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Abstract

We present a practical scheme for the decomposition of a bipartite mixed state

into a sum of direct products of local density matrices, using the technique developed

in Li and Qiao (Sci. Rep. 8: 1442, 2018). In the scheme, the correlation matrix

which characterizes the bipartite entanglement is first decomposed into two matrices

composed of the Bloch vectors of local states. Then we show that the symmetries of

Bloch vectors are consistent with that of the correlation matrix, and the magnitudes

of the local Bloch vectors are lower bounded by the correlation matrix. Concrete

examples for the separable decompositions of bipartite mixed states are presented

for illustration.
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1 Introduction

Entanglement lies at the heart of quantum information theory. The qualitative and

quantitative studies of entanglement are not only of great importance to our understand-

ing of quantum theory, but also have practical applications in quantum computation and

quantum information processing [1]. A prior question in the study of quantum entan-

glement is to determine whether a given quantum state is entangled or not. A mixed

bipartite state of particles A and B is separable if and only if it can be expressed as [2]

ρAB =
L∑

i=1

piρ
(A)
i ⊗ ρ

(B)
i . (1)

Here pi > 0 with
∑L

i=1 pi = 1, and ρ
(A)
i and ρ

(B)
i are local density matrices of the particles

A and B. Unlike the pure state, the separability of a mixed state is computationally hard

to be determined, even for the bipartite system [3].

One remarkable criterion in detecting the entanglement is the positive partial trans-

position (PPT) criterion [4]; however it is necessary and sufficient only for systems of

2×2 and 2×3 [5]. Many practical criteria have been developed ever since, whereas being

either necessary or sufficient, unfortunately. These criteria may be roughly sorted into

two classes. One involves inequalities of computational norms which may be regarded

as scalar measures of the entanglement [6–9]. Violations of these inequalities indicate

the existence of entanglement. Another class is based on the expectation values of some

appropriately chosen observables, named entanglement witness [5, 10–12]. By exploring

a complete set of observables, there were also the attempts to unify these two classes

[13, 14]. In a recent work [15], we introduced the multiplicative Horn’s inequalities to

the separability problem of bipartite states. Though in principle the criterion in [15] is

necessary and sufficient, its physical significance and practical applications need to be

exemplified.
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In this work, we develop a series of practical methods for the decomposition of a

bipartite state into the sum of direct products of two local states based on the technique

in [15]. With the help of Bloch representation of the quantum state, the correlation

matrix of bipartite state is first decomposed into product of two factor matrices. Then,

by considering the magnitudes and symmetries of the singular values and singular vectors

of the factor matrices, practical entanglement criteria can be obtained. Remarkably, the

separable decompositions of bipartite mixed states can be constructed explicitly based on

our criteria. In the end of this work, neat examples are presented as applications of the

method.

2 The separable decompositions of bipartite states

2.1 The Bloch representation of a quantum state

An arbitrary N ×M dimensional bipartite state in the Bloch representation is

ρAB =
1

NM
1⊗ 1+

1

2M
~a · ~λ⊗ 1+

1

2N
1⊗~b · ~σ +

1

4

N2−1∑

µ=1

M2−1∑

ν=1

Tµν λµ ⊗ σν , (2)

where 1 is the identity matrix, ~a and ~b have the components of aµ = Tr[ρAB(λµ ⊗ 1)]

and bν = Tr[ρAB(1⊗σν)], and the correlation matrix Tµν = Tr[ρAB(λµ⊗σν)]. The vector

~λ in equation (2) is defined to be ~λ ≡ (λ1, · · · , λN2−1)
T with λµ being the generators of

SU(N), and ~σ is defined similarly with σν being the generators of SU(M). For example,

the three generators of SU(2) are Pauli matrices

λ1 =

(
0 1
1 0

)
, λ2 =

(
0 −i
i 0

)
, λ3 =

(
1 0
0 −1

)
, (3)

while the generators are the eight Gell-Mann matrices for N = 3. The reduced density

matrices for particles A and B are obtained from ρAB via the following

ρA = TrB[ρAB] =
1

N
1+

1

2
~a · ~λ , ρB = TrA[ρAB] =

1

M
1+

1

2
~b · ~σ . (4)
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Here ~a and ~b are called the Bloch vectors of the density matrices. A bipartite state is

separable if it can be decomposed as the sum of direct products of local density matrices

as shown in equation (1). The necessary and sufficient condition for the separability of

ρAB in equation (2) reads [15]

L∑

i=1

pi~ri = ~a ,
L∑

j=1

pj~sj = ~b ,
L∑

k=1

pk~rk~s
T
k = T , (5)

where pi > 0,
∑L

i=1 pi = 1, and ρ
(A)
i = 1

N
1 + 1

2
~ri · ~λ and ρ

(B)
i = 1

M
1 + 1

2
~si · ~σ with ~ri, ~sj

bing the Bloch vectors of the decomposed local quantum states. L in equation (5) stands

for the number of local states needed in the separable decomposition. Equation (5) may

be expressed in the matrix form

Mr~p = ~a , Ms~p = ~b , MrpM
T
sp = T . (6)

HereMr = (~r1, ~r2, · · · , ~rL) andMs = (~s1, ~s2, · · · , ~sL) with ~ri and ~sj beingN2−1 andM2−1

dimensional real vectors respectively; ~p = (p1, · · · , pL)T and Mrp = MrD
1

2

p , Msp = MsD
1

2

p

with Dp = diag{p1, p2, · · · , pL}.

As being Hermitian, the reduced density matrices can be unitarily diagonalized as

ρ′A = UAρAU
†
A = diag{λ(A)

1 , · · · , λ(A)
n , 0, · · · , 0} , (7)

ρ′B = UBρBU
†
B = diag{λ(B)

1 , · · · , λ(B)
m , 0, · · · , 0} , (8)

where λ
(A)
i and λ

(B)
i are positive real numbers, and n and m represent the ranks of the

reduced density matrices (local ranks). Because the state ρ′AB = (UA⊗UB)ρAB(U
†
A⊗U †

B)

has the same separability as ρAB, we have the following observation

Observation 1 For the state ρAB whose local ranks are n and m, if the correlation matrix

T ′
µν of ρ′AB has nonzero elements for µ > n2 − 1 or ν > m2 − 1, then ρAB is entangled.
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Proof: Suppose ρ′AB is separable, then ρ′AB =
∑

i piρ
(A)
i ⊗ ρ

(B)
i , and

ρ′A =
∑

i

piρ
(A)
i , ρ′B =

∑

i

piρ
(B)
i . (9)

Here pi > 0 with
∑

i pi = 1; ρ′A, ρ
(A)
i , ρ′B, and ρ

(B)
i are all positive semidefinite matrices.

According to equation (7), ρ
(A)
i in equation (9) can only take the following form:

ρ
(A)
i =

(
Xn×n 0
0 0

)

N×N

. (10)

This is because the diagonal elements of positive semidefinte matrices must be nonnega-

tive, so we have (ρ
(A)
i )kk = 0 for k > n. Furthermore, from the row and column inclusion

properties we have: if (ρ
(A)
i )kk = 0, then (ρ

(A)
i )µk = (ρ

(A)
i )kµ = 0 for all µ ∈ {1, · · · , N}

(Observation 7.1.10 of [16]). Hence, the Bloch vectors ~ri of ρ
(A)
i are

ρ
(A)
i =

(
1

n
1+

1

2

n2−1∑

µ=1

riµλµ

)

n×n

⊕ 0(N−n)×(N−n) , (11)

where riµ are components of ~ri and lie in the Bloch vector space of SU(n) ⊂ SU(N).

Similar arguments apply to ρ
(B)
i as well. That means, if ρ′AB is separable, then T ′

µν = 0

for µ > n2 − 1 or ν > m2 − 1. This completes the proof. Q.E.D.

A straightforward corollary of Observation 1 goes as follows:

Corollary 1 All N × M mixed states with local ranks n < N and m < M are either

reducible to n×m bipartite states with full local ranks, or entangled.

Therefore we need only to consider the separability problem for mixed bipartite states

whose reduced density matrices have full local ranks. The full local rank state could

be further transformed into a normal form with maximally mixed subsystems, where

the normal form is separable or entangled only when the original state is separable or

entangled [17]. The normal form of a bipartite state ρAB is expressed as

ρAB 7→ ρ̃AB =
1

NM
1⊗ 1+

1

4

N2−1∑

µ=1

M2−1∑

ν=1

T̃µνλµ ⊗ σν . (12)
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Hereafter in this paper, the bipartite state ρAB is assumed to be in its normal form, i.e.

the Bloch representation of ρAB has ~a = 0 and ~b = 0.

Local symmetries: linear maps on Bloch vectors

The vectorization of a matrix A ∈ CN×M is defined as:

V(A) ≡ (A11, · · · , AN1, A12, · · · , AN2, · · · , A1M , · · · , ANM)T . (13)

The following transformation induces a linear map on ρ, Ŝ : ρ 7→ Ŝ(ρ),

Ŝ(ρ) ≡ W[XV(ρ)] , (14)

where X ∈ CNM×NM is an NM × NM matrix with complex elements, and W ≡ V−1 is

the inverse operation of vectorization which wraps a vector into a matrix [18]. It is easy

to verify that Ŝ is linear, i.e. Ŝ(aρ1 + bρ2) = aŜ(ρ1) + bŜ(ρ2). With properly chosen X ,

we can get

ρ =
1

N
1+

1

2
~r · ~λ 7→ Ŝ(ρ) =

1

N
1+

1

2
~r ′ · ~λ . (15)

Here ~r ′ = O~r and the matrix O ∈ R(N2−1)×(N2−1) is induced by X . Note, while Ŝ(ρ) is

Hermitian and trace one, it may not be positive semidefinite.

We define the matrix realignment operation to an I1 · I2 × I1 · I2 dimensional matrix

A as [19]

R(A) ≡ (V(A11), · · · ,V(AI11),V(A12), · · · ,V(AI12), · · · ,V(AI1I1)) , (16)

where Aij are I2 × I2 submatrices of A. Linear operations acting on the local states of a

bipartite density matrix may be realized via the following transformation:

ŜA ⊗ ŜB(ρAB) ≡ R−1[W(XA ⊗XB · V[R(ρAB)])] . (17)
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Here ŜA(ρA) = W[XAV(ρA)], ŜB(ρB) = W[XBV(ρB)], R−1 is the inverse of R, and

ŜA(ρA) =
1

N
1+ (OA~r ) · ~λ , ŜB(ρ) =

1

M
1+ (OB~s ) · ~σ , (18)

with OA,B being induced by XA,B, respectively. The linear operation ŜA ⊗ ŜB maps the

normal form ρAB to the following

ŜA ⊗ ŜB(ρAB) =
1

NM
1⊗ 1+

1

4

∑

µ,ν

T ′
µν λµ ⊗ σν , (19)

where T ′ = OAT OT
B, and OA ∈ R(N2−1)×(N2−1), OB ∈ R(M2−1)×(M2−1).

Magnitudes: singular values of the factor matrices

Applying the singular value decomposition, we have

Mrp = R(1)ΛαQ
(1) , Msp = R(2)ΛβQ

(2) . (20)

Here R(1) ∈ SO(N2 − 1), R(2) ∈ SO(M2 − 1), and Q(1), Q(2) ∈ SO(L). Taking Mrp as

example, the singular value matrix Λα ∈ R(N2−1)×L has the following form

Λα =

(
Dα

0

)
∈ R

(N2−1)×L , if N2 − 1 > L , (21)

Dα =

(
Λα

0

)
∈ R

L×L , if N2 − 1 < L , (22)

where Dα = diag{α1, · · · , αL} and Dα = Λα for L = N2 − 1. Similar formulation applies

to Λβ andDβ as well. Let α1 ≥ α2 ≥ · · · ≥ αn > 0 be the n nonzero singular values ofMrp,

β1 ≥ β2 ≥ · · · ≥ βm > 0 be the m nonzero singular values of Msp, and τ1 ≥ · · · ≥ τl > 0

be the l nonzero singular values of T , then from the decomposition T = MrpM
T
sp we have

the Sylvester’s rank inequality: (n +m− L) ≤ l ≤ min{n,m} ≤ max{n,m} ≤ L.

The necessary and sufficient criterion presented in [15] may be summarized as two

steps: 1. The existence of the decomposition of equation (6); 2. The decomposition can
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be realized in the physical region of Bloch vectors (that is, ρ
(A)
i and ρ

(B)
i in equation (5)

must be positive semidefinite). Here we provide practical procedures to exemplify these

steps: Mrp and Msp must have appropriate singular values and singular vectors.

2.2 Correlation matrix decomposition

Let T = (~u1, · · · , ~uN2−1)Λτ (~v1, · · · , ~vM2−1)
T be the singular value decomposition of

the correlation matrix T and Λτ has rank l, then we have

T =

l∑

µ=1

τµ~uµ~v
T
µ . (23)

For the l nonzero values of τµ, the corresponding singular vectors {~u1, · · · , ~ul} and {~v1, · · · , ~vl}

span two l-dimensional subspaces in Bloch vector space: S(A)
l ≡ span{~u1, · · · , ~ul} ⊆ SN2−1

and S(B)
l ≡ span{~v1, · · · , ~vl} ⊆ SM2−1. Let Dτ = diag{τ1, · · · , τl, 0, · · · , 0} be an L × L

diagonal matrix, then Mrp and Msp in equation (6) can always be expressed as [15]

Mrp = MrD
1

2

p = (~u1, · · · , ~uL)XDαQ
(1) , (24)

Msp = MsD
1

2

p = (~v1, · · · , ~vL)Y DβQ
(2) , (25)

whereX , Y , Q(1,2) are orthogonal matrices, ~uµ and ~vν are the left and right singular vectors

of T , and Dτ has the same singular values as DαQ
(1)Q(2)TDT

β according to Theorem 1

of [15]. Note that the value of L may be larger than N2 − 1 (and/or M2 − 1), in which

case we shall regard Mr = (~r1, · · · , ~rL) as having L-dimensional column vectors of ~ri =

(ri1, · · · , riN2−1, 0, · · · , 0)T. The Frobenius norm of a matrix M is ||M ||2 ≡ (Tr[MMT])
1

2 ,

and we have the following theorem

Theorem 1 If the correlation matrix of a bipartite state can be decomposed as T =

MrpM
T
sp, then

||T ||22 = ~αTQ ~β . (26)
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Here ~α = (α2
1, · · · , α2

L)
T, ~β = (β2

1 , · · · , β2
L)

T, and Q is an L × L orthostochastic matrix;

αi and βj are singular values of Mrp and Msp in descending order.

Proof: Equations (24) and (25) lead to MT
rpMrp = D

1

2

p MT
r MrD

1

2

p = Q(1)TD2
αQ

(1) and

MT
spMsp = D

1

2

p MT
s MsD

1

2

p = Q(2)TD2
βQ

(2). It can be shown that ( 5.03a of Ref. [20])


|~r1|2p1

...
|~rL|2pL


 = Q1~α ,




|~s1|2p1
...

|~sL|2pL


 = Q2

~β . (27)

Here Q1 = Q(1)T ◦ Q(1)T, Q2 = Q(2)T ◦ Q(2)T are orthostochastic matrices [21] with

(A ◦ B)ij ≡ AijBij been the Hadamard product of two matrices. Let Q = Q(1)Q(2)T, we

have

||T ||22 = Tr[MrpM
T
spMspM

T
rp] = Tr[D2

αQD2
βQ

T] = ~αTQ ~β , (28)

where Lemma 5.1.5 of [20] is used in the last equality and Q is an orthostochastic matrix

with Qij = Q2
ij. (An orthostochastic matrix is also a doubly stochastic matrix). Q.E.D.

In equation (27), the sums of the components of the left hand sides of the equalities

may be considered as the mean squared norms of the Bloch vectors of the decomposed

local states

E(A) ≡
L∑

i=1

pi|~ri|2 , E(B) ≡
L∑

i=1

pi|~si|2 . (29)

Because the norm of a Bloch vector is related to the purity of the quantum state, i.e.,

|~r |2 = 2(Tr[ρ2] − 1
N
), the quantities E(A,B) in equation (29) may be regarded as the

mean “quantumness” of the decomposed states. Because the mean of Bloch vectors is
∑L

i=1 pi~ri = ~a, we are legitimate to define the variance of the Bloch vectors ∆(A)2 ≡

E(A) − |~a |2 where ~a = 0 for normal form bipartite states. In this sense, the following

quantities

∆(A)2 = E(A) , ∆(B)2 = E(B) (30)

may be regarded as the fluctuations of the local Bloch vectors’ distributions.

9



We define the average of the squares of the components along the directions ~uµ ∈ S(A)
l

and ~vν ∈ S(B)
l as follows

Eµ(A) ≡
L∑

i=1

pi|~uµ · ~ri|2 , Eν(B) ≡
L∑

i=1

pi|~vν · ~si|2 . (31)

The Ky Fan norm of a matrix T is defined to be the sum of its singular values, i.e.

||T ||KF ≡∑µ=1 τµ, and we have the following as our main separability criterion

Corollary 2 The squared norms of the local states’ Bloch vectors are lower bounded by

the correlation matrix in the following way

(
l∑

µ=1

Eµ(A)
)

·
(

l∑

ν=1

Eν(B)

)
≥ ||T ||2KF , (32)

(
l∏

µ=1

Eµ(A)
)

·
(

l∏

ν=1

Eν(B)

)
≥

l∏

µ=1

τ 2µ . (33)

Here Eµ(A) and Eν(B) are the means of the squares of the components along the unit

directions ~uµ ∈ S(A)
l and ~vν ∈ S(B)

l , respectively, and τµ are the singular values of T .

Proof: According to the decomposition of equations (24, 25) we have

T = Mrp ·MT
sp = (~u1, · · · , ~uL)XDαQ

(1) ·Q(2)TDT
β Y

T



~vT
1
...
~vT
L


 , (34)

where we made an explicit separation between the matrices by a dot product. There

exists a real orthogonal matrix Q1 ∈ SO(L) such that

T = MrpQ1Q
T
1M

T
sp = MrpQ1

(
1l×l 0
0 0

)
QT

1M
T
sp . (35)

This can be shown by the following. Choosing Q1 = Q(1)T

(
Q′′

n×n 0
0 1(L−n)×(L−n)

)
we have

MrpQ1 = (~u1, · · · , ~uL)X

(
Dn×nQ

′′
n×n 0

0 0

)
, (36)

10



where Q′′
n×n ∈ SO(n), and Dn×n = diag{α1, · · · , αn} has α1 ≥ · · · ≥ αn > 0. According

to the full-rank factorization of a matrix (section 0.4.6 (e,f) of Ref. [16]) the first n rows

of QT
1M

T
sp must have the same rank l as T . Because l ≤ n, an appropriate choice of Q′′

n×n

would satisfy equation (35).

The singular value decomposition of the first l columns of MrpQ1 and MspQ1 reads

MrpQ1 = U ′(Λα′, ~r ′
l+1, · · · , ~r ′

n, 0n+1, · · · , 0L)
(
Q

(1)

l×l 0
0 1(L−l)×(L−l)

)
, (37)

MspQ1 = V ′(Λβ′ , 0l+1, · · · , 0n, ~s ′
n+1, · · · , ~s ′

L)

(
Q

(2)

l×l 0
0 1(L−l)×(L−l)

)
. (38)

Here Λα′ has the form of

(
Dα′

0

)
and so is Λβ′. Dτ ′ = diag{τ1, · · · , τl} must be the singular

value matrix for Dα′Q
(1)

l×lQ
(2)T

l×l Dβ′, i.e., Dτ ′ = XDα′Q
(1)

l×lQ
(2)T

l×l Dβ′Y
T
, where X, Y ∈ SO(l),

Dα′ = diag{α′
1, · · · , α′

l}, and Dβ′ = diag{β ′
1, · · · , β ′

l}. The left and right singular vectors,

U ′ = {~u ′
1 , · · · , ~u ′

l , · · · } and V ′ = {~v ′
1 , · · · , ~v ′

l , · · · }, have the following relations with that

of T in equation (23)

{~u ′
1 , · · · , ~u ′

l } = {~u1, · · · , ~ul}X , (39)

{~v ′
1 , · · · , ~v ′

l } = {~v1, · · · , ~vl}Y , (40)

Define the projection ~uµ~u
T
µ , µ ∈ {1, · · · , l}, then

Eµ(A) = Tr[MT
rp~uµ~u

T
µMrp] = Tr[QT

1M
T
rp~uµ~u

T
µMrpQ1]

=
l∑

ν=1

X
2

µνα
′2
ν + c2µ ≥

l∑

ν=1

X
2

µνα
′2
ν . (41)

Here c2µ represents the sum of squared components of X{~r ′
l+1, · · · , ~r ′

n} along ~uµ. Define

ε2µ ≡∑l
ν=1X

2

µνα
′2
ν , we have the following relation




ε21
ε22
...
ε2l


 =




X
2

11 X
2

12 · · · X
2

1l

X
2

21 X
2

22 · · · X
2

2l
...

...
. . .

...

X
2

l1 X
2

l2 · · · X
2

ll







α′2
1

α′2
2
...
α′2
l


 , (42)

11



which may be expressed as ~ε = X ~α′. Here ~ε = (ε21, · · · , ε2l )T, ~α′ = (α′2
1 , · · · , α′2

l )
T, and

X is a doubly stochastic matrix. Considering equation (41), we have the following

l∑

µ=1

Eµ(A) ≥
l∑

µ=1

ε2µ =

l∑

µ=1

α′2
µ , (43)

l∏

µ=1

Eµ(A) ≥
l∏

µ=1

ε2µ ≥
l∏

µ=1

α′2
µ , (44)

where the last equality and inequality in equations (43) and (44) are properties of doubly

stochastic matrix, and similar relations exist for Eν(B). Taking the Schwartz inequality

(
∑

i α
′2
i )(
∑

j β
′2
j ) ≥ (

∑
k α

′
kβ

′
k)

2 and the multiplicative Horn’s inequalities [15], equations

(43, 44) lead to

(
l∑

µ=1

Eµ(A)
)(

l∑

ν=1

Eν(B)

)
≥
(

l∑

µ=1

τµ

)2

, (45)

(
l∏

µ=1

Eµ(A)
)(

l∏

ν=1

Eν(B)

)
≥
(

l∏

µ=1

α′2
µ

)(
l∏

ν=1

β ′2
ν

)
=

l∏

µ=1

τ 2µ . (46)

Q.E.D.

As the physical region of the Bloch vectors of high dimensional system has symmetric

properties [22], there exists the following Corollary

Corollary 3 If ρAB is separable and ŜA and ŜB are positive linear maps over the sub-

spaces S(A,B)
l for all ρA and ρB, then ŜA ⊗ ŜB are also positive linear maps for ρAB.

Proof: The corollary is quite clear from the following relation

ŜA ⊗ ŜB(ρAB) = ŜA ⊗ ŜB

(
∑

i

piρ
(A)
i ⊗ ρ

(B)
i

)

=
∑

i

piŜA(ρ
(A)
i )⊗ ŜB(ρ

(B)
i ) . (47)

12



Here ŜA,B are symmetric operations (discrete or continuous, i.e. reflections, permutations,

rotations, scalings, etc.) over the subspaces S(A)
l and S(B)

l defined in equation (17). Q.E.D.

For the normal form states with maximally mixed subsystems, the typical known

results using the Bloch representation may be expressed as follows [8]: If the bipartite

mixed state is separable then

||T ||2KF ≤ 4(N − 1)(M − 1)

NM
, (48)

and if

||T ||2KF ≤ 4

NM(N − 1)(M − 1)
, (49)

then the state is separable. By considering the squared norms of the local Bloch vectors

and their symmetries, our main results lie in Corollaries 2 and 3, where the singular

vectors and singular values of the correlation matrix T play more important roles than

that of in equations (48) and (49). In the following, we shall show the applications of the

entanglement criteria of Corollaries 2 and 3 and compare them with the existing related

ones through neat examples.

2.3 Examples

2.3.1 Example I: The 2× 4 PPT entangled state

Consider the following 2× 4 dimensional mixed state

ρAB =
1

2 · 41⊗ 1+
1

4
(t1σ1 ⊗ λ1 + t2σ2 ⊗ λ13 + t3σ3 ⊗ λ3) , (50)

where tµ 6= 0, tµ ∈ R, and σµ and λν are SU(2) and SU(4) generators respectively.

Equation (50) represents a physical state when ρAB is positive semidefinite, that is

t22 ≤
1

4
, (|t1|+ |t3|)2 ≤

1

4
. (51)

13



Existing results: The density matrix ρAB in equation (50) has positive (semidefinite)

partial transposition, so the PPT criterion cannot determine whether the state is entangled

or separable. The Bloch representation criteria state that: ρAB is entangled if ||T ||2KF >

3/2, and is separable when ||T ||2KF ≤ 1/6 [8]. As ||T ||KF = |t1| + |t2| + |t3| ≤ 1 for ρAB,

the Bloch representation criteria cannot detect the entanglement when

1

6
< |t1|+ |t2|+ |t3| ≤ 1 . (52)

And none of the two criteria could be used to construct the separable decompositions for

the state ρAB.

Our results: The left and right singular vector spaces of the state ρAB in equation

(50) are S(A)
3 = span{σ1, σ2, σ3} and S(B)

3 = span{λ1, λ13, λ3}. In order to be positive

semidefinite, the Bloch vectors of the one-particle states ρ(A) and ρ(B) cannot have too

large components in S(A)
3 and S(B)

3 . Evaluations of the positivity conditions of the single

particle states in S(A)
3 and S(B)

3 show that

3∑

µ=1

Eµ(A) ≤ 1 ,
3∑

ν=1

Eν(B) ≤ 1 , (53)

3∏

µ=1

Eµ(A) ≤
1

27
,

3∏

ν=1

Eν(B) ≤
(

2

27

)2

. (54)

Here, the upper bounds of equation (53) are obtained by the states

ρ
(A)
i =

1

2
1+

1

2
(sin θi cosφiσ1 + sin θi sinφiσ2 + cos θiσ3) , (55)

ρ
(B)
i =

1

4
1+

1

2
(cos θiλ1 + sin θiλ3 +

1√
3
λ8 +

1√
6
λ15) . (56)

While the upper bounds of equation (54) are obtained by

ρ(A) =
1

2
1+

1

2
√
3
(±σ1 ± σ2 ± σ3) , (57)

ρ(B) =
1

4
1+

1

2
(±

√
2

3
λ1 ±

√
2

3
λ3 +

1

3
λ13 +

1

3
√
3
λ8 +

1

3
√
6
λ15) . (58)

14



Taking equations (53, 54) into Corollary 2, we have that if ρAB is separable then

1 · 1 ≥ (|t1|+ |t2|+ |t3|)2 ,
1

27
· 4

272
≥ (t1t2t3)

2 . (59)

That is, the state in equation (50) is entangled when (|t1|+ |t2|+ |t3|)2 > 1 or (t1t2t3)
2 >

4
273

. For the special case of t1 = t2 = t3 = t, we have that ρAB is entangled when

t >
3
√
2

3
√
3
∼ 0.242, i.e., t = 1

4
corresponds to an entangled state.

Most importantly, our method can give the separable decomposition of ρAB within the

subspaces S(A)
3 and S(B)

3 , i.e.

ρAB =
L∑

i=1

piρ
(A)
i ⊗ ρ

(B)
i , (60)

where ρ
(A)
i = 1

2
1 + 1

2
~ri · ~σ and ρ

(B)
i = 1

4
1 + 1

2
~si · ~λ. First, we write the correlation matrix

T of ρAB as follows (see the proof of Corollary 2 in Ref. [15])

T =




α1 0 0 0
0 α2 0 0
0 0 α3 0



Q ·QT




β1 0 0
0 β2 0
0 0 β3

0 0 0


 = Mrp ·MT

sp . (61)

Here tµ = αµβµ, and Q ∈ SO(4) is chosen to be

Q =
1

2




1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1


 , (62)

where we set
√
pi = Q4i =

1
2
. Then, decomposed separable states may be expressed as

Mrp = MrD
1

2

p =




α1 −α1 −α1 α1

−α2 −α2 α2 α2

−α3 α3 −α3 α3







1
2

0 0 0
0 1

2
0 0

0 0 1
2

0
0 0 0 1

2


 , (63)

Msp = MsD
1

2

p =




β1 −β1 −β1 β1

−β2 −β2 β2 β2

−β3 β3 −β3 β3







1
2

0 0 0
0 1

2
0 0

0 0 1
2

0
0 0 0 1

2


 . (64)
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The corresponding decomposition of ρAB can be read from equations (63) and (64), where

p1 = p2 = p3 = p4 = 1/4, and the Bloch vectors for ρ
(A,B)
i are

~r1 =




α1

−α2

−α3



 , ~r2 =




−α1

−α2

α3



 , ~r3 =




−α1

α2

−α3



 , ~r4 =




α1

α2

α3



 , (65)

~s1 =




β1

−β2

−β3


 , ~s2 =



−β1

−β2

β3


 , ~s3 =



−β1

β2

−β3


 , ~s4 =



β1

β2

β3


 . (66)

In the subspace of S(B)
3 , the states ρ(B) = 1

4
1 + 1

2
(β1λ1 + β2λ13 + β3λ3) require that

β2
1 + β2

3 ≤ 1
4
and β2

2 ≤ 1
4
. Therefore, ρAB is separable whenever the following conditions

are satisfied

t21
α2
1

+
t23
α2
3

≤ 1

4
,
t22
α2
2

≤ 1

4
, with α2

1 + α2
2 + α2

3 ≤ 1 , (67)

where the region for tµ forms a cylindroid.

2.3.2 Example II: The 3× 3 octahedral and tetrahedral states

We consider the following two 3× 3 bipartite states with tµ ∈ R and tµ 6= 0

ρ
(1)
AB =

1

9
1⊗ 1+

1

4
(t1λ1 ⊗ λ1 + t2λ2 ⊗ λ2 + t3λ3 ⊗ λ3) , (68)

ρ
(2)
AB =

1

9
1⊗ 1+

1

4
(t1λ1 ⊗ λ1 + t2λ2 ⊗ λ4 + t3λ3 ⊗ λ6) . (69)

Here ρ
(1,2)
AB represent physical states when

ρ
(1)
AB ≥ 0 : |t1 ± t2| ± t3 ≤

4

9
, (70)

ρ
(2)
AB ≥ 0 :

√
t21 + t22 + t23 ≤

4

9
. (71)

Existing results: The PPT criterion detected that ρ
(1)
AB is entangled when

|t1|+ |t2|+ |t3| >
4

9
. (72)

However the separability within the octahedral region of |t1|+ |t2|+ |t3| ≤ 4
9
is unknown

for PPT criteria. The Bloch representation criteria state that ρ
(1)
AB is entangled when
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||T ||KF > 4/3 and is separable when ||T ||KF ≤ 1/3. A combined application of the PPT

and Bloch representation criteria still cannot determine the separability of ρ
(1)
AB when

1/3 < ||T ||KF = |t1|+ |t2|+ |t3| ≤ 4/9 . (73)

While for the state ρ
(2)
AB, none of the PPT and Bloch representation criteria can determine

whether it is entangled or not.

Our results: For state ρ
(1)
AB, the left and right singular vectors of the correlation matrix

both are spanned by S(A)
3 = S(B)

3 = span{λ1, λ2, λ3}. There exists the following positive

linear map for ρ = 1
3
1+ 1

2
(x1λ1 + x2λ2 + x3λ3 +

∑8
µ=4 xµλµ)

Ŝ(ρ) =
1

3
1+

1

2
(−x1λ1 − x2λ2 − x3λ3 +

8∑

µ=4

xµλµ) , (74)

which may be called the partial inversion of the state [22, 23]. According to Corollary 3,

if ρ
(1)
AB is separable, then ŜA ⊗ 1(ρ

(1)
AB) must be positive which leads to

|t1|+ |t2|+ |t3| ≤
4

9
. (75)

Therefore, ρ
(1)
AB is entangled when |t1| + |t2| + |t3| > 4

9
which consistent with the PPT

criterion.

Further, our method could make the separable decomposition of ρ
(1)
AB under the con-

dition of equation (75). The equation (75) may be reexpressed as

(
2

3

)2

·
(
2

3

)2

≥ (|t1|+ |t2|+ |t3|)2 . (76)

According to the positive semidefinite condition of the density matrices in S(A,B)
3 , the

decomposed local states must be of the following form

ρ(A,B) =
1

3
1+

r

2
(sin θ cos φλ1 + sin θ sinφλ2 + cos θλ3) , r ≤ 2

3
. (77)
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The obtained decomposition is similar as that of equations (63) and (64), i.e.

Mrp =
1

2




α1 −α1 −α1 α1

−α2 −α2 α2 α2

−α3 α3 −α3 α3


 , Msp =

1

2




β1 −β1 −β1 β1

−β2 −β2 β2 β2

−β3 β3 −β3 β3


 , (78)

where tµ = αµβµ, and the norms |~ri|2 =
∑3

µ=1 α
2
µ = 4/9 and |~si|2 =

∑3
µ=1 β

2
µ = 4/9

according to equation (77). Our results show that when (compared to equation (73))

||T ||KF = |t1|+ |t2|+ |t3| ≤
4

9
, (79)

ρ
(1)
AB is separable and the separable decomposition of ρ

(1)
AB can be written explicitly from

Mrp and Msp in equation (78) with ~ri and ~si being similar to that of equations (65,66).

For the state ρ
(2)
AB with

√
t21 + t22 + t23 ≤ 4/9, the subspaces spanned by left and right

singular vectors are different, i.e., S(A)
3 = span{λ1, λ2, λ3}, S(B)

3 = span{λ1, λ4, λ6}. The

positive semidefinite condition for Bloch vectors ρ(B) = 1
3
1+ 1

2
(xλ1 + yλ4 + zλ6) is [22]

x2 + y2 + z2 − 3xyz ≤ 4

9
, (80)

x2 + y2 + z2 ≤ 4

3
. (81)

The convex hull formed by equations (80, 81) has the shape of fully filled rice dumpling

(a traditional Chinese food) with four vertices coincident to a regular tetrahedron

(
2

3
,
2

3
,
2

3
) , (−2

3
,−2

3
,
2

3
) , (−2

3
,
2

3
,−2

3
) , (

2

3
,−2

3
,−2

3
) . (82)

From Corollary 2 and equation (81), we have

(
3∑

µ=1

Eµ(A)
)

· 4
3
≥ ||T ||2KF = (|t1|+ |t2|+ |t3|)2 . (83)

From
√

t21 + t22 + t23 ≤ 4/9, we can get (|t1|+ |t2|+ |t3|)2 ≤ 16
27
. Taking this into equation

(83), we get
∑3

µ=1 Eµ(A) ≤ 4
9
. Our result predicts that the state ρ

(2)
AB admits the following
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separable decomposition

Mrp = Mr ·D
1

2

p =



α1 α1 −α1 −α1

α2 −α2 −α2 α2

α3 −α3 α3 −α3


 ·




1
2

0 0 0
0 1

2
0 0

0 0 1
2

0
0 0 0 1

2


 , (84)

Msp = Ms ·D
1

2

p =




β1 β1 −β1 −β1

β2 −β2 −β2 β2

β3 −β3 β3 −β3



 ·




1
2

0 0 0
0 1

2
0 0

0 0 1
2

0
0 0 0 1

2


 , (85)

where αµβµ = tµ. Therefore, ρ
(2)
AB is separable when βµ = tµ/αµ satisfy equations (80, 81)

t21
α2
1

+
t22
α2
2

+
t23
α2
3

− 3
t1t2t3
α1α2α3

≤ 4

9
, and

t21
α2
1

+
t22
α2
2

+
t23
α2
3

≤ 4

3
. (86)

Here the Bloch vectors’ norm of ρ(A) should be α2
1 + α2

2 + α2
3 ≤ 4

9
. Equation (86) covers

the region
√

t21 + t22 + t23 ≤ 4/9, so ρ
(2)
AB is separable for all values of ti in equation (71).

In the above examples, we use Corollaries 2 and 3 to detect the entanglement of

mixed states and compare the results with that of PPT and Bloch representation criteria.

(Many other criteria reduce to these two criteria for normal form states [8].) Then, we

explicitly construct the separable decompositions for the bipartite mixed states based on

the separability criteria of Corollaries 2 and 3. Here the decomposition is done within the

left and right singular vector spaces (i.e., S(A)
l and S(B)

l ), where, generally, dimensions out

of S(A)
l or S(B)

l may also be admissible. Full analysis of the symmetries and volumes of

the general convex hulls of the local Bloch vectors would give the necessary and sufficient

condition for separability.

3 Discussion

We have shown that, by factoring the correlation matrix into two matrices, practical

entanglement criteria are derived within the scheme developed in [15]. With these criteria,

one can analyze the magnitudes and symmetries of the Bloch vectors of the decomposed
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local states, which is unreachable for other criteria based on matrix norms. Furthermore,

our method provides a practical way to construct the separable decomposition of mixed

bipartite states analytically, rather than merely realizing the decompositions numerically.

Since the Bloch vectors of local states are distributed over a high dimensional convex

hull closely related to the steering ellipsoid in quantum steering [24], our method might

play an essential role in the studies of variant nonlocal phenomena, e.g., mixed state

entanglement, quantum steering, and Bell nonlocality.
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