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Abstract

The uncertainty relation is one of the key ingredients of quantum theory. De-

spite the great efforts devoted to this subject, most of the variance-based uncer-

tainty relations are state-dependent and suffering from the triviality problem of

zero lower bounds. Here we develop a method to get uncertainty relations with

state-independent lower bounds. The method works by exploring the eigenval-

ues of a Hermitian matrix composed by Bloch vectors of incompatible observables

and is applicable for both pure and mixed states and for arbitrary number of N -

dimensional observables. The uncertainty relation for incompatible observables can

be explained by geometric relations related to the parallel postulate and the in-

equalities in Horn’s conjecture on Hermitian matrix sum. Practical entanglement

criteria are also presented based on the derived uncertainty relations.

1

http://arxiv.org/abs/1709.03780v2


1 Introduction

The uncertainty relation is one of the distinguishing features of quantum theory and

plays important roles in quantum information sciences [1–4]. The original form, p1q1 ∼ h,

was introduced by Heisenberg in explaining the non-simultaneous precision measurements

of the position q and the momentum p of a microscopic particle, where h is Planck constant

and p1 and q1 are the precisions of measuring p and q [5]. Soon it was cast into the following

form by Kennard [6]

∆x∆p ≥
~

2
. (1)

Here ∆x and ∆p are the standard deviations in measuring the canonical observables of x

and p. The most well-known formulation, however, was that by Robertson [7]

∆A2∆B2 ≥

∣

∣

∣

∣

1

2
〈[A,B]〉

∣

∣

∣

∣

2

, (2)

where ∆X2 = 〈X2〉 − 〈X〉2 means the variance (square of the standard deviation) of

the observable (not just the canonical observables x and p), and [A,B] ≡ AB − BA is

the commutator. Soon afterward Schrödinger presented an improvement, ∆A2∆B2 ≥
∣

∣

1
2
〈[A,B]〉

∣

∣

2
+
∣

∣

1
2
〈{A,B}〉 − 〈A〉〈B〉

∣

∣

2
[8], with the anti-commutator defined as {A,B} ≡

AB + BA. These variance-based uncertainty relations have a common trait of state-

dependent lower bound: The optimal lower bounds of the right hand sides may be trivially

zero, which blurs the trade-offs between ∆A and ∆B for variant quantum states.

A recent work of Maccone and Pati’s [9] presented new improvements to the uncer-

tainty relation with a typical form of

∆A2 +∆B2 ≥ ±i〈ψ|[A,B]|ψ〉+ |〈ψ|A± iB|ψ⊥〉|2 . (3)

Here |ψ⊥〉 is defined to be 〈ψ|ψ⊥〉 = 0, and the lower bound keeps on to be state-

dependent. Since then, great efforts have been devoted to improve the lower bound of
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the variance-based uncertainty relation [10–20]. Of those new developments, the variance

generally exists on both sides of the uncertainty relations, and thus the state-dependence

remains. Moreover, those new uncertainty relations are mostly devoted to pure state and

are hence not very suitable for mixed states [21]. Generally, the infimum over all states

for the right-hand sides of these uncertainty relations, e.g., see equations (2) and (3), will

not give the real infimum for the left-hand sides. To get state-independent lower bounds,

Bloch vector method was introduced in [22], which may yield an exact uncertainty relation

among arbitrary number of observables in principle [23]. However, since the uncertainty

relations obtained by means of Bloch vectors involve complicated functions of the variances

of different observables [22, 23], the trade-offs among incompatible observables may not

manifest explicitly. Numerical method is also helpful in analyzing the lower limits for the

sum of observables’ variances [24], e.g., variances of angular momentums [25]. For the

ever increasing number of uncertainty relations, the fundamental question remains open:

How to get an explicit form of uncertainty relation with state-independent lower bound.

In this work, we present a method on how to derive the state-independent uncer-

tainty relation for the sum of variances. The upper and lower bounds of the sum are

obtained by exploring the eigenvalues of a Hermitian matrix composed of Bloch vectors

of observables, which is applicable to both pure and mixed states and to arbitrary num-

ber of N -dimensional observables. In this sense, the quantum uncertainty relation stems

from the geometric relation pertaining to the postulate in Euclidean geometry and the

Horn’s inequalities for the spectrum of Hermitian matrix sums [26] (the conjecture was

proved around 2000 [27]). We also present a practical uncertainty-relation-based entan-

glement criterion for bipartite mixed states, which is shown to be superior to the Bloch

representation criterion in detecting entanglement.

3



2 The state-independent uncertainty relation

An arbitrary quantum state (pure or mixed) may be represented by a density matrix.

The density matrix ρ is a positive semidefinite Hermitian matrix with trace one and may

be expressed as [28]

ρ =
1

N
1+

1

2

N2−1
∑

µ=1

rµλµ =
1

N
1+

1

2
~r · ~λ , (4)

where λµ are the N2 − 1 SU(N) generators with Tr[λµλν ] = 2δµν , and rµ = Tr[ρλµ]

are components of a N2 − 1-dimensional real vector ~r called Bloch vector of the density

matrix. The Bloch vector ~r subjects to a series of constraints to ensure the normalization

and semipositivity of the density matrix [29, 30].

In quantum mechanics, physical observables are represented by Hermitian matrices.

Because adding (subtracting) a constant to (from) an observable does not change its

variance, we can always treat the observable to be traceless and write A =
∑N2−1

µ=1 aµλµ =

~a·~λ, where ~a is called the Bloch vector of A. The variance of any observable A in quantum

state ρ now can be written as [22]

∆A2 = Tr[A2ρ]− Tr[Aρ]2 =
2

N
|~a|2 + (~a ∗ ~a) · ~r − (~a · ~r )2 . (5)

Here (~a ∗ ~a)k =
∑N2−1

µ,ν=1 aµaνdµνk with dµνk being the symmetric structure constant of

SU(N) group. The variance of a physical observable now is expressed in terms of geometric

relations between the Bloch vectors of the observable and the quantum state and varies

with the states.

For M observables Ai = ~ai · ~λ in N -dimensional Hilbert space, we may construct

a real symmetric matrix A =
∑M

i=1 ~ai~a
T
i . The Bloch vectors of {Ai} span a space

S1 ≡ span{~ai|i = 1, . . . ,M}, where the whole (N2 − 1)-dimensional Bloch vector space

is constructed by S = S1 ∪ S0 with S0 ≡ S1. The dimension m of S1 lies in 1 ≤ m ≤
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min{M,N2 − 1}. Then any Bloch vector can be decomposed accordingly as:

~α =

M
∑

i

~ai ∗ ~ai = ~α1 + ~α0 , ~r = ~r1 + ~r0 , (6)

where ~α1, ~r1 ∈ S1 and ~α0, ~r0 ∈ S0. We have the following theorem.

Theorem 1 For M observables Ai, i ∈ {1, . . . ,M}, we have the following uncertainty

relation

M
∑

i=1

∆A2
i ≥

2

N
Tr[A] + C0 − C1 , (7)

M
∑

i=1

∆A2
i ≤

2

N
Tr[A] + C0 − C2 . (8)

Here C0 =
1
4
~α1

TA−1~α1 is state independent, and

C1 = max
θ∈[0,π/2]

{(|~r | sin θ +
1

2
|A−1~α1|)

2σ1(A) + |~α0||~r | cos θ}, (9)

C2 = min
θ∈[0,π/2]

{(|~r | sin θ −
1

2
|A−1~α1|)

2σm(A)− |~α0||~r | cos θ}, (10)

where σi(·) are eigenvalues in descending order, C1 and C2 depend only on the norm of

Bloch vector |~r |.

Proof: According to equations (5) and (6), we may write

M
∑

i=1

∆A2
i =

2

N
Tr[A] +

1

4
~α1

TA−1~α1 − (~r1 −
1

2
A−1~α1)

TA(~r1 −
1

2
A−1~α1) + ~α0 · ~r0 . (11)

Because A =
∑M

i=1 ~ai~a
T
i , it is invertible within S1. Equation (11) has the lower bound

M
∑

i=1

∆A2
i ≥

2

N
Tr[A] +

1

4
~α1

TA−1~α1 − (|~r1|+
1

2
|A−1~α1|)

2σ1(A)− |~α0||~r0| , (12)

where σ1 is the largest eigenvalue of A. As |~r |2 = |~r1|
2+ |~r0|

2, we have |~r1| = |~r | sin θ and

|~r0| = |~r | cos θ, θ ∈ [0, π/2], and therfore equation (12) leads to equation (7). Equation

(8) is analogously obtained where σm denotes the smallest eigenvalue of A. Q.E.D.
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As qubit systems have the most wide applications in quantum information sciences,

we present several important corollaries of Theorem 1 for qubit. As dµνk = 0 for qubit, the

variance in equation (5) becomes ∆A2 = ~a ·~a− (~a · ~r )2. We have the following Corollary

Corollary 1 For M observables Ai = ~ai · ~λ in qubit system, we have

M
∑

i=1

∆A2
i ≥ (1− |~r |2)σ1 + σ2 + σ3 , (13)

M
∑

i=1

∆A2
i ≤ σ1 + σ2 + (1− |~r |2)σ3 . (14)

Here σi are eigenvalues of A =
∑M

i=1~ai~a
T
i with σ1 ≥ σ2 ≥ σ3 ≥ 0.

Proof: As ~α = 0 and ∆A2 = ~a · ~a− (~a · ~r )2, it is easy to get the following result:

M
∑

i=1

∆A2
i = Tr[A]− ~rTA~r . (15)

Because A is a positive semi-definite real symmetric matrix with eigenvalues {σ1, σ2, σ3},

we have |~r |2σ3 ≤ ~rTA~r ≤ |~r |2σ1 which directly leads to equations (13, 14). Q.E.D.

Corollary 1 gives both the upper and lower bounds for the sum of the variances of Ai,

which rely only on trace norm of the density matrix, i.e., |~r |2. For the special case of pure

qubit state where |~r | = 1, we have

σ2 + σ3 ≤
M
∑

i=1

∆A2
i ≤ σ1 + σ2 . (16)

It is noticed that the inequalities in Theorem 1 actually arise from the Horn’s inequalities

for the sum of Hermitian matrices, which will be clear with the following Corollary:

Corollary 2 For two independent observables A1 and A2 in qubit system, i.e., the two

observables are not proportional A1 6= κA2, where ∆A2
1 ≥ c1 and ∆A2

2 ≥ c2 with c1 and

c2 being dependent only on the Bloch vector norm of the state, there exists the following

∆A2
1 +∆A2

2 > c1 + c2 . (17)
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That is, the lower bound of the sum of their variances are greater than the sum of their

variances’ lower bounds for all the states with the same Bloch vector norm.

Proof: According to Theorem 1, we have

∆A2
1 = |~a1|

2 − ~rTA1~r ≥ |~a1|
2 − |~r |2σ1(A1) ≡ c1 , (18)

∆A2
2 = |~a2|

2 − ~rTA2~r ≥ |~a2|
2 − |~r |2σ1(A2) ≡ c2 , (19)

where ~ai are the Bloch vectors of Ai; Ai = ~ai~a
T
i , i = 1, 2 are real symmetric (Hermitian)

matrices; and σ1(·) means the largest eigenvalue of a matrix. Meanwhile, the sum of the

two variances is

∆A2
1 +∆A2

2 = ~a1 · ~a1 + ~a2 · ~a2 − ~rT(A1 +A2)~r . (20)

The lower bound of equation (20) is |~a1|
2 + |~a2|

2 − |~r |2σ1(A1 +A2). However, the Horn’s

inequalities [27] tell that σ1(A1 +A2) < σ1(A1) + σ1(A2) for the present configuration of

A1 and A2, i.e. ~a1 6= κ~a2. Q.E.D.

Two physical quantities A1 and A2 may be regarded as linearly independent in the

sense that xA1 + yA2 = 0 ⇔ x = y = 0. In classical probability theory, the linear

independence leads to the following: If there are probability distributions for A1 and A2

where ∆A2
1,2 could reach the values c1,2 respectively, then there always exist the joint

probability distribution that makes ∆A2
1 + ∆A2

2 = c1 + c2, e.g., multiplying the two

probability distributions will simply do the job. However, the quantum theory predicts

differently: There does not exist the state (joint probability distribution for A1 and A2

in the statistical interpretation in quantum mechanics) where the variances of A1 and A2

could reach the individual minimum values of c1 and c2 simultaneously, i.e., ∆A2
1 +∆A2

2

cannot reach c1 + c2 due to the Horn’s inequalities on the matrix sum in equation (20).

Similar situation as that of equation (20) happens in N -dimensional systems, i.e.

∆A2
1 +∆A2

2 =
2

N

(

|~a1|
2 + |~a2|

2
)

+ (~a′1 + ~a′2) · ~r − ~rT(A1 +A2)~r , (21)
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where ~a′i = ~ai ∗ ~ai and Ai = ~ai~a
T
i . If |~a

′
i| ≫ σ1(Ai), then ∆A2

1 +∆A2
2 > c1 + c2 because ~r

cannot be anti-parallel (or parallel) to two non-parallel vectors ~a′1 and ~a′2 simultaneously,

which is originated from the parallel postulate of Euclidean geometry. While if |~a′i| ≪

σ1(Ai), ∆A
2
1 + ∆A2

2 > c1 + c2 satisfies, due to the Horn’s inequalities for matrix sum

(see equation (20)). The actual case of
|~a′

i
|

σ1(Ai)
∈ [0,

(

2(N−1)
N

)
1

2

] [22] may be more complex

because of the possible interferences between terms ~a∗~a and ~a~aT. However for a complete

set of orthogonal observables {Ai}, where Tr[AiAj] = 2|~a |2δij , i, j ∈ {1, . . . , N2−1}, there

exists a concise result for the variance-based uncertainty relation. We express a complete

set of orthogonal observables {Ai} in the form of

Ai = |~a|
N2−1
∑

j=1

Oijλj , (22)

where O ∈ SO(N2 − 1), and we have

Corollary 3 For the complete set of orthogonal observables {Ai}, there exists the follow-

ing relation for the state-dependent variances

N2−1
∑

i=1

∆A2
i = |~a|2

(

2(N2 − 1)

N
− |~r |2

)

≥ 2|~a|2(N − 1) . (23)

Here ~r is the Bloch vector of the quantum state.

Proof: Taking equation (22) into equation (5) we have

∆A2
i =

2

N
|~a|2 + |~a|2

∑

µ,ν,k

OiµOiνdµνkrk − |~a|2(

N2−1
∑

µ=1

Oiµrµ)
2 . (24)

Summing over i, we have

N2−1
∑

i=1

∆A2
i = |~a|2

2(N2 − 1)

N
+ |~a|2

N2−1
∑

µ,k=1

dµµkrk − |~a|2|~r |2

= |~a|2
(

2(N2 − 1)

N
− |~r |2

)

, (25)
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where the condition
∑N2−1

µ=1 dµµk = 0, ∀k ∈ {1, . . . , N2 − 1} is employed. As the Bloch

vectors |~r |2 ≤ 2(N−1)
N

, the theorem is then sound. Q.E.D.

Corollary 3 states that when a complete set of orthogonal observables is considered, the

sum of their variances appears to be an identity. For Pauli matrices in SU(2), Corollary

3 reduces to ∆σ2
1 +∆σ2

2 +∆σ2
3 = 3− |~r |2 which agrees with the result of [22].

3 The detection of entanglement via uncertainty re-

lations

Uncertainty relations can also be used to characterize quantum entanglement [31]. We

consider the following N ×N quantum state in Bloch representation [32]

ρAB =
1

N2
1⊗ 1+

1

2N
~r · ~λ⊗ 1+

1

2N
1⊗ ~s · ~λ+

1

4

N2−1
∑

µ=1

N2−1
∑

ν=1

Tµν λµ ⊗ λν , (26)

where rµ = Tr[ρAB(λµ ⊗ 1)], sν = Tr[ρAB(1⊗ λν)], and Tµν = Tr[ρAB(λµ ⊗ λν)] is called

the correlation matrix. The reduce density matrices are ρA = TrB[ρAB] =
1
N
1 + 1

2
~r · ~λ,

ρB = TrA[ρAB] =
1
N
1+ 1

2
~s · ~λ, and the quantum state ρAB is separable when

~r =
∑

k

pk~rk , ~s =
∑

k

pk~sk , T =
∑

k

pk~rk~s
T
k . (27)

Here, ρAB =
∑

k pkρ
(A)
k ⊗ ρ

(B)
k , {pi} is probability distribution, and ~rk and ~sk denote

the Bloch vectors of ρ
(A)
k and ρ

(B)
k respectively. We call a set of local observables Mi =

Ai ⊗ 1 + 1 ⊗ Bi to be complete and orthonormal if Tr[AiAj ] = Tr[BiBj ] = 2δij , ∀i, j ∈

{1, . . . , N2 − 1}, and the following Corollary exists:

Corollary 4 If an N × N state ρAB is separable, then the following relation exists for

arbitrary complete orthonormal local observables {Mi = Ai ⊗ 1+ 1⊗ Bi}

N2−1
∑

i=1

∆M2
i ≥ 4(N − 1) . (28)
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Equation (28) directly tells that if ρAB is separable, then

||T ||KF ≤
2(N − 1)

N
−

1

2
(|~r | − |~s |)2 , (29)

where ||T ||KF ≡
∑

i σi(T ) is the Ky Fan norm of a matrix, ~r and ~s are the Bloch vectors

of the reduce density matrices of particles A and B.

Proof: Taking equation (26) into ∆M2
i = Tr[M2

i ρAB]− Tr[MiρAB]
2, we have

N2−1
∑

i=1

∆M2
i =

4

N
(N2 − 1) + 2

∑

i

~aT
i T

~bi −
∑

i

(~r · ~ai + ~s ·~bi)
2

≤
4

N
(N2 − 1) + 2

∑

i

~aT
i T

~bi − (|~r | − |~s |)2 . (30)

While taking equation (26) into ∆M2
i = Tr[M2

i ρAB] − Tr[MiρAB]
2 with T =

∑

k pk~rk~s
T
k ,

we have

N2−1
∑

i=1

∆M2
i =

4(N2 − 1)

N
+ 2

∑

i,k

pkrkiski −
∑

i

(

∑

k

pkrki + pkski

)2

≥
4(N2 − 1)

N
−
∑

k

pk(|~rk|
2 + |~sk|

2)

≥ 4(N − 1) . (31)

Here, rki = ~rk · ~ai, ski = ~sk · ~bi, and |~r |2, |~s |2 ≤ 2(N−1)
N

; the relation 2
∑

k pkrkiski =
∑

k pk [(rki + ski)
2 − r2ki − s2ki] is used. Then equations (30, 31) give

N2−1
∑

i=1

~aT
i T

~bi ≥ −
2(N − 1)

N
+

1

2
(|~r | − |~s |)2 , (32)

which is satisfied by all possible bases ~ai and ~bi. By choosing ~ai = ~ui and ~bi = −~vi, we

have

||T ||KF ≤
2(N − 1)

N
−

1

2
(|~r | − |~s |)2 . (33)

Here ~ui and ~vi are the left and right singular vectors of T . Q.E.D.

10



Corollary 4 represents an uncertainty-relation-based entanglement criterion for bipar-

tite mixed states. Equation (29) provides a better upper bound than Theorem 1 of

Ref. [33]. When the subsystems of an N × N quantum state are completely mixed, i.e.

|~r | = |~s | = 0, the computable cross-norm or realignment (CCNR) criterion [34, 35], Bloch

representation criterion [33], the covariance matrix criterion [36] and the local uncertainty

relation criterion of equation (29) all converge to the same relation: ||T ||KF ≤ 2(N−1)
N

.

Most importantly, our method also provides a way to construct the optimal observable

set {Mi} to detect the entanglement, which is generally a difficult task for the uncertainty-

relation-based entanglement criteria. That is, the Bloch vectors should be properly chosen

according to the left and right singular vectors of the correlation matrix T .

4 Conclusion

In this work we have proposed a state-independent variance-based uncertainty relation

by virtue of the observables’ Bloch vectors. By exploring the eigenvalues of the Hermitian

matrix composed of the Bloch vectors, the upper and lower bounds for the sum of vari-

ances are obtained. It is found that the incompatibility of observables may be attributed

to geometric relations related to the parallel postulate of Euclidean geometry and the

Horn’s conjecture on the Hermitian matrix sum, which provides an alternative interpre-

tation for the variance-based uncertainty relation. Also, our method leads to a practical

entanglement criterion for bipartite mixed states. Considering the important roles it plays

in the separability problem [32, 37], we believe the Bloch representation can be as a useful

tool for further quantitative study and deeper understanding of the fundamental concepts

in quantum theory, e.g. the uncertainty relation, quantum entanglement, and quantum

steering [38].
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