢l 51(ms)
1] 29 |108.63| 1.584 11} 10 186 | 1.569
2| 20 |200.75| 3.712 12| 30 |[170.75| 1.592
31 11 |258.7| 0.639 13| 17 4.55 | 3.269
41 25 [197.31| 1.075 14| 21 |188.17| 2.184
51 9 |172.69| 4.568 15| 28 |36.37 | 2.152
6 19 |188.99| 1.964 16| 21 [330.83| 4.423
7|1 31 |265.02| 4.416 17| 7 46.59 | 2.194
81 27 (100.22| 2.161 18] 14 |102.17| 3.066
91 12 |86.57 | 3.276 191 28 (295.24| 1.574
10| 32 |233.09| 2.194 20| 13 ]126.96| 3.720

TABLE IV. Table representing the pulse sequence for the
Fredkin gate. The first column represents the number of prop-
agators. The second, third and fourth columns represent the
pulse width (7), phase (¢) and delay (9), respectively.

perimentally implemented on an initial state [110). The

output state was |101) with an experimental fidelity of
0.96. The experimentally tomographed results are shown
in Figure

E. Implementation of Toffoli gate
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FIG. 6. Real (left) and imaginary (right) parts of the ex-
perimental tomographs of (a) Initial [110) state. (b) After a
Toffoli gate applied on the |110) state.

The first two qubits of this gate were considered as the
control qubits while the third qubit was designated the
target qubit. The unitary matrix corresponding to this
gate is given by

Utgt -

_ O O O O O O O
O R O O O O O O

O O O O o o o -
O O O O O O~ O
O O O O O = O O
O O O O = O o O
O O O = O O o O
O O = O O O O O

The numerically optimized sequence for this gate is
shown in Table [V] and was obtained with a fidelity of
0.995 and a pulse duration of 27 ms. The pulse sequence
was experimentally implemented on an initially prepared
pseudo-pure state |110). The final state was |[111) as ex-
pected, and had an experimental fidelity of 0.93. The ex-
perimentally tomographed results are shown in Figure

To check the robustness of the numerically optimized
pulse sequences we considered two types of errors: offset
errors and flip angle or pulse miscalibration errors. Fig-
ure [7 shows the variation of fidelity with the offset fre-
quency (Hz) and flip angle (deg) for the different gates.
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FIG. 7. Robustness of pulse sequences corresponding to (a)
90° selective pulse (b) CNOT gate (c) Fredkin gate and (d)
Toffoli gate. The = and y axes represent the error in flip angle
(deg) and the offset (Hz), respectively.
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FIG. 8. NMR spectra of (a) Pseudopure state [110); (b)
after the implementation of a Fredkin gate on the [110) state
using transition-selective pulses; (c) after the implementation
of a Fredkin gate on the |110) state using pulses optimized by
the genetic algorithm method.

We checked the fidelity variation for the range 420 for
offset and +14 for flip errors. The 90° selective rf pulse
is most robust of all the other gates (as is to be expected
since it is a single-qubit gate), the fidelity for this is above
0.90 for the area inside the points (£12.5, £19.6). The
two-qubit CNOT gate has fidelity > 0.9 for the area in-
side the points (-5.2,-20), (1.2,-20), (4.7,20) and (-1.2,20).

1 n(us)| & |o(ps)| [ 1 |n(us)| & |&(us)
1.| 32 |243.22| 539 11.| 15 |215.55| 2487
2. 27 |138.58| 546 12,1 27 | 308.2 | 550
3.1 39 2.47 | 499 13.| 32 |326.82| 513
4.1 36 |320.89| 3488 14.1 13 (122.09| 541
5. 32 [352.29| 2495 15.] 4 |332.61| 2518
6.| 34 |355.84| 536 16.| 24 |354.12| 546
7.1 37 |175.98| 1938 17.| 36 | 310.6 | 3806
8. | 29 |20.45 | 1957 18.1 32 |210.97| 1971
9. 34 |354.75| 542 19.1 30 3.74 | 504
10.| 18 |297.71| 564 20.| 38 [338.48| 565

TABLE V. Table representing the pulse sequence for the Tof-
foli gate. The first column represents the number of propa-
gators. The second, third and fourth columns represent the
pulse width (7), phase (¢) and delay (9), respectively.

Qubit 1 Qubit 2 Qubit 3
(a)
(b) ﬁ
ﬁ\,\,_\f\_‘
(c)
S [ E—
-90.2 -90.4 -115.2 -115.6 -152.0 -152.4

wp (in ppm)

FIG. 9. NMR spectra of (a) Pseudopure state [110); (b)
after the implementation of a Toffoli gate on the |110) state
using transition-selective pulses; (c¢) after the implementation
of a Toffoli gate on the |110) state using pulses optimized by
the genetic algorithm method.

For the Fredkin gate, the fidelity is > 0.9 for the area
which falls under the data points (0, £7.8) and (£5.3, 0)
which approximately forms an ellipse. The Toffoli gate
has fidelity > 0.9 for the area inscribed by points (-2.8,
-13.4), (5.5, 0), (1.4,12.2) and (-5.5,0). In general, all the
gates optimized by the GA method are of high fidelity
and are robust against both offset and pulse flip angle
erTors.



F. Comparison with previous experimental
implementations

We compared the results of our optimization of the
Fredkin and the Toffoli gates using GAs, with previous
experimental NMR implementations that use transition-
selective pulses @, , @] The experimental NMR
spectra of this comparison are shown in Figures for
a Fredkin gate and a Toffoli gate implemented on the
[110) pseudopure state, respectively. All spectra were
recorded after applying an IIX operation (i.e. a 90° pulse
on the third qubit). Since the chemical shifts of the three
fluorine qubits in our particular molecule cover a very
large frequency bandwidth, we crafted special excitation
Gaussian shaped transition selective pulses that are fre-
quency modulated @] Using transition-selective pulses,
the Fredkin gate was experimentally implemented with
a fidelity of 0.72 and a pulse length of 242 ms. Using
transition-selective pulses, the Toffoli gate was experi-
mentally implemented with a fidelity of 0.76 and a pulse
length of 168 ms. The fidelity of both the Fredkin and
the Toffoli gates using the pulses crafted using the GA
method was > 0.95 and the total pulse durations were
substantially smaller, being 51 ms and 27 ms for the
Fredkin and the Toffoli gates, respectively. Furthermore,
as can be seen from the NMR spectra in Figures [BI9]
the standard implementation of these three-qubit gates
using transition-selective pulses leads to considerable er-
rors due to decoherence during these long pulses as well
as offset errors. The GA-optimized pulse sequences on
the other hand, have a high fidelity and do not suffer
from these errors.

IV. CONCLUSIONS

In summary, we have optimally designed and exper-
imentally implemented the universal multi-qubit Toffoli
and Fredkin gates on a three-qubit NMR quantum infor-
mation processor. We used a global optimization method
based on genetic algorithms to determine the optimal
unitary transformations and generate the corresponding
numerically optimized rf pulse profiles. We were able
to find optimal constructions for these important three-
qubit universal control gates, which are robust against
pulse offset errors as well as errors that could arise due
to decoherence. We were able to find gate decomposi-
tions which are based only on hard (short duration) rf
pulses and delays, which take very short times to imple-
ment and are of high fidelity. Our gate decompositions
are sufficiently general and can be used for other quan-
tum computing hardwares as well. Although some of the
optimization protocols took a long time to run, the ob-
vious advantage is that once the optimal pulse sequence
for a gate is found, it can be used later without any fur-
ther optimization as long as one is working on the same
quantum computer.
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