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Abstract In the typical model, a discrete-time coined quantum walk search-
ing the 2D grid for a marked vertex achieves a success probability of O(1/log N)
in O(y/Nlog N) steps, which with amplitude amplification yields an over-
all runtime of O(v/N log N). We show that making the quantum walk lack-
adaisical or lazy by adding a self-loop of weight 4/N to each vertex speeds
up the search, causing the success probability to reach a constant near 1 in
O(y/Nlog N) steps, thus yielding an O(y/log N) improvement over the typical,
loopless algorithm. This improved runtime matches the best known quantum
algorithms for this search problem. Our results are based on numerical simu-
lations since the algorithm is not an instance of the abstract search algorithm.

Keywords Quantum walk - Lackadaisical quantum walk - Spatial search

PACS 03.67.-a, 05.40.Fb, 02.10.0x

1 Introduction

Grover’s quantum search algorithm [I] famously searches an unordered database
of N items in O(v/N) time, which is a quadratic improvement over the O(N)
steps that a classical computer would need to take. Fifteen years ago, how-
ever, Benioff [2] noted that a quantum computer may lose this speedup when
searching a spatial region since it takes time for a “quantum robot” to traverse
the database.

Since then, much work has explored how quickly quantum computers can
search spatial regions, beginning with Aaronson and Ambainis [3], who gave a
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Fig. 1 A 2D grid of N = 5 x 5 vertices with a self-loop of weight [ at each vertex. The
boundaries are periodic. A marked vertex is indicated by a double circle.

recursive algorithm that searches the two-dimensional (2D) grid, or periodic
square lattice or torus, of N vertices in O(v/N log® N) steps while achieving
the full Grover speedup of O(v/N) in higher-dimensional lattices. Another ap-
proach is using a continuous-time quantum walk, which Childs and Goldstone
[4] showed searches no better than classical in 2D and 3D, in O(v/N log?’/ 2N)
in 4D, and in O(v/N) in 5D or greater (see Table 1 of [5] for a detailed sum-
mary). Ambainis et al. [6] then showed that a discrete-time coined quantum
walk outperforms both of the previous algorithms, searching the 2D grid in
O(v/Nlog N) steps and higher-dimensional lattices in O(v/N). Specifically, for
the 2D grid, the probability at the marked vertex reaches O(1/log N) after
O(v/Nlog N) steps. Using amplitude amplification [7], this implies a search al-
gorithm with an overall runtime of O(v/N log N). Childs and Goldstone later
matched these runtimes with a continuous-time quantum walk governed by
the Dirac equation [§].

In this paper, we investigate a simple modification to the discrete-time
quantum walk search algorithm of Ambainis et al. [6] on the 2D grid, where
we make the walker lazy or lackadaisical [9,[10]. We do this by giving each
vertex of the 2D grid a self-loop of weight [, as illustrated in Fig. SO
the walker has some probability of staying put. We perform a discrete-time
coined quantum walk on this weighted graph while querying a Grover-type
oracle that flips the sign of the amplitude at the marked vertex. Numerically,
when | = 4/N, the probability at the marked vertex reaches a constant af-
ter O(v/N log N) steps, which is an O(y/log N) improvement over the loopless
algorithm’s O(v/N log N) [6].

This indicates that a lackadaisical quantum walk is capable of giving speedups
in the runtime scaling, not just speedups in the constant factor [9[10], and it
suggests that self-loops might be useful algorithmic tools in other quantum
walk algorithms as well, not just those for searching. Note there are other
approaches to achieving this improved runtime of O(y/N log N), such as con-
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trolling the walk with an ancilla qubit [II], searching a neighborhood [12],
quantizing a semi-absorbing random walk [I3], and using staggered quantum
walks with Hamiltonians [T4], but the simplicity of adding self-loops to a graph
makes lackadaisical quantum walks an attractive alternative.

In the next section, we describe the lackadaisical algorithm in detail and
give numerical results. Then we describe why this algorithm is unamenable to
the usual analytical method of the abstract search algorithm [6]. Finally, we
end with concluding remarks.

2 Search by Lackadaisical Quantum Walk

In a quantum walk, the N vertices of a graph form a computational basis
{11),12),...,|N)} for CN. A discrete-time quantum walk, however, also in-
cludes an additional coin degree of freedom encoding the directions in which
a particle can hop [I5[16]. For the 2D grid with self-loops, as in Fig. [1} the
directions are {|1),|4),]<),|—),]O)}, and these form a computational basis
for C®. So the Hilbert space of the quantum walk is CV @ C®. For example,
the state |2, —) denotes a particle at vertex 2 pointing to the right. The pure
quantum walk (without searching) evolves by repeated applications of

U:S'(IN®C),

where
C =2|s¢)(sc| — I5
with
56) = —= (1) + 1) + =) + =) + VI
VAT
is the Grover diffusion coin for a weighted graph [I0], and S is the flip-flop
shift that causes a particle to hop and turn around [6]. The system begins in

N

1
|tho) = VN v) @ [sc), (1)

which is a uniform distribution over the vertices (but not necessarily the di-
rections). Note this is the unique eigenvector of the quantum walk operator U
with eigenvalue 1, and it can be prepared in O(\/]v ) steps without knowing
the marked vertex.

Now to search, we include a query to an oracle with each step of the
quantum walk. T'wo choices for the oracle are common. The first is the “Grover
oracle,” where the algorithm repeatedly applies

U'=U-(Q®1Is). (2)

Here, Q = Iy —2|w){w|, where |w) denotes the marked vertex. This oracle flips
the sign at the marked vertex, irrespective of the coin state. U’ is equivalent
to applying C to unmarked vertices and —C' to the marked vertex, followed
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Fig. 2 Success probability as a function of time for search on the 2D grid of N = 16 X 16 =
256 vertices with a self-loop of weight I at each vertex. (a) With the Grover oracle, the solid
black curve is [ = 0, the dashed red curve is | = 0.005, the dotted green curve is [ = 0.015,
the dot-dashed blue curve is | = 0.1, and the dot-dot-dashed orange curve is [ = 0.2. (b)
With the SKW oracle, the solid black curve is [ = 0, the red dashed curve is [ = 5, and the
dotted green curve is | = 20.

by the shift [6]. Another choice is the “SKW oracle” [I7], where the algorithm
applies

U"=U - (Isn — 2|w, sc){w, scl). (3)

Now the oracle term only exactly flips the sign at the marked vertex if the coin
state is |s.). U” is equivalent to applying C to unmarked vertices and —I5 to
the marked vertex, followed by the shift [6]. It is also equivalent to search by
Szegedy’s quantum walk [I8[19120].

In Fig. [2] we simulate the search algorithm with each oracle for a grid of size
N =16 x 16 = 256 with various values of [. Figure [2a] uses the Grover oracle
(2), and when I = 0, this reproduces the loopless quantum walk of [6], where
the success probability reaches a value of O(1/log N) at time O(v/N log N).
As we increase [, the success probability improves, almost reaching 1 when
I = 0.015. This probability is almost entirely contained in the marked vertex’s
self-loop, so the algorithm “stores” success probability in the self-loop. As [
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Fig. 3 Success probability as a function time for search with the Grover coin on the 2D
grid of N vertices with a self-loop of weight | = 4/N at each vertex. The solid black curve
is N = 16 x 16 = 256, the dashed red curve is N = 32 x 32 = 1024, and the dotted green
curve is N = 64 x 64 = 4096.

increases further, however, the success probability drops, so there is an optimal
amount of “laziness” for which the success probability is maximized.

Figure uses the SKW oracle . Again with [ = 0, this reproduces the
loopless algorithm. Now as we increase [, the algorithm simply slows down.
This lack of improvement is unsurprising, however, since U” is equivalent to
applying —I5 to the marked vertex. Then the amplitude in the marked vertex’s
self-loop simply alternates signs with each step, so the algorithm cannot store
amplitude in the marked vertex’s self-loop.

So let us focus on the quantum walk with the Grover coin . Note when
N =16 x 16 = 256, the optimal self-loop weight of roughly 0.015 is approx-
imately 4/N. So in Fig. [3] we simulate search on grids of various sizes with
I = 4/N. We see that in all cases, the success probability is near 1. Specifi-
cally, when N = 16 x 16 = 256, the success probability reaches its first peak
of 0.975506 after 35 steps; when N = 32 x 32 = 1024, the its first peak is
0.973669 after 77 steps; and when N = 64 x 64 = 4096, the success probability
reaches its first peak of 0.975548 at 170 steps.

We can similarly find the success probability’s first peak and the time it
occurs for grids of length N = {16,17,...,128}. The complete data and
the Python script used to simulate the quantum walk are available in this
paper’s arXiv source. The peak success probability is shown in Fig. and
it converges to a constant. The time to this peak, or runtime t,, is shown in
Fig. 4B} and the fit

t,. = 0.922466+/ N log N

has a correlation coefficient of 0.999993, indicating that the fit is sound. Thus,
the numerical simulations suggest that the overall runtime is O(y/N log N),
which is an O(y/log N) improvement over the typical, loopless algorithm’s

O(v/Nlog N) in [6].
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Fig. 4 Search with the Grover coin on the 2D grid of N vertices, with vVN =
{16,17,...,128}, by lackadaisical quantum walk with { = 4/N. (a) The value of the first
peak in success probability. (b) The time to the first peak of success probability. The
black dots are the values from numerically simulating the walk. The red curve is the fit

t. = 0.922466./Nlog N.

3 Comparison with Abstract Search Algorithm

The behavior of the typical, loopless algorithm was analytically determined us-
ing a framework known as the abstract search algorithm [6]. This framework
has also been used to analyze several other quantum walk search algorithms
[1TL2TL22]. Here, we review the abstract search algorithm [6] and its general-
ization by Tulsi [11I] and show that our lackadaisical quantum walk with the
Grover coin does not fit into its framework.

The abstract search algorithm repeatedly applies two operators

UsUy (4)

with the following properties on two states |¢start) and |¥good):

— U flips the sign of [1g004) and does nothing to states orthogonal to it.

That is, Uy = I — 2|tgo0d) (¥good|-
— |tstart) has real amplitudes and is the only 1l-eigenvector of Us. That is,

U2|wstart> = |¢start>-
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— Uy is real (and unitary).

Then the behavior of the algorithm can be determined by expanding |1go0d)
in the eigenbasis of Us. First, U has one eigenvalue 1, and we denote the
corresponding eigenvector |®@g). Second, Uy may have zero or more eigenvalues
—1, and we denote the corresponding eigenvectors |@x). Finally, since Us is
real and unitary, its remaining eigenvalues come in pairs of complex conjugate
numbers e*% | and we denote the corresponding eigenvectors |¢j[>, where

|<15;r> = |<15; >* Then we can write the good state in this complete orthonormal
basis:

[¥g00d) = ao|Po) Zak@k +Z +|47’Jr +a; |Q5 ))-

Since the good state is a real vector, a =

j
of |d5]i> so that a;r =a; = aj;. Then we have

|1/}good> = a0|¢0> + Z a’k|¢k> + Zaj <|¢j_> + }QJ_>) :
k J

(a;)*, and we can choose the phase

Now we can use these coefficients (i.e., ag, the ay’s, and the a;’s) to determine
the behavior of the abstract search algorithm. Typically, the starting and good
states are close to two other states, |Wgtart) and |Wgood), With respective over-
laps

4 2 4
|<¢start|wstart>| > 1 _6 aizaij —6 Q—Zaz 5
- a? - (1 —cosh;)? a?

| <wg00d |wgood> | = 9 min —’ 1 ,

where

ag

a?
\/Zj 17cc€s 0; + i Zk a’i

These two states are important because 7/2« applications of UsU; drives the
system from |wseart) tO [Wgood). That is, |Weood) = (UgUl)”/2a|wstart>. This
yields the runtime of the algorithm, and the previous overlaps with |{start)
and |1go0a) give the success probability.

Quantum walk search algorithms are framed as abstract search algorithms
by first identifying the quantum walk operator U = S(Iy ® C) with Us. U is
real and unitary, and the starting state of the quantum walk |¢y) corresponds
t0 |tstart) since it is the unique l-eigenvector of U. Now comparing and
, we would also like to identify (Q ® I5) with U;. Unfortunately, [go0d)
cannot exist with this identification. For example, if the marked vertex is |w),
then (Q ® I5) flips the signs of both |w,1) and |w, O). These two states are
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orthogonal, so U; should only flip the sign of one state and do nothing to
the other. Therefore, our algorithm is not amenable to the analysis of the
abstract search algorithm.

We note that search with the SKW oracle is an instance of the abstract
search algorithm since Isy — 2|w, s.){(w, s.| can be identified with U;. Then
|w, sc) 1S |g00d), and the oracle acts as the identity on all states orthogonal
to this. Analyzing this algorithm is uninteresting, however, since the self-loops
only slow down the walk, as we saw in Fig. 2B

4 Conclusion

We have shown that the lackadaisical quantum walk, where a self-loop of
weight [ is added to each vertex of the graph, can achieve a scaling improve-
ment when searching the 2D grid with the Grover oracle for a unique marked
vertex when [ = 4/N. At the marked vertex, the algorithm stores amplitude
in the self-loop, allowing it to rise to a constant near 1 compared with the
loopless algorithm’s O(1/log N). This eliminates the need for amplitude am-
plification, so the resulting algorithm has a runtime of O(y/N log N), which
is an O(+/log N) improvement over the typical, loopless algorithm. This algo-
rithm cannot be formulated in the framework of the abstract search algorithm,
and so it is not amenable to its analytical method. Further research includes
analytically proving the runtime of the algorithm, and exploring whether other
quantum walk algorithms can be sped up using lackadaisical quantum walks.

Acknowledgements Thanks to Scott Aaronson for useful discussions. This work was sup-
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son.
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