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We present a way to create entangled states of two superconducting transmon qutrits based on
circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction
is employed, the entanglement creation can be completed within a short time. The degree of
entanglement for the prepared entangled state can be controlled by varying the weight factors of
the initial state of one qutrit, which allows the prepared entangled state to change from a partially
entangled state to a maximally entangled state. Because a single cavity is used, only resonant
interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and
auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite
general and can be applied to prepare a two-qutrit partially or maximally entangled state with two
natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

PACS numbers: 03.67.Bg, 42.50.Dv, 85.25.Cp

I. INTRODUCTION AND MOTIVATION

Entanglement is one of the most striking aspects of quantum mechanics. A system is entangled if its quantum state
cannot be described as a direct product of states of its subsystems. Entanglement has many applications in quantum
commuication and quantum information processing (QIP) [1-5]. In the last decade, quantum entanglement engineering
has been widely studied with various physical systems. For instance, entanglement creation has been theoretically
proposed with superconducting (SC) qubits coupled via Josephson junctions [6] or capacitors [7-9]. The focus of
this work is on entanglement creation with a circuit-QED system, which has been considered as one of the leading
candidates for QIP [10-17]. For the past years, based on circuit QED, much process has been made on entanglement
generation with SC qubits. For instance, using SC qubits coupled to a single cavity or multiple resonators (hereafter,
the terms cavity and resonator are used interchangeably), a number of theoretical proposals have been presented for
realizing entangled states of SC qubits [10-12,18-23]. Moreover, various two-qubit or three-qubit entangled states
have been experimentally demonstrated with superconducting qubits based on circuit QED [24-29]. Recently, using
SC qubits coupled to a single resonator, a Greenberger-Horne-Zeilinger entangled state of ten SC qubits has been
demonstrated in experiments [30]. With solid-state platforms, this is the largest number of entangled qubits reported
so far, after the previous experimental demonstration of entanglement with five superconducting qubits via capacitance
coupling was reported [31].
A significant experimental challenge for entanglement engineering is how to create quantum entanglement with

high-dimensional quantum systems. Compared with a qubit (two-level system), a qutrit (three-level system) has
a larger Hilbert space and thus can be used to encode more information in QIP and communication. As is well
known, high-dimensional (HD) quantum entanglement is not only of great interest in providing an additional way
for the fundamental tests of quantum nonlocality, but also central for HD-based quantum computation, quantum
communication, quantum error correction, and quantum simulation. Over the past years, base on cavity or circuit
QED, a large number of theoretical methods have been presented for creating two-qubit or multi-qubit entangled
states with various physical systems (e.g., atoms, nitrogen-vacancy centers, quantum dots, and SC devices) [10-12,18-
23,32-39]. However, after a deep search of the literature, we found that based on cavity QED or circuit QED, how
to create entangled states of qutrits or higher-dimensional quantum systems with natural or artificial atoms has been
rarely investigated.
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FIG. 1: Level diagram of a transmon qutrit with the ladder-type three lowest levels. For a transmon qutrit, the level spacing
between the upper two levels is smaller than that between the two lowest levels. In addition, for a transtion qutrit, the transition
between the two levels |0〉 and |2〉 is much weaker compared to the transition between the upper two levels and the transition
between the two lowest levels [34]. Namely, χ20 ≪ χ10, χ21. Here, χij is the transition matrix element for the two levels |j〉
and |i〉 (ij = 20, 10, 21).

Motivated by the above, in this work we will consider a physical system, which consists of two superconducting
transmon qutrits coupled to a single microwave cavity or resonator. Note that transmon devices have been considered
as one of the best SC information carriers because of their relatively longer coherence times compared with other type
of SC devices (e.g., flux, phase, and charge qubits/qutrits, etc.). In the following, we will propose an approach to
prepare the two transmon qutrits in an entangled state (either a partially-entangled state or a maximally-entangled
state). To the best of our knowledge, our proposal is the first one to show how to create entangled states of qutrits
with natural or artificial atoms based on cavity or circuit QED.
As shown below, this proposal has the following advantages: (i) Because only qutrit-cavity resonant interaction

and qutrit-pulse resonant interaction are employed, the entanglement creation can be completed within a short time;
(ii) There is no requirement on the identical qutrit-cavity coupling constants; thus either non-uniformity in the qutrit
device parameters (resulting in nonidentical qutrit level spacings) or non-exact placement of qutrits in the cavity is
allowed by this proposal; (iii) Since only a single microwave cavity is used and no auxiliary qutrit is needed, the setup
is simple; (iv) There is no need of measurement on the qutrit states or the cavity state, thus the entangled states
can be created deterministically; and (v) The degree of entanglement for the prepared entangled state is adjustable
by varying the weight factors of the initial state of one qutrit, thus this proposal can be used to create the two-
qutrit entangled state varying from a partially entangled state to a maximally entangled state. This proposal is quite
general, which can be extended to create a two-qutrit entangled state with a wide range of physical systems, such
as two natural atoms (with a ladder-type three-level structure) coupled to an optical cavity, or two artificial atoms
of a ladder-type three-level structure (e.g., superconducting phase qutrits, Xmon qutrits, nitrogen-vacancy centers,
quantum dots, etc.) coupled to a microwave cavity or resonator.
This paper is organized as follows. In Sec. II, we review the basic theory of a transmon qutrit resonantly interacting

with a single cavity or a classical microwave pulse. In Sec. III, we explicitly show how to prepare two transmon qutrits
in an entangled state based on circuit QED. In Sec. IV, we give a brief discussion on the experimental feasibility. A
concluding summary is given in Sec. V.

II. BASIC THEORY

A transmon qutrit has a ladder-type three-level structure [40]. In this work, we consider the three lowest levels of
a transmon qutrit, which are denoted as |0〉 , |1〉 and |2〉 (Fig.1). For a transmon qutrit, the transition between the
two levels |0〉 and |2〉 is much weaker compared to the transition between the two levels |0〉 and |1〉 and the transition
between the two levels |1〉 and |2〉 [40]. As shown in next section, the entanglement generation requires two types of
resonant interaction. Namely, the resonant interaction between a cavity and the |0〉 ↔ |1〉 transition of the qutrit; and
the resonant interaction between a classical pulse and the |1〉 ↔ |2〉 transition of the qutrit. To make our presentation
given in next section clear, in the following we will give a brief review on the state evolutions for these two kinds of
interactions.

A. Qutrit coupled to a single cavity

Consider a transmon qutrit coupled to a single-mode cavity. Assume that the cavity is resonantly coupled to the
transition between the two lowest levels |0〉 and |1〉 while highly detunned (decoupled) from the transitions between
other levels of the qutrit. Under this consideration, the interaction Hamiltonian in the interaction picture, after
making the rotating-wave approximation, can be written as HI1 = ~ga† |0〉 〈1|+ h.c., where a† (a) is the creation
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(annihilation) operator of the cavity and g is the coupling constant between the cavity and the |0〉 ↔ |1〉 transition
of the qutrit.
Under the Hamiltonian HI1 , one can obtain the following state evolution:

|0〉 |0〉c → |0〉 |0〉c
|1〉 |0〉c → −i sin gt |0〉 |1〉c + cos gt |1〉 |0〉c ,
|0〉 |1〉c → cos gt |0〉 |1〉c − i sin gt |1〉 |0〉c , (1)

where |0〉c is the vacuum state of the cavity while |1〉c is the single-photon state of the cavity.
As shown in next section, the entanglement preparation requires that a cavity interacts with each of two qutrits 1

and 2. In reality, it is a challenge to have the qutrit-cavity coupling constants to be identical for both of the qutrits.
Thus, we replace the coupling constant g with g1 for qutrit 1 while g2 for qutrit 2.

B. Qutrit driven by a classical pulse

Let us consider a transmon qutrit driven by a microwave pulse. If the pulse is resonantly coupled to the |0〉 ↔
|1〉 transition but highly detunned (decoupled) from the transitions between other levels of the qutrit. Then, the
interaction Hamiltonian in the interaction picture is given by HI2 = ~

(

Ω10e
iφ |0〉 〈1|+ h.c.

)

, where φ is the initial
phase of the pulse while Ω10 is the Rabi frequency of the pulse. From the Hamiltonian HI2 , it is easy to show that a
pulse of duration t results in the following state evolution:

|0〉 → cosΩ10t |0〉 − ie−iφ sinΩ10t |1〉 ,
|1〉 → −ieiφ sinΩ10t |0〉+ cosΩ10t |1〉 . (2)

Similarly, when the pulse is resonantly coupled to the |1〉 ↔ |2〉 transition but highly detunned (decoupled) from
the transitions between other levels of the qutrit, the interaction Hamiltonian in the interaction picture is given by
HI3 = ~

(

Ω21e
iφ |1〉 〈2|+ h.c.

)

, where Ω21 is the Rabi frequency of the pulse. Based on this Hamiltonian, we can
obtain the following state rotation:

|1〉 → cosΩ21t |1〉 − ie−iφ sinΩ21t |2〉 ,
|2〉 → −ieiφ sinΩ21t |1〉+ cosΩ21t |2〉 . (3)

Finally, it should be mentioned that when the cavity is highly detunned (decoupled) from the |1〉 ↔ |2〉 and |0〉 ↔ |2〉
transitions of the qutrit, there is neither coupling between the cavity and the qutrit nor transition between the levels
|2〉 and |1〉 or |0〉 induced by the cavity. As a result, the states |2〉 |0〉c , and |2〉 |1〉c remain unchanged during the
cavity on resonance with the |0〉 ↔ |1〉 transition of the qutrit. For a similar reason, the state |2〉 (|0〉) of the qutrit
is unaffected during applying the pulse resonant with the |0〉 ↔ |1〉 (|1〉 ↔ |2〉) transition of the qutrit. These results,
togeter with the results given in Eqs. (1-3), will be employed for the entanglement generation, as shown in the next
section.

III. GENERATION OF TWO-TRANSMON-QUTRIT ENTANGLED STATES

Let us now consider two transmon qutrits 1 and 2 embedded in a single-mode cavity. Initially, the two qutrits are
decoupled from the cavity, qutrit 1 is in the state α |0〉 + γ |1〉 + β |2〉 , qutrit 2 is in the ground state |0〉, and the
cavity is in the vacuum state |0〉c. The initial state of qutrit 1 here can be prepared by applying classical microwave
pulses. The initial state of the whole system is thus given by |ψ〉

in
= (α |0〉

1
+ γ |1〉

1
+ β |2〉

1
) |0〉

2
|0〉c . Hereafter, the

subscripts 1 and 2 represent qutrits 1 and 2, respectively.
To begin with, we define ω20 (ω21) as the |0〉 ↔ |1〉 (|1〉 ↔ |2〉) transition frequency of each qutrit and Ω10 ( Ω21)

as the pulse Rabi frequency of the coherent |0〉 ↔ |1〉 (|1〉 ↔ |2〉) transition. In addition, the frequency, initial phase,
and duration of a microwave pulse are denoted as {ω, φ, t′} in the remaining of the paper.
The operations for creating the entangled state (3) are described below:
Step 1: Apply a microwave pulse of {ω10,−π/2, π/ (4Ω10)} and then a microwave pulse of {ω21,−π/2, π/ (2Ω21)}

to qutrit 2 [Fig. 2(a)]. According to Eqs. (2) and (3), the pulse application results in the state transformation |0〉
2
→

(|0〉
2
+ |2〉

2
) /

√
2 (see Appendix). Therefore, the initial state |ψ〉

in
of the system becomes

1√
2
(α |0〉

1
+ γ |1〉

1
+ β |2〉

1
) (|0〉

2
+ |2〉

2
) |0〉c . (4)
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FIG. 2: (Color online) Illustration for the change of the level structure of two transmon qutrits during the entanglement
preparation. In (a), (b), (c), and (d), figures on the left represent the level structure for qutrit 1 while figures on the right
represent the level structure for qutrit 2. (a) Decoupling of qutrits 1 and 2 from the cavity during applying microwave pulses to
qutrit 2. The pulse with a Rabi frequency Ω21 is applied after the pulse of a Rabi frequency Ω10 is completed. (b) Decoupling
of qutrit 2 from the cavity during bringing the |0〉 ↔ |1〉 transition of qutrit 1 to resonance with the cavity. g1 is the coupling
constant. (c) Decoupling of qutrit 1 from the cavity during applying a microwave pulse to qutrit 1 and bringing the |0〉 ↔ |1〉
transition of qutrit 2 to resonance with the cavity. g2 is the coupling constant. (d) Decoupling of qutrits 1 and 2 from the
cavity during applying microwave pulses to each qutrit (for the sequence of the applied pulses, see the operation of step 5 in
the text). In (b) [(c)], during the cavity on resonance with the |0〉 ↔ |1〉 transition of qutrit 1 (2), the cavity is highly detuned
(or decoupled) from the |1〉 ↔ |2〉 transition of qutrit 1 (2) can be made by having the |1〉 ↔ |2〉 transition frequency highly
detuning from the cavity frequency. Note that the coupling or decoupling of the qutrits with the cavity can be achieved by
adjusting the level spacings of the qutrits [40-43].
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Step 2: Bring the |0〉 ↔ |1〉 transition of qutrit 1 to resonance with the cavity for an interaction time π/ (2g1)
[Fig. 2(b)]. According to Eq. (1), we have |1〉

1
|0〉c → −i |0〉

1
|1〉c\ . Thus, the state (4) changes to

1√
2
[(α |0〉

1
+ β |2〉

1
) (|0〉

2
+ |2〉

2
) |0〉c − iγ |0〉

1
(|0〉

2
+ |2〉

2
) |1〉c] . (5)

Step 3: Bring the |0〉 ↔ |1〉 transition of qutrit 2 to resonance with the cavity for an interaction time π/g2 [Fig. 2(c)],
resulting in |0〉

2
|1〉c → −|0〉

2
|1〉c according to Eq. (1). The state (5) thus changes to

1√
2
[(α |0〉

1
+ β |2〉

1
) (|0〉

2
+ |2〉

2
) |0〉c − iγ |0〉

1
(− |0〉

2
+ |2〉

2
) |1〉c] . (6)

Step 4: Bring the |0〉 ↔ |1〉 transition of qutrit 1 to resonance with the cavity for an interaction time 3π/ (2g1)
[Fig. 2(b)]. According to Eq. (1), we have |0〉

1
|1〉c → i |1〉

1
|0〉c . Hence, the state (6) changes to

1√
2
[(α |0〉

1
+ β |2〉

1
) (|0〉

2
+ |2〉

2
) + γ |1〉

1
(− |0〉

2
+ |2〉

2
)] |0〉c . (7)

Step 5: Apply microwave pulses of {ω10,−π/2, π/ (2Ω10)}, {ω21, π/2, π/ (4Ω21)}, {ω10, π/2, 3π/ (4Ω10)}, and then
{ω21, π/2, π/ (2Ω21)} to qutrit 2 in turn [Fig. 2(d)]. According to Eqs. (2) and (3), the pulse application leads to

(− |0〉
2
+ |2〉

2
) /

√
2 → |1〉

2
but nothing to the state (|0〉

2
+ |2〉

2
) /

√
2 of qutrit 2 (see Appendix). Meanwhile, apply a

microwave pulse of {ω21, π/2, π/ (2Ω21)} to qutrit 1 [Fig. 2(d)], resulting in |2〉
1
→ |1〉

1
and |1〉

1
→ −|2〉

1
according

to Eq. (3). Therefore, the state (7) becomes

[

1√
2
α (|0〉

1
+ β |1〉

1
) (|0〉

2
+ |2〉

2
)− γ |2〉

1
|1〉

2

]

|0〉c . (8)

Step 6: Bring the |0〉 ↔ |1〉 transition of qutrit 1 to resonance with the cavity for an interaction time π/ (2g1)
[Fig. 2(b)]. As a result, we have |1〉

1
|0〉c → −i |0〉

1
|1〉c . Thus, the state (8) becomes

1√
2
[α |0〉

1
(|0〉

2
+ |2〉

2
) |0〉c − iβ |0〉

1
(|0〉

2
+ |2〉

2
) |1〉c]− γ |2〉

1
|1〉

2
|0〉c . (9)

Step 7: Bring the |0〉 ↔ |1〉 transition of qutrit 2 to resonance with the cavity for an interaction time π/g2 [Fig. 2(c)],
resulting in |0〉

2
|1〉c → −|0〉

2
|1〉c and |1〉

2
|0〉c → −|1〉

2
|0〉c. Meanwhile, apply a microwave pulse of {ω21, π/2, π/Ω21}

to qutrit 1 [Fig. 2(c)], resulting in |2〉
1
→ −|2〉

1
. Thus, the state (9) becomes

1√
2
[α |0〉

1
(|0〉

2
+ |2〉

2
) |0〉c − iβ |0〉

1
(− |0〉

2
+ |2〉

2
) |1〉c]− γ |2〉

1
|1〉

2
|0〉c . (10)

Step 8: Bring the |0〉 ↔ |1〉 transition of qutrit 1 to resonance with the cavity for an interaction time 3π/ (2g1)
[Fig. 2(b)]. As a result, we have |0〉

1
|1〉c → i |1〉

1
|0〉c .Therefore, the state (10) changes to

{

1√
2
[α |0〉

1
(|0〉

2
+ |2〉

2
) + β |1〉

1
(− |0〉

2
+ |2〉

2
)]− γ |2〉

1
|1〉

2

}

|0〉c . (11)

Step 9: Apply a microwave pulse of {ω21, π/2, π/ (2Ω21)} and then a microwave pulse of {ω10, π/2, π/ (4Ω10)} to

qutrit 2 [Fig. 2(a)], resulting in the state transformations (|0〉
2
+ |2〉

2
) /

√
2 → |0〉

2
, (− |0〉

2
+ |2〉

2
) /

√
2 → |1〉

2
, and

|1〉
2
→ −|2〉

2
(see Appendix). Hence, the state (11) becomes

(α |0〉
1
|0〉

2
+ β |1〉

1
|1〉

2
+ γ |2〉

1
|2〉

2
) |0〉c . (12)

The above operations are illustrated in Fig. 3. The result (12) shows that the two qutrits are prepared in an
entangled state

|ψ〉
ent

= α |0〉
1
|0〉

2
+ β |1〉

1
|1〉

2
+ γ |2〉

1
|2〉

2
, (13)
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FIG. 3: (Color online) Circuit diagram for the two-qutrit entanglement preparation (the operation sequence follows the arrows).
The subscript j of Cj , pj , and Pj represents qutrit j (j = 1, 2) on which the operation is performed. C1 (g1t) , with g1t = π/2
or 3π/2, represents the operation that the cavity resonantly interacts with the |0〉 ↔ |1〉 transition of qutrit 1. C2 (g2t) , with
g2t = π, represents the operation that the cavity resonantly interacts with the |0〉 ↔ |1〉 transition of qutrit 2. Here g1 or g2
is the qutrit-cavity coupling constant, while t is the qutrit-cavity interaction time. In addition, pj (φ,Ω21t) , with φ = −π/2
or π/2 and Ω21t = π/4, π/4 or π, represents the operation that a microwave pulse is resonant with the |1〉 ↔ |2〉 transition of
qutrit j (j = 1, 2); while Pj (φ,Ω10t) , with φ = −π/2 or π/2 and Ω10t = π/4, π/2 or 3π/4, represents the operation that a
microwave pulse is resonant with the |0〉 ↔ |1〉 transition of qutrit j (j = 2). Here, φ is the pulse initial phase, Ω10 or Ω21 is
the pulse Rabi frequency, while t is the pulse duration.

while the cavity returns to its original vacuum state after the entire operation. It can be seen that the prepared
entangled state (13) is different from the two-qubit entangled states α |00〉 + β |11〉 /

√
2 and α |01〉 + β |10〉 . It is

well known that the two-qubit entangled states have been experimentally generated with various physical systems.
Interestingly, it is noted that the procedure for entangling the two qutrits has nothing to do with α, β, and γ.
Moreover, the degree of entanglement for the prepared two-qutrit entangled state (13) is controllable by varying the

weight factors α, β, and γ involved in the initial state of qutrit 1. For α = β = γ = 1/
√
3, the prepared entangled

state (13) is a maximally entangled state (|0〉
1
|0〉

2
+ |1〉

1
|1〉

2
+ |2〉

1
|2〉

2
) /

√
3 of the two qutrits. Otherwise, the two

qutrits are prepared in a partially entangled state.
From description given above, one can see that this proposal does not require that the qutrit-cavity coupling

constants g1 and g2 are identical. Thus, either non-uniformity in the qutrit device parameters or non-exact placement
of qutrits in the cavity is allowed, which significantly reduces the experiemental engineering difficulty. In addition,
neither auxiliary qutrit nor measurement is needed for the two-qutrit entanglement production. Furthermore, as
shown above, this proposal only requires two different microwave-pulse frequencies (ω10 and ω21), which are readily
achievable in current experiments [41].
Before ending this section, several points are addressed as follows:
(a) During the operations of steps (2-4) and (6-8), the |0〉 ↔ |1〉 transition of qutrit 1 or 2 is on resonance with

the cavity. This can be achieved by adjusting the level spacings of the qutrits. For superconducting qutrits, the
level spacings can be rapidly (within a few nanoseconds) adjusted by varying external control parameters (e.g., the
magnetic flux applied to a superconducting loop of phase, transmon, Xmon, or flux qubits; see, e.g., [42-45]).
(b). Durng the cavity interacting with a qutrit, the other qutrit is decoupled from the cavity. During the pulse

application, both qutrits are decoupled from the cavity, in order to avoid the effect of the unwanted qutrit-cavity
interactions. In addition, during the cavity on resonance with the |0〉 ↔ |1〉 transition of a qutrit, the |1〉 ↔ |2〉
transition of this qutrit is highly detuned (or decoupled) from the cavity. In principle, these conditions can be
satisfied by adjusting the level spacings of the qutrits [42-45].
(c). The ladder-type level structure is available in natural atoms or other artificial atoms such as nitrogen-vacancy

(NV) centers, quantum dots, and various other SC qutrits (SC phase, charge, and Xmon qubits). For NV centers,
the level spacings can be readily adjusted by changing the external magnetic field applied along the crystalline axis
of each NV center [46,47]. For quantum dots and atoms, the level spacings can be adjusted by changing the voltage
on the electrodes around each atom/quantum dot [48]. Thus, this proposal can be applied to create the two-qutrit
entangled state (13) in a wide range of physical systems.
(d). The method presented here is applicable to a 1D, 2D, or 3D cavity or resonator as long as the conditions

described above can be met.
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FIG. 4: (Color online) Setup for two transmon qutrits (red dots) embedded in a one-dimensional coplanar waveguide resonator.
λ is the wavelength of the resonator mode, and L is the length of the resonator. The two (blue) curved lines represent the
standing wave magnetic field of the resonator in the z direction, which is perpendicular to the surface of the superconducting
loop of each transmon qutrit. The two transmon qutrits are placed at locations where the magnetic fields are the same to
achieve an identical coupling strength for each qutrit. The superconducting loop (not shown) of each transmon qutrit is located
in the plane of the resonator between the two lateral ground planes (i.e., the x-y plane).

IV. DISCUSSION AND POSSIBLE EXPERIMENTAL IMPLEMENTATION

The total operation time is

τ =
7π

4Ω10

+
13π

4Ω21

+
4π

g1
+

2π

g2
+ 8τd, (14)

where td is the typical time required for adjusting the qutrit level spacings. To reduce the effect of decoherence from
the qutrits, the operation time τ should be much smaller than the energy relaxation time and the dephasing time of
qutrits. In addition, to reduce the effect of dissipation from the cavity, τ should be much smaller than the lifetime
of the cavity mode, which is given by κ−1 = Q/ (2πνc) (Q is the quality factor of the cavity while νc is the cavity
frequency). In principle, these requirements can be satisfied for the following reasons. First, the operation time τ can
be shortened by increasing the coupling constants g1 and g2 (e.g., placing each qutrit at an antinode of the cavity
magnetic field), increasing the pulse Rabi frequencies Ω10 and Ω21 (e.g., through increasing the pulse intensity), and
rapidly adjusting the qutrit level spacings (e.g., τd ∼ 1− 3 ns is the typical time for adjusting the level spacings of a
superconducting qutrit in experiments [41,43,49]). Second, one can choose qutrits with long decoherence times. Last,
κ−1 can be increased by employing a high-Q resonator.
Let us now consider the experimental possibility of preparing the two-qutrit entangled state (13) with two super-

conducting transmon qutrits embedded in a one-dimensional transmission line resonator (TLR) (Fig. 4).
When dissipation and dephasing are considered, the dynamics of the lossy system is determined by

dρ

dt
=− i[HI, ρ] + κL[a]

+
∑

j=1,2

γ10,jL[σ−
10,j ] + γ21,jL[σ−

21,j ] + γ20,jL[σ−
20,j ]

+
∑

j=1,2

{γϕ1,j(σ11,jρσ11,j − σ11,jρ/2− ρσ11,j/2)}

+
∑

j=1,2

{γϕ2,j(σ22,jρσ22,j − σ22,jρ/2− ρσ22,j/2)}, (15)

where HI is the Hamiltonian HI1 , HI2 ,or HI3 above, the subscript j represents qutrit j (j = 1, 2); σ−
10,j = |0〉j〈1|,

σ−
21,j = |1〉j〈2|, σ−

20,j = |0〉j〈2|, σ11,j = |1〉j〈1|, σ22,j = |2〉j〈2|; and L[ξ] = ξρξ† − ξ†ξρ/2 − ρξ†ξ/2, with

ξ = a, σ−
10,j , σ

−
21,j , σ

−
20,j . Here, κ is the photon decay rate of the cavity or resonator. In addition, γ10,j is the energy

relaxation rate for the level |1〉 of qutrit j, γ21,j (γ20,j) is the energy relaxation rate of the level |2〉 of qutrit j for the
decay path |2〉 −→ |1〉(|0〉), and γϕ1,j (γϕ2,j) is the dephasing rate of the level |1〉 (|2〉) of qutrit j (j = 1, 2).

The fidelity of the operations is given by

F =
√

〈ψid|ρ|ψid〉, (16)

where |ψid〉 is the output state of an ideal system without dissipation and dephasing; while ρ is the final practical
density operator of the system when the operation is performed in a realistic situation. As an example, consider
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FIG. 5: (Color online) Fidelity versus T and κ−1. The parameters used in the numerical simulation are referred to the text.

α = β = γ = 1/
√
3, for which the prepared entangled state (13) is |ψid〉 = (|0〉

1
|0〉

2
+ |1〉

1
|1〉

2
+ |2〉

1
|2〉

2
) /

√
3

for the ideal case, which corresponds to the case that the initial state of the whole system is |ψ〉
in

=

1/
√
3 (α |0〉

1
+ γ |1〉

1
+ β |2〉

1
) |0〉

2
|0〉c.

The parameters used in the numerical simulation are: (i) γ−1

10,j = 2T µs, γ−1

20,j = 5T µs, γ−1

21,j = T µs, γ−1

φ1,j = γ−1

φ2,j =

T µs, (ii) g1, g2, Ω10, Ω21 = 2π × 100 MHz. The coupling strengths and the pulse Rabi frequencies with the values
chosen here are readily available in experiments because a coupling strength g/2π ∼ 220 MHz has been experimentally
demonstrated for a transmon device coupled to a TLR [50] and a microwave pulse Rabi frequency Ω/2π ∼ 300 MHz
has been reported in experiments [51].
By solving the master equation (15), we numerically calculate the fidelity versus T and κ−1, as shown in Fig. 5.

Figure 5 illustrates that when T = 30 µs and κ−1 ≥ 2.5 µs, fidelity exceeds 98.03%. This result implies that a high
fidelity can be obtained when the dissipation and dephasing are taken into account.
For T = 30 µs, we have γ−1

10,j = 60 µs, γ−1

20,j = 150 µs, γ−1

21,j = 30 µs, and γ−1

φ1,j = γ−1

φ2,j = 30 µs, which are

much longer than the total operation time ∼ 67 ns (estimated based on the coupling constants and the pulse Rabi
frequencies chosen above and for τd ∼ 1.5 ns). Note that energy relaxation time and dephasing time can be made to
be on the order of 25− 100 µs for state-of-the-art superconducting transmon devices at the present time [52-55]. It is
worth noting that for an ideal transmon, the |0〉 ↔ |2〉 transition is theoretically zero due to the selection rule [40,56];
and in practice, there exists a weak transition between the two levels |0〉 and |2〉 [57]. Thus, γ−1

20,j ≫ γ−1

10,j , γ
−1

21,j.

For a transmon qutrit, the typical transition frequency between the two lowest levels |0〉 and |1〉 can be made to
be 3 − 10 GHz. Thus, as an example, choose νc ∼ 3 GHz. For κ−1 = 2.5 µs, we have Q ∼ 4.7 × 104. The required
resonator quality factor here is achievable in experiments because TLRs with a (loaded) quality factor Q ∼ 106 have
been experimentally demonstrated [58,59].
The analysis presented above shows that high-fidelity generation of the two-qutrit entangled state is feasible within

present-day circuit QED.
Finally, for two superconducting qutrits located in a microwave resonator, they can be well separated, because

the dimension of a superconducting qutrit is 10 to 100 micrometers while the wavelength of the cavity mode for a
microwave superconducting resonator is 1 to a few centimeters [60,61]. As long as the two qutrits are well separated
in space (Fig. 4), the loop current of one qutrit affecting the other qutrit and the direct coupling between the two
qutrits are negligible, which can be reached by designing the qutrits and the resonator appropriately.

V. CONCLUSION

We have presented a method to entangle two transmon qutrits based on circuit QED. Since only resonant interactions
are employed, the entanglement can be produced within a short time (a few tens of nanoseconds) and thus decoherence
from the qutrits and the cavity are greatly suppressed. As shown above, this proposal does not require measurement on
the states of the qutrits or the cavity-mode photons and only requires resonant qutrit-cavity interaction and resonant
qutrit-pulse interaction for each step of the operation. Thus, this proposal is easy to implement in experiments. This
proposal is quite general and can be applied to accomplish the same task with a wide range of physical systems. To
the best of our knowledge, our work is the first to show how to create entangled states of qutrits with natural or
artificial atoms based on cavity or circuit QED. We remark that the number of pulses can be reduced by employing
dispersive qutrit-cavity interaction but the operation time will become much prolonged due to the large detuning
technique to be used. We hope that this work will stimulate the experimental activities in the near future.
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APPENDIX

We here give a derivation on the state transformations induced by the application of the pulses, for the operations
of steps 1, 5, and 9 described above.
For step 1: A microwave pulse of {ω10,−π/2, π/ (4Ω10)} and then a microwave pulse of {ω21,−π/2, π/ (2Ω21)} were

applied to qutrit 2 [Fig. 2(a)]. The first pulse results in |0〉
2
→ (|0〉

2
+ |1〉

2
) /

√
2 according to Eq. (2), while the

second pulse leads to |1〉
2
→ |2〉

2
according to Eq. (3). After the two pulses, we thus have the state transformations:

|0〉
2

p1→ (|0〉
2
+ |1〉

2
) /

√
2

p2→ (|0〉
2
+ |2〉

2
) /

√
2, (17)

where the first transformation is obtained after applying the first pulse while the second transformation is achieved
after applying the second pulse. Note that the state |0〉

2
remains unchanged during the second pulse because the

pulse is highly detuned (or decoupled) from the |1〉
2
→ |2〉

2
transition of qutrit 2.

For step 5: The microwave pulses of {ω10,−π/2, π/ (2Ω10)}, {ω21, π/2, π/ (4Ω21)}, {ω10, π/2, 3π/ (4Ω10)}, and then
{ω21, π/2, π/ (2Ω21)} were applied to qutrit 2 in turn [Fig. 2(d)]. According to Eqs. (2) and (3), the first pulse

results in |0〉
2
→ |1〉

2
, the second pulse results in (|1〉

2
+ |2〉

2
) /

√
2 → |1〉

2
and (− |1〉

2
+ |2〉

2
) /

√
2 → |2〉

2
, the third

pulse results in |1〉
2
→ (|0〉

2
− |1〉

2
) /

√
2 but nothing to the state |2〉

2
, and the last pulse leads to |1〉

2
→ −|2〉

2
and

|2〉
2
→ |1〉

2
. Based on these results, we can obtain the following state transformations:

(|0〉
2
+ |2〉

2
) /

√
2

p1→ (|1〉
2
+ |2〉

2
) /

√
2

p2→ |1〉
2

p3→ (|0〉
2
− |1〉

2
) /

√
2

p4→ (|0〉
2
+ |2〉

2
) /

√
2,

(− |0〉
2
+ |2〉

2
) /

√
2

p1→ (− |1〉
2
+ |2〉

2
) /

√
2

p2→ |2〉
2

p3→ |2〉
2

p4→ |1〉
2
, (18)

where the first, second, third, and last transformations are obtained after applying the first, second, third, and the
last pulses, respectively.

For step 9: A microwave pulse of {ω21, π/2, π/ (2Ω21)} and then a microwave pulse of {ω10, π/2, π/ (4Ω10)} were
applied to qutrit 2 [Fig. 2(a)]. The first pulse results in |2〉

2
→ |1〉

2
and |1〉

2
→ −|2〉

2
while the second pulse leads to

(|0〉
2
+ |1〉

2
) /

√
2 → |0〉

2
and (− |0〉

2
+ |1〉

2
) /

√
2 → |1〉

2
but nothing to the state |2〉

2
. Based on these results, one can

have the following state transformations:

(|0〉
2
+ |2〉

2
) /

√
2

p1→ (|0〉
2
+ |1〉

2
) /

√
2

p2→ |0〉
2
,

(− |0〉
2
+ |2〉

2
) /

√
2

p1→ (− |0〉
2
+ |1〉

2
) /

√
2

p2→ |1〉
2
,

|1〉
2

p1→ −|2〉
2

p2→ −|2〉
2
, (19)

where the first transformation is obtained after the first pulse while the second transformation is achieved after the
second pulse.
Note that the p1, p2, p3, and p4 above represent the first, second, third, and fourth pulses, respectively.
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